This invention relates to field emitter technology and, more particularly, to electron emitters and a method for forming them.
Cathode ray tube (CRT) displays, such as those commonly used in desk-top computer screens, function as a result of a scanning electron beam from an electron gun impinging on phosphors on a relatively distant screen. The electrons increase the energy level of the phosphors. The phosphors release energy imparted to them from the bombarding electrons, thereby emitting photons, which photons are transmitted through the glass screen of the display to the viewer.
Flat panel displays have become increasingly important in appliances requiring lightweight portable screens. Currently, such screens use electroluminescent, liquid crystal, or plasma technology. A promising technology is the use of a matrix-addressable array of cold cathode emission devices to excite phosphor on a screen.
In U.S. Pat. No. 3,875,442, entitled “Display Panel,” Wasa et. al. disclose a display panel comprising a transparent gas-tight envelope, two main planar electrodes which are arranged within the gas-tight envelope parallel with each other, and a cathode luminescent panel. One of the two main electrodes is a cold cathode, and the other is a low potential anode, gate, or grid. The cathode luminescent panel may consist of a transparent glass plate, a transparent electrode formed on the transparent glass plate, and a phosphor layer coated on the transparent electrode. The phosphor layer is made of, for example, zinc oxide which can be excited with low-energy electrons.
Spindt, et. al. discuss field emission cathode structures in U.S. Pat. Nos. 3,665,241; 3,755,704; 3,812,559; and 4,874,981. To produce the desired field emission, a potential source is provided with its positive terminal connected to the gate, or grid, and its negative terminal connected to the emitter electrode (cathode conductor substrate). The potential source may be made variable for the purpose of controlling the electron emission current. Upon application of a potential between the electrodes, an electric field is established between the emitter tips and the grid, thus causing electrons to be emitted from the cathode tips through the holes in the grid electrode.
An array of points in registry with holes in grids is adaptable to the production of gate emission sources subdivided into areas containing one or more tips from which areas of emission can be drawn separately by the application of the appropriate potentials thereto.
There are several methods by which to form the electron emission tips. Examples of such methods are presented in U.S. Pat. No. 3,970,887 entitled, “Micro-structure Field Emission Electron Source.”
The performance of a field emission display is a function of a number of factors, including emitter tip or edge sharpness.
In the process of the present invention, a dopant material which affects the oxidation rate or the etch rate of silicon is diffused into a silicon substrate or film. “Stalks” or “pillars” are then etched, and the dopant differential is used to produce a sharpened tip. Alternatively, “fins” or “hedges” may be etched, and the dopant differential used to produce a sharpened edge.
One of the advantages of the present invention is the manufacturing control and available process window for fabricating emitters, particularly if a high-aspect ratio is desired. Another advantage of the present invention is its scalability to large areas.
The present invention will be better understood from reading the following description of nonlimitative embodiments, with reference to the attached drawings, wherein:
Referring to
The schematic cross-sections for the alternative embodiment are substantially similar to those of the preferred embodiment in which the emitters 13 are tips. From a top view (not shown), the elongated portion of the wedge would be more apparent
The substrate 11 can be comprised of glass, for example, or any of a variety of other suitable materials, onto which a conductive or semiconductive material layer, such as doped polycrystalline silicon can be deposited. In the preferred embodiment, single crystal silicon serves as a substrate 11, from which the emitters 13 are directly formed. Other substrates may also be used including, but not limited to, macrograin polysilicon and monocrystalline silicon, the selection of which may depend on cost and availability.
If an insulative film or substrate is used with the process of the present invention, in lieu of the conductive or semiconductive film or substrate 11, the micro-cathode 13 should be coated with a conductive or semiconductive material prior to doping.
At a field emission site, a micro-cathode 13 (also referred to herein as an emitter) has been constructed in the substrate 11. The micro-cathode 13 is a protuberance that may have a variety of shapes, such as pyramidal, conical, wedge, or other geometry, which has a fine micro-point, edge, or blade for the emission of electrons. The micro-cathode 13 has an apex and a base. The aspect ratio (i.e., height-to-base width ratio) of the emitters 13 is preferably greater than 1:1. Hence, the preferred emitters 13 have a tall, narrow appearance.
The emitter 13 of the present invention has an impurity concentration gradient, indicated by the shaded area 13A, in which the concentration is higher at the apex and decreases towards the base.
The emitter 13 of an alternative of the present invention has an impurity concentration gradient, indicated by the shaded area 13A′, in which the concentration is lower at the apex and increases towards the base.
Surrounding the micro-cathode 13 is an extraction grid or gate structure 15. When a voltage differential, through source 20, is applied between the micro-cathode 13 and the gate structure 15, an electron stream 17 is emitted toward a phosphor-coated screen 16. The phosphor-coated screen 16 functions as the anode. The electron stream 17 tends to be divergent, becoming wider at greater distances from the tip of micro-cathode 13.
The electron emitter 13 is integral with the semiconductor substrate 11 and serves as a cathode conductor. Gate structure 15 serves as and extraction grid for its respective micro-cathode 13. A dielectric insulating layer 14 is deposited on the substrate 11. However, a conductive cathode layer (not shown) may also be disposed between the dielectric insulating layer 14 and the substrate 11, depending upon the material selected for the substrate 11. The dielectric insulating layer 14 also has an opening at the field emission site location.
The process of the present invention, by which the emitter 13 having the impurity concentration gradient is fabricated, is described below.
The substrate 11 can be doped using a variety of available methods. The impurity concentration gradient 13A can be obtained from a solid source diffusion disc or gas or vapor feed source, such as POC1, or from spin-on dopant with subsequent heat treatment or implantation or CVD film deposition with increasing dopant component in the feed stream, throughout the time of deposition, either intermittently or continuously.
