EMULSIONS CONTAINING A MICRONIZED WAX

Information

  • Patent Application
  • 20120171141
  • Publication Number
    20120171141
  • Date Filed
    December 30, 2011
    13 years ago
  • Date Published
    July 05, 2012
    12 years ago
Abstract
The invention relates to a composition comprising at least one micronized wax which, if desired, can be processed at room temperature.
Description
FIELD OF THE INVENTION

The present invention relates to emulsions comprising at least one micronized wax. The compositions have beneficial cosmetic properties including comfort upon application and minimized feathering/migration properties, minimized tackiness, improved shine control and/or improved matte properties, and can be easily prepared at or about room temperature.


DISCUSSION OF THE BACKGROUND

Generally speaking, high shine compositions such as lip compositions such as lip sticks or lip glosses focus on providing high shine performance while attempting to reduce feathering/migration and/or to reduce tackiness or sticky feeling upon application. However, it is difficult to minimize feathering/migration without having a sticky/tacky feel upon application, particularly in high gloss or shine compositions.


In the past, some formulations have used high amounts of thick oils to achieve high shine in compositions like lip compositions. However, these formulations tend to be very sticky/tacky and do not convey much comfort.


In the past, some formulations have used silica or other gelling agents to hold oils in place and, thus, reduce feathering/migration. Such formulations did not negatively affect shine properties. However, such formulations were sticky/tacky upon application and sometimes even had a stringy appearance between lips.


Also in the past, some formulations used waxes or other structuring agents to hold oils in place and reduce feathering/migration. These formulations added creaminess to the texture but did not have good shine properties.


Finally, adding particular ingredients to shine products often has a deleterious effect on the resulting shine of the product.


With respect to foundations, shine is not a particularly favorable characteristic for such cosmetic products. Indeed, foundations are often matte in appearance, to control shine breakthrough. They also desirably have good feel upon application (smooth, not tacky) and good stay, holding power, and/or transfer-resistance are desirable properties. However, it is difficult to produce a composition having both good feel upon application and minimized sticky/tacky/draggy feeling.


There is thus a need to develop a cosmetic composition, in particular for making up keratin materials such as the lips, making it possible to provide acceptable shine or gloss properties while at the same time reducing the amount of feathering/migration and reducing the amount of tackiness/stickiness upon application.


There is a further need to develop a mattifying cosmetic composition, in particular for making up keratin materials such as skin, making it possible to reduce the amount of transfer of the product while at the same time reducing the amount of tackiness/stickiness upon application and good shine control.


SUMMARY OF THE INVENTION

The present invention relates to emulsion compositions for keratinous materials comprising at least one micronized wax. Preferably, the composition is a water-in-oil emulsion.


The present invention also relates to emulsion compositions for keratinous materials comprising at least one micronized wax, at least one oil-soluble polar modified polymer, and at least one polyamine compound. Preferably, the composition is a water-in-oil emulsion.


The present invention also relates to methods of treating, caring for and/or making up keratinous materials by applying compositions of the present invention to the keratinous materials in an amount sufficient to treat, care for and/or make up keratinous materials.


The present invention also relates to improving matte properties of an emulsion composition comprising at least one oil-soluble polar modified polymer and at least one polyamine comprising adding at least one micronized wax to the composition.


The present invention also relates to methods of improving the moisturization properties of a composition for keratinous materials comprising at least one oil-soluble polar modified polymer and at least one polyamine comprising adding at least one micronized wax to the composition.


The present invention also relates to methods of making a composition for keratinous materials comprising reacting at least one micronized wax with other ingredients in the composition at room temperature.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention.







DETAILED DESCRIPTION OF THE INVENTION

As used herein, the expression “at least one” means one or more and thus includes individual components as well as mixtures/combinations.


Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients and/or reaction conditions are to be understood as being modified in all instances by the term “about,” meaning within 10% to 15% of the indicated number.


“Keratinous material” as used herein includes any material containing keratin such as, for example, lips, hair, eyelashes, skin, fingernails, etc.


“Composition for keratinous material” as used herein can be any composition for application to any keratinous material such as, for example, a composition for application to lips such as a lipstick or lip gloss, and a composition for application to skin such as a moisturizer or a foundation.


“Emulsion” or “emulsion composition” means the compositions has sufficient non-oil phase to form an emulsion. Any type of known emulsion is acceptable such as, for example, an oil-in-water emulsion, a water-in-oil emulsion, a multiple emulsion, etc.


“Film former” or “film forming agent” as used herein means a polymer or resin that leaves a film on the substrate to which it is applied, for example, after a solvent accompanying the film former has evaporated, absorbed into and/or dissipated on the substrate.


“Tackiness” as used herein refers to the adhesion between two substances. For example, the more tackiness there is between two substances, the more adhesion there is between the substances. To quantify “tackiness,” it is useful to determine the “work of adhesion” as defined by IUPAC associated with the two substances. Generally speaking, the work of adhesion measures the amount of work necessary to separate two substances. Thus, the greater the work of adhesion associated with two substances, the greater the adhesion there is between the substances, meaning the greater the tackiness is between the two substances.


Work of adhesion and, thus, tackiness, can be quantified using acceptable techniques and methods generally used to measure adhesion, and is typically reported in units of force time (for example, gram seconds (“g s”)). For example, the TA-XT2 from Stable Micro Systems, Ltd. can be used to determine adhesion following the procedures set forth in the TA-XT2 Application Study (ref: MATI/PO.25), revised January 2000, the entire contents of which are hereby incorporated by reference. According to this method, desirable values for work of adhesion for substantially non-tacky substances include less than about 0.5 g s, less than about 0.4 g s, less than about 0.3 g s and less than about 0.2 g s. As known in the art, other similar methods can be used on other similar analytical devices to determine adhesion.


