This application claims the benefit of priority to European Patent Application No. EP 03291797.3, filed Jul. 18, 2003.
The present invention relates to stable formulations of azetidine derivatives.
The azetidine derivatives used in the pharmaceutical compositions according to the invention may be designated by the general formula (Ia) or (Ib) below:
in which Ar is an aromatic or heteroaromatic group optionally substituted with one or more (C1-C4)alkyl, halogen, NO2, CN, (C1-C4)alkoxy or OH groups. In the definition of the azetidine derivatives above, aromatic group is understood to mean in particular a phenyl or naphthyl group, heteroaromatic group a pyridyl, furyl, thienyl, thiazolyl, imidazolyl or oxazolyl group, and halogen fluorine, chlorine, bromine or iodine.
Compound (Ic) below, is a specific example of azetidine of general formula (Ia):
In patent applications WO 00/15609, WO 01/64633, WO 0064634 and WO 99/01451, there have been described azetidine derivatives of general formula (Ia) or (Ib) and their applications. In particular, these azetidine derivatives are particularly advantageous for their high affinity for cannabinoid receptors and in particular CB1-type receptors.
Unfortunately, azetidine derivatives are products that are only very slightly water-soluble. Up until now, it was envisaged to administer the azetidine derivatives of general formula (Ia) or (Ib), in particular by the oral route, in the form of tablets in formulations comprising, inter alia, cellulose, lactose and other excipients. However, such formulations are not always sufficiently well suited to these sparingly water-soluble products because of an excessively low bioavailability.
Numerous documents describe systems suitable for solubilizing and/or enhancing the bioavailability of hydrophobic active ingredients. However, the systems tested have so far proved ineffective for the preparation of pharmaceutical compositions containing azetidine derivatives defined above which are stable and bioavailable and in which the azetidine derivative is solubilized at an effective concentration.
In particular, J. Pharm Sciences, 89(8), 967 (2000) and Pharmaceutical Technology Europe, p. 20, September 2000 mention the formulation of active ingredients which are sparingly soluble in water, in medium-chain triglycerides. However, the trials carried out with formulations based on Miglyol® have given insufficient results from the point of view of their bioavailability.
Moreover, international application WO 95/24893 describes compositions comprising digestible oil, a lipophilic surfactant and a hydrophilic surfactant, which are intended for the formulation of hydrophobic active ingredients and for the enhancement of their bioavailability. International patent application PCT/FR02/04514 explains that the above azetidine derivatives are too weakly bioavailable in this type of formulation. In particular, the formulation of such azetidine derivatives in a Miglyol®/Capryol®/Cremophor® system is insufficient in vivo from the pharmacokinetic point of view.
It has now been found, and that is what constitutes the subject of the present invention, that it is possible to prepare chemically and physically stable pharmaceutical compositions comprising a derivative of general formula (Ia) or (Ib), optionally in combination with another active ingredient capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib), in a system comprising:
Sibutramine and its effects have been described in the references below: WO 90/061110; D. H. RYAN et al., Obesity Research, 3 (4), 553 (1995); H. C. JACKSON et al., British Journal of Pharmacology, 121, 1758 (1997); G. FANGHANEL et al., Inter. J. Obes., 24 (2), 144 (2000); G. A. BRAY et al., Obes. Res., 7(2), 189 (1999).
Moreover, for other treatments such as schizophrenia or the treatment of neurological disorders such as Parkinson's disease, it may be advantageous to administer the azetidine derivatives of general formula (Ia) or (Ib) at the same time as one or more agents, which activate dopaminergic neurotransmission in the brain. These combinations make it possible to potentiate the effects of a dopaminergic monotherapy (levodopa, dopaminergic agonists, and inhibitors of enzymes), and make it possible to reduce side effects, in particular dyskinesia.
