The present invention relates to the field of fast high-current electron sources for X-ray tubes. In particular, the present invention relates to an emitter for X-ray tubes, further, a heating device for the emitter, a setup consisting of the emitter and the heating device and a heating method to heat the emitter.
The future demands for high-end CT and CV imaging regarding the X-ray source are higher power/tube current, shorter response-times regarding the tube current (pulse modulation) and smaller focal spots (FS) for higher image quality.
One key to reach higher power in smaller FS is given by using a sophisticated electron optical concept. But of same importance are the electron source itself and the starting condition of the electrons.
For today's high-end tubes directly heated thin flat emitters are used that are structured to define an electrical path and to obtain the required high electrical resistance. Basically, two different emitter designs comprising the explained features are well known: An emitter with a round or rectangular emitting surface/emitting section.
The first of the two types, for example explained in U.S. Pat. No. 6,426,587 B, is a thermionic emitter with balancing thermal conduction legs. The second type is explained later on. Both types have in common that they are directly heated thin flat emitters and that both emitter designs use slits to create an electric current path.
Generally, these types of emitters have a small thermal response time due to their small thickness of a few hundred of micrometers and sufficient optical qualities owing to their flatness. Variations of such designs are implemented in today's state-of-the-art X-ray tubes.
For directly heated electron sources it is essential that electrical resistance of the emitter and supplied current fulfill a required relation to release the necessary power within the filament following the equation for the power
P=I·R2 (1)
To achieve high power it is possible to apply high current or to increase the electrical resistance of the emitter. The last way may be realized with the known emitter of U.S. Pat. No. 6,426,587 B1.
The advantage of the emitters of the aforesaid types is that the entire electrical path can be realized with thin wires and narrow slits, resulting in a small device which is optimal for medical X-ray tubes. The disadvantage however may also based on the structuring: The electrical field may penetrates into the slit and the potential lines therefore bend into the slit region. If an electron is emitted from the surface perpendicular to the optical axis but within the region of deformed potential, its tangential velocity component may increases which causes stronger optical aberration of the source resulting in enlarged focal spots. An improvement of these known electron sources is essential.
Therefore, it is an object of the invention to provide an emitter which enables to get still smaller focal spot sizes while using today's sophisticated electron-optical lens systems.
This object is achieved in accordance with the invention in an emitter for X-ray tubes comprising a flat foil with an emitting section and at least two electrically conductive fixing sections wherein the emitting section is unstructured.
As hereby defined, the term ‘unstructured’ means that the emitting section has no slits and shows therefore a solid and plain surface. Due to the unstructured emitting section the electrical field is less disturbed as in slit structured emitting sections as known from the art. Surprisingly, eliminating the slit structure reduces the achievable spot size significantly. The emitter leads to smaller focal spot sizes than achievable with common electron sources without losing the necessary fast response times for medical examinations.
In a preferred embodiment of the invention, the foil has a uniformly thickness in a range between 50 μm and 300 μm, preferably, in a range between 100 μm and 200 μm.
According to another preferred variant of the invention, the foil consists of tungsten or a tungsten alloy.
Further, in another embodiment of the invention, the emitting section has a rectangular shape, particularly, a quadratically shape.
According to another preferred embodiment of the invention, the fixing sections have a spring structure. Due to the fact that one major problem of an unstructured flat emitter is the thermal expansion, the spring structure of the fixing sections may compensate this expansion. This compensation could lead to a significantly reduced deformation of the emitting area and thus to a further increased optical quality of the emitter.
According to an exemplary embodiment of the present invention, each fixing section is connected with a corner of the emitting section. This arrangement of the fixing sections allows to apply a mechanical pretension in a way, that the elongation of the emitting area during its hot phase is compensated. The spring structure of each fixing section must be designed following the boundary condition that this pretension causes no plastic deformation. Furthermore, this structure may forms a heat barrier between further terminals located at both ends of the emitter (heat sink) and a hot part of the emitter which leads to the necessary well-defined emitting area.
Furthermore, according to another exemplary embodiment of the present invention, the direction of the resilience of each fixing section is in-line with one diagonal of the shape of the emitting section to compensate the thermal expansion of the emitting section in all plane directions. This leads to a still better compensation of the elongation of the emitting section/emitting area.
The present invention also relates to a heating device to heat the emitter, comprising a flat structured heating section and at least two fixing sections. The heating section is preferably subdivided by a plurality of slits into a plurality of thermal regions. By implementing the heating device with an inhomogeneous temperature distribution, a cold center and an increasing temperature to the edges, in combination with a direct heating of the fixing sections of the emitter leads to an homogeneous temperature and hence electron emitting distribution.
According to another exemplary embodiment of the present invention, the slits have a spiral shape.
According to another exemplary embodiment, the present invention includes a setup comprising the emitter and a heating device.
Another object of the invention is a heating method of the aforesaid setup. The method preferably comprises an electron bombardment onto the emitting section of the emitter and to apply an electrical current IH onto at least two fixing sections of the heating device. Additionally the method comprises to apply an electrical current into the at least two fixing sections of the emitter.
If it is essential that the response time of the emitting current is short, only little heat capacity should exist or a fast cooling concept must be used. For known directly heated filaments high electrical current is preferred and therefore thick current supply lines and contacts as well as a large cooling system may used. This is not practicable within an X-ray tube for medical applications due to its small size for manual movements or gantry application. The only way to achieve that would be to decrease the thin flat emitter thickness to a few μm which is not practicable owing to the reduced emitter stability during high CT-gantry rotations and accelerations. Therefore the aforesaid heating method may preclude the disadvantages of known methods.