“Waterproof” as used herein refers to the ability to repel water and permanence with respect to water. Waterproof properties may be evaluated by any method known in the art for evaluating such properties. For example, a mascara composition may be applied to false eyelashes, which may then be placed in water for a certain amount of time, such as, for example, 20 minutes. Upon expiration of the pre-ascertained amount of time, the false eyelashes may be removed from the water and passed over a material, such as, for example, a sheet of paper. The extent of residue left on the material may then be evaluated and compared with other compositions, such as, for example, commercially available compositions. Similarly, for example, a composition may be applied to skin, and the skin may be submerged in water for a certain amount of time. The amount of composition remaining on the skin after the pre-ascertained amount of time may then be evaluated and compared. For example, a composition may be waterproof if a majority of the product is left on the wearer, e.g., eyelashes. In a preferred embodiment of the present invention, little or no composition is transferred from the wearer.


“Substituted” as used herein, means comprising at least one substituent. Non-limiting examples of substituents include atoms, such as oxygen atoms and nitrogen atoms, as well as functional groups, such as hydroxyl groups, ether groups, alkoxy groups, acyloxyalky groups, oxyalkylene groups, polyoxyalkylene groups, carboxylic acid groups, amine groups, acylamino groups, amide groups, halogen containing groups, ester groups, thiol groups, sulphonate groups, thiosulphate groups, siloxane groups, and polysiloxane groups. The substituent(s) may be further substituted.


Depending on the intended application, such as a stick, hardness of the composition may also be considered. The hardness of a composition may, for example, be expressed in gramforce (gf). The composition of the present invention may, for example, have a hardness ranging from 20 gf to 2000 gf, such as from 20 gf to 900 gf, and further such as from 20 gf to 600 gf.


This hardness is measured in one of two ways. A first test for hardness is according to a method of penetrating a probe into the composition and in particular using a texture analyzer (for example TA-XT21 from Rheo) equipped with an ebonite cylinder of height 25 mm and diameter 8 mm. The hardness measurement is carried out at 20° C. at the center of 5 samples of the composition. The cylinder is introduced into each sample of composition at a pre-speed of 2 mm/s and then at a speed of 0.5 mm/s and finally at a post-speed of 2 mm/s, the total displacement being 1 mm. The recorded hardness value is that of the maximum peak observed. The measurement error is ±50 gf.


The second test for hardness is the “cheese wire” method, which involves cutting an 8.1 mm or preferably 12.7 mm in diameter stick composition and measuring its hardness at 20° C. using a DFGHS 2 tensile testing machine from Indelco-Chatillon Co. at a speed of 100 mm/minute. The hardness value from this method is expressed in grams as the shear force required to cut a stick under the above conditions. According to this method, the hardness of compositions according to the present invention which may be in stick form may, for example, range from 30 gf to 300 gf, such as from 30 gf to 250 gf, for a sample of 8.1 mm in diameter stick, and further such as from 30 gf to 200 gf, and also further such as from 30 gf to 120 gf for a sample of 12.7 mm in diameter stick.


The hardness of the composition of the present invention may be such that the compositions are self-supporting and can easily disintegrate to form a satisfactory deposit on keratin materials. In addition, this hardness may impart good impact strength to the inventive compositions, which may be molded or cast, for example, in stick or dish form.


The skilled artisan may choose to evaluate a composition using at least one of the tests for hardness outlined above based on the application envisaged and the hardness desired. If one obtains an acceptable hardness value, in view of the intended application, from at least one of these hardness tests, the composition falls within preferred embodiments of the invention.


As defined herein, stability is tested by placing the composition in a controlled environment chamber for 8 weeks at 25° C. In this test, the physical condition of the sample is inspected as it is placed in the chamber. The sample is then inspected again at 24 hours, 3 days, 1 week, 2 weeks, 4 weeks and 8 weeks. At each inspection, the sample is examined for abnormalities in the composition such as phase separation if the composition is in the form of an emulsion, bending or leaning if the composition is in stick form, melting, or syneresis (or sweating). The stability is further tested by repeating the 8-week test at 25° C., 37° C., 45° C. and under freeze-thaw conditions. A composition is considered to lack stability if in any of these tests an abnormality that impedes functioning of the composition is observed. The skilled artisan will readily recognize an abnormality that impedes functioning of a composition based on the intended application.


“Volatile”, as used herein, means having a flash point of less than about 100° C.


“Non-volatile”, as used herein, means having a flash point of greater than about 100° C.


The compositions and methods of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations of the invention described herein, as well as any additional or optional ingredients, components, or limitations described herein or otherwise useful.


Micronized Wax


According to the present invention, compositions comprising at least one micronized wax are provided. The micronized wax of the present invention is non-liquid at room temperature (25° C.) and atmospheric pressure. According to preferred embodiments, the at least one micronized wax is spherical. Particles of the micronized wax of the present invention have a diameter on the order of 1,000 micrometers or less. According to preferred embodiments, the external diameter is in a range between about 0.20 and 1,000 micrometers, preferably between about 1 and 500 micrometers, preferably between about 3 and 200 micrometers, and preferably between about 5 and 50 micrometers, including all ranges and subranges therebetween.


According to preferred embodiments of the present invention, the at least one micronized wax is oil-dispersible. “Oil-dispersible” is understood to mean that the at least one micronized wax is dispersed in an oil or a mixture of oils such that at least 50% of the wax has been dispersed, preferably 60%, preferably 70%, preferably 80%, preferably 90%, preferably 95%, and preferably 100%, including all ranges and subranges therebetween.