Among the dopaminergic agonists, the following products may be mentioned in particular: bromocriptine (Novartis), cabergoline (Pharmacia Corp.) adrogolide (Abbott Laboratories), BAM-1110 (Maruko Seiyaku Co Ltd), Duodopa® (Neopharma), L-dopa, dopadose (Neopharma), CHF1512 (Chiesi), NeuroCell-PD (Diacrin Inc), PNU-95666 (Pharmacia & Upjohn) ropinirole (GlaxoSmithKline Beecham), pramipexole (Boehringer Ingelheim) rotigotine (Discovery Therapeutics, Lohmann Therapie System), spheramine (Titan Pharmaceuticals), TV1203 (Teva pharmaceutical), uridine (Polifarma).
It is understood that the compositions comprising, in addition, an active ingredient other than the azetidine derivative of general formula (Ia) or (Ib) and capable of potentiating the effects thereof may contain a product as defined in the paragraphs above and that said compositions fall within the scope of the present invention.
The active ingredient derived from azetidine is preferably present in an amount of 0.01 to 70% by weight of the total composition.
According to another aspect, the invention is about a process for preparing a composition comprising an azetidine according to its first aspect, wherein there is prepared, where appropriate, the mixture of principal excipients, after heating, if necessary, in the case of the solid or semisolid excipients, and then, if necessary, the mixture with the additional additives, and then the azetidine derivative (Ia) or (Ib), where appropriate, the active ingredient capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib), defined in claim 1 are added and stirring is maintained in order to obtain a homogeneous mixture.
According to a further aspect, the invention is about a presentation kit containing a composition as defined above, and a composition comprising an active ingredient capable of potentiating the effects of the azetidine derivative (Ia) or (Ib).
The active ingredient of the presentation kit capable of potentiating the effects of the azetidine derivative is preferably sibutramine.
According to a last aspect, the invention is about a presentation kit containing a composition according to its first aspect, and a composition comprising an agent which activates dopaminergic neurotransmission in the brain.
In the first preclinical studies performed in rats, the oral administration of an aqueous suspension of a drug substance of formula (I) in 0.5% methylcellulose/0.2% tween 80 (dose at 10 mg/kg) led to a very low bioavailability (3%). A first formulation approach has been to use a solution of 25 mg/mL (Ic) in Miglyol 812N, chosen because of the higher drug substance solubility in oily components (35.9 mg/mL in Miglyol 812). Furthermore, this excipient (medium chain triglyceride) is known for its digestibility and regulatory acceptability. This formulation has been used for further preclinical studies, leading to an increased bioavailability of the drug substance of formula (Ic) in rats (13 and 37% with doses at 1 mg/kg and 10 mg/kg respectively). However, in the First in Man study, an important food effect and interindividual variability were observed: the Maximum Tolerated Dose was around 100 mg in fasted conditions, with an interindividual variability of 50%, whereas in fed conditions the Maximum Tolerated Dose was divided by 10 with a decrease of the interindividual variability to 30%.
Based on all these results, the requirements for the development of a new formulation were the following:
Preamble: Description of the Excipients
(i) Vitamin E TPGS (Eastman Chemicals):
Vitamin E TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate) is a water-soluble derivative of natural-source vitamin E, of non-animal origin.
(ii) Phosal 50PG (Aventis Nattermann) Phosal 50PG is a phosphatidylcholine concentrate with at least 50% PC and propylene glycol.
Composition: Phosphatidylcholine app. 56.8%
Propylene glycol: app. 38%
Sunflower mono/diglycerides: app. 3%
Soybean fatty acids: app. 2%
Ascorbyl palmitate: app. 0.2%; Ethanol: ad 100%
It is synthesized starting from soya lecithin, purified into Phospholipon and then solubilized in a liquid carrier system.
Nattermann Phospholipid GmbH sells also other phospholipids that are solubilized in varying forms. For instance, Phosal® 53MCT, that is a form consisting of phosphatidylcholine solubilized in a carrier system comprising caprylic/capric triglycerides, alcohol, glyceryl stearate, oleic acid and ascorbyl palmitate. The phosphatidylcholine content is about 56±3% w/w.