In the case of a CVD or epitaxially grown film, it is possible to introduce an impurity that decreases throughout the deposition and serves as a component for retarding the consumptive process subsequently employed in the process of the present invention. An example is the combination of a silicon film or substrate 11, doped with a boron impurity concentration gradient 13A, and etched with an ethylene diamine pyrocatechol (EDP) etchant, where the EDP is employed after anisotropically etching pillars or fins from substrate 11.
In the preferred embodiment, the substrate 11 is single crystal silicon. After doping, the film or substrate 11 is then patterned, preferably with a resist/silicon nitride/silicon oxide sandwich etch mask 24 and dry etched. Other types of materials can be used to form the sandwich etch mask 24, as long as they provide the necessary selectivity to the substrate 11. The silicon nitride/silicon oxide sandwich has been selected due to its tendency to assist in controlling the lateral consumption of silicon during thermal oxidation, which is well known in semiconductor LOCOS processing.
The structure of
The structure of
Alternatively, an etch is performed, the rate of which is dependent upon (i.e., a function of) the concentration of the contaminants (impurities exposed to a consumptive process, whereby the rate or degree of consumption is a function of the impurity concentration, such as the thermal oxidation of silicon which has been doped with impurity concentration gradient 13A).
The etch, or oxidation, proceeds at a faster rate in areas having higher concentration of impurities. Hence, the emitters 13 are etched faster at the apex, where there is an increased impurity concentration gradient 13A, and slower at the base, where there is a decrease in the impurity concentration gradient 13A.
The etch is preferably nondirectional in nature, removing material of a selected purity level in both horizontal and vertical directions, thereby creating an undercut. The amount of undercut is related to the impurity concentration gradient 13A.
All of the U.S. patents cited herein are hereby incorporated by reference herein as if set forth in their entirety.
While the particular process as herein shown and disclosed in detail is fully capable of obtaining the objects and advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims. For example, one having ordinary skill in the art will realize that the emitters can be used in a number of different devices, including but not limited to field emission devices, cold cathode electron emission devices, and micro-tip cold cathode vacuum triodes.
This application is a continuation of application Ser. No. 08/609,354, filed Mar. 1, 1996, which is now U.S. Pat. No. 6,825,596, issued Nov. 30, 2004, which is a divisional of application Ser. No. 08/089,166, filed Jul. 7, 1993, which is now U.S. Pat. No. 5,532,177, issued Jul. 2, 1996. There is a continuation application having Ser. No. 08/555,908, which was filed on Nov. 13, 1995, now abandoned. That application is a continuation of application Ser. No. 08/089,166, which was filed on Jul. 7, 1993 and issued as U.S. Pat. No. 5,532,177 on Jul. 2, 1996. Also, there is a divisional of application Ser. No. 08/609,354, which was filed on Sep. 25, 1998 as application Ser. No. 09/161,338, now U.S. Pat. No. 6,049,089 issued Apr. 11, 2000.
Number | Name | Date | Kind |
---|---|---|---|
3665241 | Spindt et al. | May 1972 | A |
3755704 | Spindt et al. | Aug 1973 | A |
3812559 | Spindt et al. | May 1974 | A |
3816194 | Kroger et al. | Jun 1974 | A |
3875442 | Wasa et al. | Apr 1975 | A |
3894332 | Nathanson et al. | Jul 1975 | A |
3970887 | Smith et al. | Jul 1976 | A |
4301429 | Goldman et al. | Nov 1981 | A |
4400866 | Yeh et al. | Aug 1983 | A |
4420872 | Solo de Zaldivar | Dec 1983 | A |
4718973 | Abraham et al. | Jan 1988 | A |
4766340 | van der Mast et al. | Aug 1988 | A |
4874981 | Spindt | Oct 1989 | A |
4943343 | Bardai et al. | Jul 1990 | A |
4964946 | Gray et al. | Oct 1990 | A |
4968382 | Jacobson et al. | Nov 1990 | A |
5063327 | Brodie et al. | Nov 1991 | A |
5090932 | Dieumegard et al. | Feb 1992 | A |
5138220 | Kirkpatrick | Aug 1992 | A |
5201992 | Andreadakis et al. | Apr 1993 | A |
5269877 | Bol | Dec 1993 | A |
5315126 | Field | May 1994 | A |
5330920 | Soleimani et al. | Jul 1994 | A |
5358908 | Reinberg et al. | Oct 1994 | A |
5372973 | Doan et al. | Dec 1994 | A |
5378658 | Toyoda et al. | Jan 1995 | A |
5431777 | Austin et al. | Jul 1995 | A |
5469014 | Itoh et al. | Nov 1995 | A |
5532177 | Cathey | Jul 1996 | A |
5552613 | Nishibayashi et al. | Sep 1996 | A |
5583393 | Jones | Dec 1996 | A |
5662815 | Kim | Sep 1997 | A |
5703380 | Potter | Dec 1997 | A |
5757344 | Miyata et al. | May 1998 | A |
5786659 | Takagi et al. | Jul 1998 | A |
6031250 | Brandes et al. | Feb 2000 | A |
6049089 | Cathey | Apr 2000 | A |
6091188 | Tomihari et al. | Jul 2000 | A |
Number | Date | Country |
---|---|---|
57-43412 | Mar 1982 | JP |
3-238729 | Oct 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20020093281 A1 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08089166 | Jul 1993 | US |
Child | 08609354 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08609354 | Mar 1996 | US |
Child | 09759746 | US |