According to preferred embodiments, the micronized wax is hollow. The wax of the present invention may contain, if desired, suitable chemical and/or biological agents.


Suitable micronized waxes of the present invention include those described in U.S. patent application publication no. 2009/0311296, the contents of which are hereby incorporated by reference in their entirety. Commercially available suitable waxes include Universal Remediation's Bioboom product.


According to preferred embodiments, the at least one micronized wax is present in compositions for application to lips in an amount ranging from about 2-45% by weight, more preferably from about 5-30% by weight, more preferably from about 7-20% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


According to preferred embodiments, the at least one micronized wax is present in compositions for application to skin in an amount ranging from about 1-25% by weight, more preferably from about 3-15% by weight, more preferably from about 5-10% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


Generally speaking, the at least one micronized wax is present in compositions for application to keratinous materials in an amount ranging from about 1-45% by weight, more preferably from about 3-30% by weight, more preferably from about 5-20% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


According to preferred embodiments, if other wax(es) are present in the composition, the micronized wax constitutes the main wax of the composition (that is, the composition contains more micronized wax than all other waxes combined on a weight basis, containing, for example, 51%, 60%, 70%, 80%, 90%, 95% micronized wax as compared to all other waxes present on a weight basis). According to a preferred embodiment, the composition contains micronized wax of the present invention but no other waxes.


Oil


According to the present invention, compositions comprising at least one oil in addition to the at least one micronized wax are provided.


Suitable oils include volatile and/or non-volatile oils. Such oils can be any acceptable oil including but not limited to silicone oils and/or hydrocarbon oils.


According to certain embodiments, the oil carrier comprises one or more volatile silicone oils. Examples of such volatile silicone oils include linear or cyclic silicone oils having a viscosity at room temperature less than or equal to 6 cSt and having from 2 to 7 silicon atoms, these silicones being optionally substituted with alkyl or alkoxy groups of 1 to 10 carbon atoms. Specific oils that may be used in the invention include octamethyltetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, heptamethyloctyltrisiloxane, hexamethyldisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane and their mixtures. Other volatile oils which may be used include KF 96A of 6 cSt viscosity, a commercial product from Shin Etsu having a flash point of 94° C. Preferably, the volatile silicone oils have a flash point of at least 40° C.


Non-limiting examples of volatile silicone oils are listed in Table 1 below.











TABLE 1






Flash Point
Viscosity


Compound
(° C.)
(cSt)

















Octyltrimethicone
93
1.2


Hexyltrimethicone
79
1.2


Decamethylcyclopentasiloxane
72
4.2


(cyclopentasiloxane or D5)


Octamethylcyclotetrasiloxane
55
2.5


(cyclotetradimethylsiloxane or D4)


Dodecamethylcyclohexasiloxane (D6)
93
7


Decamethyltetrasiloxane(L4)
63
1.7


KF-96 A from Shin Etsu
94
6


PDMS (polydimethylsiloxane) DC 200
56
1.5


(1.5 cSt) from Dow Corning


PDMS DC 200 (2 cSt) from Dow Corning
87
2









Further, a volatile linear silicone oil may be employed in the present invention. Suitable volatile linear silicone oils include those described in U.S. Pat. No. 6,338,839 and WO03/042221, the contents of which are incorporated herein by reference. In one embodiment the volatile linear silicone oil is decamethyltetrasiloxane. In another embodiment, the decamethyltetrasiloxane is further combined with another solvent that is more volatile than decamethyltetrasiloxane.


According to other embodiments, the oil carrier comprises one or more non-silicone volatile oils and may be selected from volatile hydrocarbon oils, volatile esters and volatile ethers. Examples of such volatile non-silicone oils include, but are not limited to, volatile hydrocarbon oils having from 8 to 16 carbon atoms and their mixtures and in particular branched C8 to C16 alkanes such as C8 to C16 isoalkanes (also known as isoparaffins), isododecane, isodecane, and for example, the oils sold under the trade names of Isopar or Permethyl. Preferably, the volatile non-silicone oils have a flash point of at least 40° C.


Non-limiting examples of volatile non-silicone volatile oils are given in Table 2 below.












TABLE 2







Compound
Flash Point (° C.)









Isododecane
43



Propylene glycol n-butyl ether
60



Ethyl 3-ethoxypropionate
58



Propylene glycol methylether acetate
46



Isopar L (isoparaffin C11-C13)
62



Isopar H (isoparaffin C11-C12)
56










The volatility of the solvents/oils can be determined using the evaporation speed as set forth in U.S. Pat. No. 6,338,839, the contents of which are incorporated by reference herein.


According to other embodiments of the present invention, the oil carrier comprises at least one non-volatile oil. Examples of non-volatile oils that may be used in the present invention include, but are not limited to, polar oils such as:

    • hydrocarbon-based plant oils with a high triglyceride content consisting of fatty acid esters of glycerol, the fatty acids of which may have varied chain lengths, these chains possibly being linear or branched, and saturated or unsaturated; these oils are especially wheat germ oil, corn oil, sunflower oil, karite butter, castor oil, sweet almond oil, macadamia oil, apricot oil, soybean oil, rapeseed oil, cottonseed oil, alfalfa oil, poppy oil, pumpkin oil, sesame seed oil, marrow oil, avocado oil, hazelnut oil, grape seed oil, blackcurrant seed oil, evening primrose oil, millet oil, barley oil, quinoa oil, olive oil, rye oil, safflower oil, candlenut oil, passion flower oil or musk rose oil; or caprylic/capric acid triglycerides, for instance those sold by the company Stearineries Dubois or those sold under the names Miglyol 810, 812 and 818 by the company Dynamit Nobel;
    • synthetic oils or esters of formula R5COOR6 in which R5 represents a linear or branched higher fatty acid residue containing from 1 to 40 carbon atoms, including from 7 to 19 carbon atoms, and R6 represents a branched hydrocarbon-based chain containing from 1 to 40 carbon atoms, including from 3 to 20 carbon atoms, with R6+R7≧10, such as, for example, Purcellin oil (cetostearyl octanoate), isononyl isononanoate, C12 to C15 alkyl benzoate, isopropyl myristate, 2-ethylhexyl palmitate, and octanoates, decanoates or ricinoleates of alcohols or of polyalcohols; hydroxylated esters, for instance isostearyl lactate or diisostearyl malate; and pentaerythritol esters;
    • synthetic ethers containing from 10 to 40 carbon atoms;
    • C8 to C26 fatty alcohols, for instance oleyl alcohol, cetyl alcohol, stearyl alcohol, and cetearly alcohol; and
    • mixtures thereof.


Further, examples of non-volatile oils that may be used in the present invention include, but are not limited to, non-polar oils such as branched and unbranched hydrocarbons and hydrocarbon waxes including polyolefins, in particular Vaseline (petrolatum), paraffin oil, squalane, squalene, hydrogenated polyisobutene, hydrogenated polydecene, polybutene, mineral oil, pentahydrosqualene, and mixtures thereof.


In accordance with the present invention, volatile hydrocarbons such as isododecane are particularly preferred.


According to preferred embodiments, the oil(s) is(are) present in compositions for application to lips in a combined amount sufficient to disperse (as discussed above) the micronized wax. Typically, the amount of oil present in the compositions of the present invention ranges from about 1-80% by weight, more preferably from 5-70% by weight, more preferably from about 10-50% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


According to preferred embodiments, the oil(s) is(are) present in compositions for application to skin in a combined amount sufficient to disperse (as discussed above) the micronized wax. Typically, the amount of oil present in the compositions of the present invention ranges from about 5-80% by weight, more preferably from 5-70% by weight, more preferably from about 20-60% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


Generally speaking, the at least one oil is present in compositions for application to keratinous materials in an amount ranging from about 5-80% by weight, more preferably from about 15-70% by weight, more preferably from about 20-60% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


Water


According to preferred embodiments of the present invention, compositions comprising water are provided. According to preferred embodiments, sufficient water is present to allow formation of an emulsion composition such as, for example, an oil-in-water emulsion or a water-in-oil emulsion. Typically, the amount of water present in the compositions of the present invention ranges from about 5 to 80% by weight, more preferably from about 10 to about 70% by weight, more preferably from about 20 to about 60% by weight based on the total weight of the composition, including all ranges and subranges within these ranges.


According to other preferred embodiments of the present invention, compositions further comprising at least one oil-soluble polar modified polymer and at least one polyamine are provided.


Oil-Soluble Polar Modified Polymer


“Polar modified polymer” as used herein refers to a hydrophobic homopolymer or copolymer which has been modified with hydrophilic unit(s). “Oil-soluble” as used herein means that the polar modified polymer is soluble in oil.


Suitable monomers for the hydrophobic homopolymers and/or copolymers include, but are not limited to, cyclic, linear or branched, substituted or unsubstituted, C2-C20 compounds such as, for example, styrene, ethylene, propylene, isopropylene, butylene, isobutylene, pentene, isopentene, isoprene, hexene, isohexene, decene, isodecene, and octadecene, including all ranges and subranges therebetween. Preferably, the monomers are C2-C8 compounds, more preferably C2-C6 compounds, and most preferably C2-C4 compounds such as ethylene, propylene and butylene.


Suitable hydrophilic unit(s) include, but are not limited to, maleic anhydride, acrylates, alkyl acrylates such as, for example, methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, and polyvinylpyrrolidone (PVP).


According to the present invention, the polar modified polymer is oil-soluble: that is, the polymer does not contain a sufficient amount of hydrophilic unit(s) to render the entire polymer water-soluble or oil-insoluble. According to preferred embodiments, the polar modified polymer contains the same amount of hydrophobic monomer as hydrophilic unit (1:1 ratio) or more hydrophobic monomer than hydrophilic unit. According to particularly preferred embodiments, the polar modified polymer contains 50% or less hydrophilic unit(s) (based on weight of the polymer), 40% or less hydrophilic unit(s), 30% or less hydrophilic unit(s), 20% or less hydrophilic unit(s), 10% or less hydrophilic unit(s), 5% or less hydrophilic unit(s), 4% or less hydrophilic unit(s), or 3% or less hydrophilic unit(s).


Preferably, the polar modified polymer has from about 0.5% to about 10% hydrophilic units, more preferably from about 1% to about 8% hydrophilic units by weight with respect to the weight of the polymer, including all ranges and subranges therebetween. Particularly preferred hydrophilically modified polymers are ethylene and/or propylene homopolymers and copolymers which have been modified with maleic anhydride units.


According to preferred embodiments of the present invention, the polar modified polymer is a wax. According to particularly preferred embodiments, the polar modified wax is made via metallocene catalysis, and includes polar groups or units as well as a hydrophobic backbone. Suitable modified waxes include those disclosed in U.S. patent application publication no. 20070031361, the entire contents of which is hereby incorporated by reference. Particularly preferred polar modified waxes are C2-C3 polar modified waxes.