(iii) Labrasol (Gattefosse)
Labrasol® (Caprylocaproyl Macrogol-8 Glycerides) is a saturated polyglycolized glyceride consisting of mono-, di- and triglycerides and of mono- and di-fatty acids of polyethylene glycol (PEG)
This amphiphilic oil obtained from vegetable and petrochimic origin is soluble in water.
(iv) Labrafil (Gattefosse)
Labrafil® M 1944 CS (Oleic Macrogol-6 Glyceride), an amphiphilic oil dispersible in water (HLB 4), derived from selected high purity vegetable oils. This excipient allows increasing the lipophilic character of the formulation prototype with the aim to improve the solubilization of the active in gastrointestinal fluids by formation of fine dispersion. In addition, this material miscible with cholesterol and phospholipids, could go through the membranes by a non active mechanism (passive diffusion).
(v) Gelucire (Gattefosse)
Gelucire® 44/14 (Lauroyl Macrogol-32 Glycerides) is a saturated polyglycolized glyceride consisting of mono-, di- and triglycerides and of mono- and di-fatty acids of polyethylene glycol (PEG).
Gelucire® 44/14 is obtained from the reaction of hydrogenated palm kernel oil with PEG 1500.
(vi) Miglyol 812 is described as a fixed oil extracted from the hard, dried fraction of the endosperm of Coco nucifera L. by hydrolysis, fractionation of the fatty acids obtained and re-esterification. It consists of a mixture of exclusively short and medium chain triglycerides of fatty acids, of which not less than 95% are the saturated acids octanoic (caprylic) acid and decanoic (capric) acid.
It is a colorless to slightly yellowish oily liquid, which is practically odorless and tasteless.
(vii) Cremophor RH40 is a Polyoxyl 40 hydrogenated castor oil. This material is obtained by reacting ethylene oxide with hydrogenated castor oil. It occurs as a white semisolid paste that liquefies at 30° C. It has a very faint characteristic odor and a slight taste in aqueous solution.
(viii) Cremophor EL is Polyoxyl 35 castor oil (Polyoxyethyleneglycerol triricinolineate, glycerol-polyethyleneglycol ricinoleate)
This material is obtained by reacting ethylene oxide with castor oil (German Pharmacopeia quality). Cremophor EL is a pale yellow, oily liquid (viscosity at 25° C.:700-850 cP) that is clear at T>26° C. It has a slight but characteristic odor and can completely liquefied by heating to 26° C.
(ix) Capryol 90 is Propylene Glycol Monocaprylate
This material is obtained from vegetable and petrochemical origin, and is insoluble in water.
The first step was to determine the solubility of compound(Ic) in an exhaustive series of lipids and other pharmaceutical cosolvents including vegetable oils, lipidic components, surfactants, hydrophilic components and phospholipids. The protocol of the solubility measurement is reported in the annex.
After determination of the solubilities, the objective was to select a few excipients taking into account the solubility of the active, their registrability and their ability to increase the bioavailability of a drug substance (by solubilization improvement or absorption enhancement).
Concerning the third criterion, the excipients were then selected based on:
Concerning Phosal 53MCT, a main issue on the physical stability of the excipient led to choose Phosal 50PG as alternative. Indeed, the observed phase separation of the excipient concerned not only the batch stocked at Aventis, but also the batches stocked at Nattermann. Phosal 50PG exhibited a very good physical stability. The main features of the selected excipients are described in the table below:
For the Labrasol prototype, the maximum amount of Labrasol to include in the prototype was 60% (w/w) because, at higher amount, a risk of incompability with the gelatin of the capsule shell was emphasized. Formulations with higher content of Labrasol could be used with capsules not made of gelatine. In order to complete the bulk composition of this formulation, it was decided to use Labrafil M 1944 CS, a lipophilic component (HLB 4), at 40% (w/w).