A practicable indirect heating method may be given by a heat flux generation by accelerating electrons that are emitted from a directly heated emitter behind the indirectly heated nonstructured emitter (IHFE). This method is described in IEEE Transactions on Plasma Science, Vol. 19, No. 6, December 1991 and in the patent US 2004/0222199 A1. But these applications suffer from their large sizes and heat capacities with heating-up times of t=10 s or longer which is much to slow for medical applications. By reducing the size may the mechanical stability with respect to the flatness of the emitting surface and the temperature homogeneity get lost. These arising mechanical and thermal problems may be solved by the method of the invention.
It has to be noted that embodiments of the invention have been described with reference to different subject matters. In particular, some embodiments have been described with reference to apparatus type claims whereas other embodiments have been described with reference to method type claims. However, a person skilled in the art will gather from the above and the following description that, unless other notified, in addition to any combination of features belonging to one type of subject matter also any combination between features relating to different subject matters, in particular between features of the apparatus type claims and features of the method type claims is considered to be disclosed with this application.
The aspects defined above and further aspects of the present invention are apparent from the examples of embodiment to be described hereinafter and are explained with reference to the examples of embodiment. The invention will be described in more detail hereinafter with reference to examples of embodiment but to which the invention is not limited.
These and other aspects of the present invention will become apparent from and elucidated with reference to the embodiments described hereinafter.
Exemplary embodiments of the present invention will be described in the following, with reference to the following drawings.
a) shows a common directly heated first emitter with a rectangular emitting surface.
b) shows a common second emitter with a round emitting surface.
A directly heated thin flat emitter 1 with a rectangular emitting surface 2, as known from the art, is shown in
Even the emitter 4 of
The result is illustrated in
The shown setup 29 and operation mode may provides heating-up and cooling-down times of t<0.1 s while switching between T1=2240° C. and T2=2050° C. which corresponds to an emission reduction from 100% to 20%.
One way to realize an indirect heating of the emitter 26 with the non-structured emitting section 30 is given by the heating device 27 with the combination of an electron emitting part and the real filament that injects electrons into the electron optic. The electrons that are emitted from the heating device 27 are accelerated towards the filament of the emitter 26 by applying an electrical voltage between these parts with the heating device 27 on negative potential with respect to the optical emitter (filament). When the electrons impinge onto the filament's backside, their kinetic energy is transformed into heat and the filament temperature rises. Additionally, energy is transferred to the filament by radiation. This principle setup is shown in
The heating device 27 is directly heated by electrical current and therefore needs a high electrical resistance which is e.g. realized by a meander structured foil. To avoid electrons emitting from the side wall of the foil into the optical system, a blocking frame 36 is implemented around and on the heating device's backside (
Furthermore, this structure forms a heat barrier between the terminals at both ends (heat sink) and the hot part which leads to the necessary well-defined emitting section 30.
The principle emitter design as shown in
A different design is presented in
The
The temperature distribution of the 7 mm×7 mm emitter, when heated by a 6.5 mm×6.5 mm heater with a homogenous temperature, is generally shown in
Another idea of this invention is given by using a heating device 50 with a decreasing temperature from the edge to the center (
Another improvement of this invention is as follows: The pretension spring structure by itself has a relative high electrical resistance compared to the emitting area. Hence, by applying an electrical current to the terminals, the springs are heated up and the temperature difference ΔT decreases. In principle this is shown in
Realizing thicker and larger structures, the above mentioned problems to guarantee a homogenous temperature distribution of the emitter and its mechanical stability, especially regarding the flatness, can drastically be reduced. But for medical applications, it is necessary to realize an emitter with a fast thermal response like it is provided by the thin and small indirectly/directly heated electron source design.
with Richardson constant A=120 A/cm2/K2, work function We=4.5 eV for tungsten and Boltzmann constant kB=1.38e-23 J/K. As is illustrated in
The invention generally includes a setup of an electron source for X-ray-tubes comprising a non-structured indirectly-heated or directly/indirectly heated flat emitter section with fast response regarding to the emitting current. This setup leads to smaller focal spot sizes than achievable with common electron sources without losing the necessary fast response times for medical examinations. By implementing a heating device with an inhomogeneous temperature distribution, a cold center and an increasing temperature to the edges, in combination with a direct heating of the fixture part of the emitter leads to an homogeneous temperature and hence electron emitting distribution. One way to realize an indirect heating of a non-structured foil is given by a combination of an electron emitting part and the real filament that injects electrons into the electron optic.
It should be noted that the term “comprising” does not exclude other elements or steps and the “a” or “an” does not exclude a plurality. Further, it should be noted, that any reference signs in the claims shall not be construed as limiting the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
06122431 | Oct 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/054124 | 10/10/2007 | WO | 00 | 4/16/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/047269 | 4/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5044005 | De Fraguier et al. | Aug 1991 | A |
5426686 | Rentzepis et al. | Jun 1995 | A |
5742662 | Kuhn et al. | Apr 1998 | A |
5907595 | Sommerer | May 1999 | A |
6426587 | Hell et al. | Jul 2002 | B1 |
6456691 | Takahashi et al. | Sep 2002 | B2 |
6480568 | Dinsmore | Nov 2002 | B1 |
6516048 | Mori | Feb 2003 | B2 |
6785359 | Lemaitre | Aug 2004 | B2 |
20030025429 | Hell et al. | Feb 2003 | A1 |
20040222199 | Haga | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
336781 | May 1921 | DE |
19911081 | Sep 2000 | DE |
10012203 | Jul 2001 | DE |
10020266 | Nov 2001 | DE |
9639709 | Dec 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20100316192 A1 | Dec 2010 | US |