In accordance with preferred embodiments of the present invention, the polar modified wax is based upon a homopolymer and/or copolymer wax of hydrophobic monomers and has a weight-average molecular weight Mw of less than or equal to 25 000 g/mol, preferably of 1000 to 22 000 g/mol and particularly preferably of 4000 to 20,000 g/mol, a number-average molecular weight Mn of less than or equal to 15 000 g/mol, preferably of 500 to 12 000 g/mol and particularly preferably of 1000 to 5000 g/mol, a molar mass distribution Mw/Mn in the range from 1.5 to 10, preferably from 1.5 to 5, particularly preferably from 1.5 to 3 and especially preferably from 2 to 2.5, which have been obtained by metallocene catalysis. Also, the polar modified wax preferably has a melting point above 75° C., more preferably above 90° C. such as, for example, a melting point between 90° C. and 160° C., preferably between 100° C. and 150° C., including all ranges and subranges therebetween.


In the case of a copolymer wax, it is preferable to have, based on the total weight of the copolymer backbone, 0.1 to 30% by weight of structural units originating from the one monomer and 70.0 to 99.9% by weight of structural units originating from the other monomer. Such homopolymer and copolymer waxes can be made, for example, by the process described in EP 571 882, the entire contents of which is hereby incorporated by reference, using the metallocene catalysts specified therein. Suitable preparation processes include, for example, suspension polymerization, solution polymerization and gas-phase polymerization of olefins in the presence of metallocene catalysts, with polymerization in the monomers also being possible.


Polar modified waxes can be produced in a known manner from the hompopolymers and copolymers described above by oxidation with oxygen-containing gases, for example air, or by graft reaction with polar monomers, for example maleic acid or acrylic acid or derivatives of these acids. The polar modification of metallocene polyolefin waxes by oxidation with air is described, for example, in EP 0 890 583 A1, and the modification by grafting is described, for example, in U.S. Pat. No. 5,998,547, the entire contents of both of which are hereby incorporated by reference in their entirety.


Acceptable polar modified waxes include, but are not limited to, homopolymers and/or copolymers of ethylene and/or propylene groups which have been modified with hydrophilic units such as, for example, maleic anhydride, acrylate, methacrylate, polyvinylpyrrolidone (PVP), etc. Preferably, the C2-C3 wax has from about 0.5% to about 10% hydrophilic units, more preferably from about 1% to about 8% hydrophilic units by weight with respect to the weight of the wax, including all ranges and subranges therebetween. Particularly preferred hydrophilically modified waxes are ethylene and/or propylene homopolymers and copolymers which have been modified with maleic anhydride units.


Particularly preferred C2-C3 polar modified waxes for use in the present invention are polypropylene and/or polyethylene-maleic anhydride modified waxes (“PEMA,” “PPMA.” “PEPPMA”) commercially available from Clariant under the trade name LICOCARE or LICOCENE, Specific examples of such waxes include products marketed by Clariant under the LicoCare name having designations such as PP207.


Other suitable polar modified polymers include, but are not limited to A-C 573 A (ETHYLENE-MALEIC ANHYDRIDE COPOLYMER; prop Point, Mettler: 106° C.) from Honeywell, A-C 596 A (PROPYLENE-MALEIC ANHYDRIDE COPOLYMER; prop Point, Mettler: 143° C.) from Honeywell, A-C 597 (PROPYLENE-MALEIC ANHYDRIDE COPOLYMER; prop Point, Mettler: 141° C.) from Honeywell, ZeMac® copolymers (from VERTELLUS) which are 1:1 copolymers of ethylene and maleic anhydride, polyisobutylene-maleic anhydride sold under the trade name ISOBAM (from Kuraray), polyisoprene-graft-maleic anhydride sold by Sigma Aldrich, poly(maleic anhydride-octadecene) sold by Chevron Philips Chemcial Co., poly (ethylene-co-butyl acrylate-co-maleic anhydride) sold under the trade name of Lotader (e.g. 2210, 3210, 4210, and 3410 grades) by Arkema, copolymers in which the butyl acrylate is replaced by other alkyl acrylates (including methyl acrylate [grades 3430, 4404, and 4503] and ethyl acrylate [grades 6200, 8200, 3300, TX 8030, 7500, 5500, 4700, and 4720) also sold by Arkema under the Lotader name, and isobutylene maleic anhydride copolymer sold under the name ACO-5013 by ISP.


According to other embodiments of the present invention, the polar modified polymer is not a wax. In accordance with these embodiments of the present invention, the polar modified polymer is based upon a homopolymer and/or copolymer of hydrophobic monomer(s) and has a weight-average molecular weight Mw of less than or equal to 1,000,000 g/mol, preferably of 1000 to 250,000 g/mol and particularly preferably of 5,000 to 50,000 g/mol, including all ranges and subranges therebetween.


In accordance with these embodiments, the polar modified polymer can be of any form typically associated with polymers such as, for example, block copolymer, a grafted copolymer or an alternating copolymer. For example, the polar modified polymer can contain a hydrophobic backbone (such as polypropylene and/or polyethylene) onto which hydrophilic groups (such as maleic anhydride) have been attached by any means including, for example, grafting. The attached groups can have any orienation (for example, atactic, isotactic or syndiotactic along the backbone).


Preferably, the polar modified polymer(s) represent from about 1% to about 30% of the total weight of the composition, more preferably from about 3% to about 20% of the total weight of the composition, and most preferably from about 5% to about 15%, including all ranges and subranges therebetween.


Polyamine Compound


According to preferred embodiments of the present invention, compositions further comprising at least one polyamine compound are provided. According to particularly preferred embodiments, the compositions of the present invention further comprise at least one polyamine compound and at least one oil-soluble polar modified polymer.


In accordance with the present invention, the polyamine compound has at least two primary amine groups available to react with hydrophilic groups of the oil-soluble polar modified polymer.