Any formulation containing an amphiphilic surfactant/cosurfactant couple leads to the formation of several micellar states. The aim was to develop formulation prototypes able to form spontaneously a microemulsion with physiological fluids. Microemulsions can be defined as transparent, isotropic, thermodynamically stable liquids. As a consequence, microemulsions can be infinitely dilute. The transparency is the consequence of their microstructure which consists of micro-droplets of size<100 nm.
Their main properties of pharmaceutical interest are: high drug solubilizing power; dilution capacity, leaving the molecule in micellar solution in situ; and dispersion capacity with a droplet size allowing easier absorption.
Based on the litterature and on solubility results obtained with excipients described for microemulsion formulation, the following components were selected, with the aim to develop one microemulsion prototype:
The design of this diagram allows determining the excipients ratio able to give the region of the microemulsion. Microemulsions being quaternary systems, their graphic representation requires a tridimensional representation. However, in order to simplify the representation, a pseudo-ternary diagram is used.
The micro emulsion is assumed to be a pseudo-ternary mixture of:
The initial composition of the self microemulsifying systems were:
The initial composition of the self microemulsifying systems with (Ic) were:
The formation of a microemulsion was confirmed by isotropic characterization
In order to confirm the formation of a microemulsion, its thermodynamic stability was verified after storage in aggressive conditions and after high dilution in water or physiological fluids.
The following samples were tested:
The results on droplet size (expressed in nm) associated with polydispersity index obtained after storage of 2 weeks at 50° C. are the following:
The results on droplet size (expressed in nm) associated with polydispersity index obtained after temperature cycles are the following:
No variation of the droplet size was observed with the applied treatments: the structure of the microemulsion was not sensitive to the high temperature or to thermal shock.
The preparation of the mixture of Miglyol 812 (liquid), Cremophor RH40 (semisolid at room temperature, solidification point 28° C.) and Capryol 90 (liquid) needed to heat the mixture at 60° C. to obtain a homogeneous solution. In addition, the heating of the mixture could have an impact on the chemical stability of Compound Ic. Taking into account these two issues, the proposition was made to replace Cremophor RH 40 by Cremophor EL (from same chemical family). Cremophor EL, polyoxyl 35 castor oil, is a liquid surfactant: No heating is needed for the manufacturing.
Two tests were performed to evaluate the interest of Cremophor EL in comparison with Cremophor RH 40: design of the pseudoternary diagram for a surfactant/co surfactant ratio of 3:1 and test of the infinite dilutability.
Fed intestinal medium, pH 5 (ref. Dressman et al., Pharm. Res., 1998)
All Compound (Ic) formulations (400 mg) were diluted 1:50 in the gastric, fasted intestinal or fed intestinal medium (20 ml), then incubated during 2 hours at 37° C. under mechanical stirring (300 rpm). The drug concentration was determined by HPLC before and after filtration (0.2 or 2 μm).
The aim of this study was to evaluate the colloidal stability and the self-emulsifying properties of the emulsion/microemulsion/micellar solution of the (Ic) formulation after incubation in the GI media. Thus, the sample was filtered onto 2 μm (able to retain oil droplets >2 μm, as well as drug crystals >2 μm) then dosed by HPLC. The filter size (2 μm) has been chosen after a screening with different filter sizes (0.45, 2 and 5 μm) tested on the aqueous solution of the drug. Indeed, as shown in
The data, reported in the table below and illustrated in the figure below, show that any tested formulation exhibited an improved behavior compared to the references (Miglyol 812N and PEG400), confirming the ability of the selected excipients to self-emulsify in presence of GI fluids. The microemulsions (3:1 and 4:1), the micellar solution obtained with Vit E TPGS and the emulsion obtained with Phosal 50PG were the most homogeneous and stable systems in any medium. Nanocrystals were stable in the intestinal media, whereas a “flocculation” occurred in the gastric medium, leading to a total retention of the drug in the filter. The emulsions obtained with Labrafil/Labrasol and Gelucire 44/14 exhibited after filtration a drug concentration in the range 20-60% (Labrafil/Labrasol) and 40-90% (Gelucire 44/14). For all the novel formulations, no effect of fed conditions (pH, concentration of lecithin and biliar salts) was observed, except for Labrafil/Labrasol.