According to particularly preferred embodiments, the polyamine compound is a polyalkyleneimine, preferably a C2-C5 polyalkyleneamine compound, more preferably a polyethyleneimine or polypropyleneimine. Most preferably, the polyalkylenamine is polyethyleneimine (“PEI”). The polyalkyleneamine compound preferably has an average molecular weight range of from 500-200,000, including all ranges and subranges therebetween.


According to preferred embodiments, compositions of the present invention contain polyethyleneimine compounds in the form of branched polymers. Commercially available examples of such polymers are available from BASF under the tradename LUPASOL or POLYIMIN. Non-limiting examples of such polyethyleneimines include Lupasol® PS, Lupasol® PL, Lupasol® PR8515, Lupasol® G20, Lupasol® G35.


According to other embodiments of the present invention, polyamines such as polyethyleneimines and polypropyleneimines can be in the form of dendrimers. Non-limiting examples of such dendrimers are manufactured by the company DSM, and/or are disclosed in U.S. Pat. No. 5,530,092 and U.S. Pat. No. 5,610,268, the contents of which are hereby incorporated by reference. Commercially available examples of such polymers include polyamidoamine or polypropyleneimine polymers from DENDRITECH sold under the STARBURST® name.


According to other embodiments of the present invention, derivatives of polyalkyleneamines are suitable polyamines. Such derivatives include, but are not limited to, alkylated derivatives, the addition products of alkylcarboxylic acids to polyalkyleneamines, the addition products of ketones and of aldehydes to polyalkyleneamines, the addition products of isocyanates and of isothiocyanates to polyalkyleneamines, the addition products of alkylene oxide or of polyalkylene oxide block polymers to polyalkyleneamines, quaternized derivatives of polyalkyleneamines, the addition products of a silicone to polyalkyleneamines, and copolymers of dicarboxylic acid and polyalkyleneamines. Even further suitable polymamines include, but are not limited to, polyvinylimidazoles (homopolymers or copolymers), polyvinylpyridines (homopolymers or copolymers), compounds comprising vinylimidazole monomers (see, for example, U.S. Pat. No. 5,677,384, hereby incorporated by reference), and polymers based on amino acids containing a basic side chain (preferably selected from proteins and peptides comprising at least 5%, preferably at least 10% of amino acids selected from histidine, lysine and arginine). Such suitable polyamines as described above include those disclosed and described in U.S. Pat. No. 6,162,448, the contents of which are hereby incorporated by reference. Commercially available examples of such polymers include polyvinylamine/formamide such as those sold under the Lupamine® name by BASF, chitosan from vegetable origin such as those sold under the Kiosmetine® or Kitozyme® names, or copolymer 845 sold by ISP.


According to preferred embodiments, the at least one polyamine compound is present in the composition of the present invention in an amount ranging from about 0.05 to about 20% by weight, preferably from about 0.25 to about 10% by weight, preferably from about 0.3 to about 5% by weight, preferably from about 0.5 to about 3% by weight, based on the total weight of the composition, including all ranges and subranges within these ranges.


Preferably, the amount of polyamine compound reacted with the oil-soluble polar modified polymer is such that at least two amine groups on the polyamine compound react with the oil-soluble polar modified polymer to form links or bonds between the amine groups and the hydrophilic groups of the oil-soluble polar modified polymer. The appropriate amount of polyamine compound to react with the oil-soluble polar modified polymer to obtain a reaction product can be easily determined, taking into account the number/amount of reactive amine groups on the polyamine compound and the number/amount of corresponding reactive groups on the oil-soluble polar modified polymer (for example, maleic anhydride groups). According to preferred embodiments, excess oil-soluble polar modified polymer (as determined by the relative number/amount of corresponding reactive groups on the polymer as compared to the reactive amine groups on the polyamine) is reacted with polyamine. Preferably, the polyamine to oil-soluble polar modified ratio is between 0.005 and 1, preferably between 0.006 and 0.5, and preferably between 0.007 and 0.1, including all ranges and subranges therebetween.


According to preferred embodiments, the at least one polyamine compound is present in the composition of the present invention in an amount ranging from about 0.25 to about 10% by weight, preferably from about 0.3 to about 5% by weight, preferably from about 0.5 to about 3% by weight, based on the total weight of the composition, including all ranges and subranges within these ranges.


Reaction Product


According to preferred embodiments of the present invention, the oil-soluble polar modified polymer is reacted with the polyamine compound, in the presence of water in, at minimum, an amount sufficient to solubilize the polyamine, to form a reaction product. In accordance with the preferred embodiments, the reaction product is water-insoluble.


Although not wanting to be bound by any particular theory, it is believed that at a temperature below 100° C., the reaction of the oil-soluble polar modified polymer with the primary amine group of the polyamine opens the anhydride ring to form a half acid and half amide crosslinked product. However, at a temperature above 100° C., the reaction of the oil-soluble polar modified polymer with the primary amine group of the polyamine opens the anhydride ring to form an imide crosslinked product. The former product is preferred over the latter product. It is not necessary for all amine groups and all hydrophilic groups to react with each other to form the reaction product. Rather, it is possible that the composition may contain free polyamine and/or free oil-soluble polar modified polymer in addition to the reaction product.


Although not wanting to be bound by any particular theory, it is also believed that the polyamine(s) can be non-covalently assembled with the polar modified polymer(s) by electrostatic interaction between an amine group of the polyamine and a hydrophilic group (for example, carboxylic acid group associated with maleic anhydride groups) of the polar modified polymer to form a supramolecule. For example, with specific reference to maleic anhydride groups, in the presence of water these groups can open to form dicarboxylic acid groups which can interact with protonated primary amines of the polyamine through ionic interaction to form a polymer-polymer complex with hydrophilic core crosslinkers and a hydrophobic network that act as supramolecular capsule. If a large amount of maleic anhydride groups are present, the secondary amine groups of polyamine are also protonated and interact with alkyl carboxylates.