As general conclusion concerning the self-emulsifying properties and colloidal stability of the formulated drug, all the tested formulations exhibited an improved behavior compared to the references (Miglyol 812N and PEG 400), confirming the ability of the selected excipients to self-emulsify in presence of GI fluids. The microemulsions (3:1 and 4:1), the emulsion obtained with Phosal 50PG and the micellar solution obtained with Vit E TPGS were the most homogeneous and stable systems in any medium. For all the novel formulations, no effect of fed/fasted conditions on the colloidal stability was observed, except for Labrafil/Labrasol, where the drug fraction filtered decreased from 60 to 20% in the fasted intestinal medium.
In humans, it is understood that, to choose the most appropriate daily dosage, there should be taken into account the weight of the patient, his general state of health, his age and all factors which may influence the efficacy of the treatment.
Preferably, the compositions are prepared such that a unit dose contains from 0.1 to 50 mg of active product.
Among the azetidine derivatives of general formula (Ia) or (Ib), the following products are more particularly preferred:
It is understood that the compositions according to the invention, containing these products, are particularly preferred.
In the alternative, where a second active ingredient is introduced, the compositions may comprise 0.2 to 50 mg in the case where the associated product is sibutramine. However, this quantity may optionally be lower and may vary from 0.2 to 10 mg.
In the case where the associated product is L-dopa, the compositions may comprise 100 to 300 mg of this second active ingredient, preferably 250 mg.
The stabilizing agents may be, for example, antioxidants chosen in particular from α-tocopherol, ascorbyl palmitate, BHT (butyl hydroxytoluene), BHA (butyl hydroxyanisole), propyl gallate or malic acid for example;
The preservatives may, by way of example, be chosen from sodium metabisulfite, propylene glycol, ethanol or glycerin;
Among the agents capable of adjusting the viscosity, there may be mentioned, for example, lecithins, phospholipids, propylene glycol alginate, sodium alginate or glycerin;
The agents capable of modifying the organoleptic properties of the composition are, by way of example, malic acid, fumaric acid, glycerin, vanillin or menthol.
When such additives are used, the latter may constitute from 0.001% to 5% by weight of the total composition.
According to the invention, the pharmaceutical composition may be obtained by mixing, where appropriate, the principal excipients (after heating if necessary, in the case of solid or semisolid excipients), and then, if necessary, mixing with the additional additives, followed by the addition of the azetidine derivative of general formula (Ia) or (Ib) and, where appropriate, of the active ingredient capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib), and maintaining stirred in order to obtain a homogeneous mixture.
The use of this process is described in greater detail below in the examples.
The compositions according to the invention may be provided in the liquid, solid or semipasty state.
They are particularly suitable for presentation in the form of hard gelatin capsules or soft gelatin capsules, or in the form of an oral solution.
The compositions according to the invention are particularly advantageous because of their good stability, both physically and chemically, and the enhancement of the bioavailablity which they offer upon oral administration of the azetidine derivatives of general formula (Ia) or (Ib).
According to another alternative of the invention, the preferred compositions as defined above, containing at least one active ingredient of general formula (Ia) or (Ib), may be administered before, simultaneously with or after the administration of an active ingredient capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib).
It is understood that the presentation kits comprising, on the one hand, a preferred composition according to the invention as defined above and, on the other hand, a composition comprising the active ingredient capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib) also fall within the scope of the present invention. It is also understood that the presentation kits may contain, as compositions capable of potentiating the effects of the azetidine derivative of general formula (Ia) or (Ib), compositions comprising sibutramine, or comprising an agent that activates dopaminergic neurotransmission in the brain.
Number | Date | Country | Kind |
---|---|---|---|
03291797.3 | Jul 2003 | EP | regional |