According to preferred embodiments, the oil-soluble polar modified polymer is in an oil carrier, and the polyamine compound is in an aqueous carrier, and the reaction occurs by combining the oil carrier and the aqueous carrier. Because the oil-soluble polar modified polymer is typically solid at room temperature, the oil carrier is preferably heated to liquefy the polymer prior to combination with the aqueous carrier. Preferably, the oil carrier is heated beyond the melting point of the oil-soluble polar modified polymer, typically up to about 80° C., 90° C. or 100° C.


Without intending to be bound by any particular theory, it is believed that the reason for this is that due to the chemical and physical reactions which take place when the oil-soluble polar modified polymer is combined with the polyamine, the subsequent reaction product that is formed is surprisingly and unexpectedly able to entrap large amounts of water molecules within its hydrophobic matrix. Since it is believed that water is entrapped in the system, it is believed that when the topcoat is applied, water can be released slowly over a longer period of time so that a better volume (swelling) retention of the basecoat can be achieved. The resultant product is eminently capable of forming a film, is self-emulsifying, waterproof. Moreover, the product is both stable and capable of carrying various types of ingredients.


Additional Additives


The composition of the invention can also comprise any additive usually used in the field under consideration. For example, dispersants such as colorants, poly(12-hydroxystearic acid), antioxidants, film forming agents, essential oils, sunscreens, preserving agents, fragrances, fillers, neutralizing agents, cosmetic and dermatological active agents such as, for example, emollients, moisturizers, vitamins, essential fatty acids, surfactants, silicone elastomers, pasty compounds, viscosity increasing agents such as waxes or liposoluble/lipodispersible polymers, and mixtures thereof can be added. A non-exhaustive listing of such ingredients can be found in U.S. patent application publication no. 2004/0170586, the entire contents of which is hereby incorporated by reference. Further examples of suitable additional components can be found in the other references which have been incorporated by reference in this application. Still further examples of such additional ingredients may be found in the International Cosmetic Ingredient Dictionary and Handbook (9th ed. 2002).


A person skilled in the art will take care to select the optional additional additives and/or the amount thereof such that the advantageous properties of the composition according to the invention are not, or are not substantially, adversely affected by the envisaged addition.


These substances may be selected variously by the person skilled in the art in order to prepare a composition which has the desired properties, for example, consistency or texture.


These additives may be present in the composition in a proportion from 0% to 99% (such as from 0.01% to 90%) relative to the total weight of the composition and further such as from 0.1% to 50% (if present), including all ranges and subranges therebetween.


Needless to say, the composition of the invention should be cosmetically or dermatologically acceptable, i.e., it should contain a non-toxic physiologically acceptable medium and should be able to be applied to human beings.


According to preferred embodiments of the present invention, the compositions can further comprise a desired agent. The desired agent can be, for example, any colorant (pigment, dye, etc.), any pharmaceutically or cosmetically active agent, or any film forming agent known in the art. For example, a cosmetic makeup composition comprising colorant can provide colorant and/or film forming agent to a substrate (eyelash) during use to provide the substrate with the desired film and/or color. Similarly, a pharmaceutical or cosmetic composition comprising a pharmaceutically active agent can provide such active agent to the patient or consumer upon use.


Acceptable colorants include pigments, dyes, such as liposoluble dyes, nacreous pigments, and pearling agents.


Representative liposoluble dyes which may be used according to the present invention include Sudan Red, DC Red 17, DC Green 6, β-carotene, soybean oil, Sudan Brown, DC Yellow 11, DC Violet 2, DC Orange 5, annatto, and quinoline yellow.


Representative nacreous pigments include white nacreous pigments such as mica coated with titanium or with bismuth oxychloride, colored nacreous pigments such as titanium mica with iron oxides, titanium mica with ferric blue or chromium oxide, titanium mica with an organic pigment chosen from those mentioned above, and nacreous pigments based on bismuth oxychloride.


Representative pigments include white, colored, inorganic, organic, polymeric, nonpolymeric, coated and uncoated pigments. Representative examples of mineral pigments include titanium dioxide, optionally surface-treated, zirconium oxide, zinc oxide, cerium oxide, iron oxides, chromium oxides, manganese violet, ultramarine blue, chromium hydrate, and ferric blue. Representative examples of organic pigments include carbon black, pigments of D & C type, and lakes based on cochineal carmine and barium.


A particularly preferred colorant is a carbon black dispersion given its ability to be processed at low temperatures.


Acceptable film forming agents and/or rheological agents are known in the art and include, but are not limited to, those disclosed in U.S. patent application publication no. 2004/0170586, the entire contents of which is hereby incorporated by reference.


Non-limiting representative examples of acceptable film forming/rheolgocial agents include silicone resins such as, for example, MQ resins (for example, trimethylsiloxysilicates), T-propyl silsesquioxanes and MK resins (for example, polymethylsilsesquioxanes), silicone esters such as those disclosed in U.S. Pat. Nos. 6,045,782, 5,334,737, and 4,725,658, the disclosures of which are hereby incorporated by reference, polymers comprising a backbone chosen from vinyl polymers, methacrylic polymers, and acrylic polymers and at least one chain chosen from pendant siloxane groups and pendant fluorochemical groups such as those disclosed in U.S. Pat. Nos. 5,209,924, 4,693,935, 4,981,903, 4,981,902, and 4,972,037, and WO 01/32737, the disclosures of which are hereby incorporated by reference, polymers such as those described in U.S. Pat. No. 5,468,477, the disclosure of which is hereby incorporated by reference (a non-limiting example of such polymers is poly(dimethylsiloxane)-g-poly(isobutyl methacrylate), which is commercially available from 3M Company under the tradename VS 70 IBM).


Suitable examples of acceptable liposoluble polymers include, but are not limited to, polyalkylenes, polyvinylpyrrolidone (PVP) or vinylpyrrolidone (VP) homopolymers or copolymers, copolymers of a C2 to C30, such as C3 to C22 alkene, and combinations thereof. As specific examples of VP copolymers which can be used in the invention, mention may be made of VP/vinyl acetate, VP/ethyl methacrylate, butylated polyvinylpyrrolidone (PVP), VP/ethyl methacrylate/methacrylic acid, VP/eicosene, VP/hexadecene, VP/triacontene, VP/styrene or VP/acrylic acid/lauryl methacrylate copolymer.


One type of block copolymer which may be employed in the compositions of the present invention is a thermoplastic elastomer. The hard segments of the thermoplastic elastomer typically comprise vinyl monomers in varying amounts. Examples of suitable vinyl monomers include, but are not limited to, styrene, methacrylate, acrylate, vinyl ester, vinyl ether, vinyl acetate, and the like.


The soft segments of the thermoplastic elastomer typically comprise olefin polymers and/or copolymers which may be saturated, unsaturated, or combinations thereof. Suitable olefin copolymers may include, but are not limited to, ethylene/propylene copolymers, ethylene/butylene copolymers, propylene/butylene copolymers, polybutylene, polyisoprene, polymers of hydrogenated butanes and isoprenes, and mixtures thereof.


Thermoplastic elastomers useful in the present invention include block copolymers e.g., di-block, tri-block, multi-block, radial and star block copolymers, and mixtures and blends thereof. A di-block thermoplastic elastomer is usually defined as an A-B type or a hard segment (A) followed by a soft segment (B) in sequence. A tri-block is usually defined as an A-B-A type copolymer or a ratio of one hard, one soft, and one hard segment. Multi-block or radial block or star block thermoplastic elastomers usually contain any combination of hard and soft segments, provided that the elastomers possess both hard and soft characteristics.


In preferred embodiments, the thermoplastic elastomer of the present invention may be chosen from the class of Kraton™ rubbers (Shell Chemical Company) or from similar thermoplastic elastomers. Kraton™ rubbers are thermoplastic elastomers in which the polymer chains comprise a di-block, tri-block, multi-block or radial or star block configuration or numerous mixtures thereof. The Kraton™ tri-block rubbers have polystyrene (hard) segments on each end of a rubber (soft) segment, while the Kraton™ di-block rubbers have a polystyrene (hard) segment attached to a rubber (soft) segment. The Kraton™ radial or star configuration may be a four-point or other multipoint star made of rubber with a polystyrene segment attached to each end of a rubber segment. The configuration of each of the Kraton™ rubbers forms separate polystyrene and rubber domains.


Each molecule of Kraton™ rubber is said to comprise block segments of styrene monomer units and rubber monomer and/or co-monomer units. The most common structure for the Kraton™ triblock copolymer is the linear A-B-A block type styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylenepropylene-styrene, or styrene-ethylenebutylene-styrene. The Kraton™ di-block is preferably the AB block type such as styrene-ethylenepropylene, styrene-ethylenebutylene, styrene-butadiene, or styrene-isoprene. The Kraton™ rubber configuration is well known in the art and any block copolymer elastomer with a similar configuration is within the practice of the invention. Other block copolymers are sold under the tradename Septon (which represent elastomers known as SEEPS, sold by Kurary, Co., Ltd) and those sold by Exxon Dow under the tradename Vector™.


Other thermoplastic elastomers useful in the present invention include those block copolymer elastomers comprising a styrene-butylene/ethylene-styrene copolymer (tri-block), an ethylene/propylene-styrene copolymer (radial or star block) or a mixture or blend of the two. (Some manufacturers refer to block copolymers as hydrogenated block copolymers, e.g. hydrogenated styrene-butylene/ethylene-styrene copolymer (tri-block)).


Acceptable film forming/rheological agents also include water soluble polymers such as, for example, high molecular weight crosslinked homopolymers of acrylic acid, and Acrylates/C10-30 Alkyl Acrylate Crosspolymer, such as the Carbopol® and Pemulen®; anionic acrylate polymers such as Salcare® AST and cationic acrylate polymers such as Salcare® SC96; acrylamidopropylttrimonium chloride/acrylamide; hydroxyethyl methacrylate polymers, Steareth-10 Allyl Ether/Acrylate Copolymer; Acrylates/Beheneth-25 Metacrylate Copolymer, known as Aculyn® 28; glyceryl polymethacrylate, Acrylates/Steareth-20 Methacrylate Copolymer; bentonite; gums such as alginates, carageenans, gum acacia, gum arabic, gum ghatti, gum karaya, gum tragacanth, guar gum; guar hydroxypropyltrimonium chloride, xanthan gum or gellan gum; cellulose derivatives such as sodium carboxymethyl cellulose, hydroxyethyl cellulose, hydroxymethyl carboxyethyl cellulose, hydroxymethyl carboxypropyl cellulose, ethyl cellulose, sulfated cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxypropylmethyl cellulose, microcrystalline cellulose; agar; pectin; gelatin; starch and its derivatives; chitosan and its derivatives such as hydroxyethyl chitosan; polyvinyl alcohol, PVM/MA copolymer, PVM/MA decadiene crosspolymer, poly(ethylene oxide) based thickeners, sodium carbomer, and mixtures thereof.


In one embodiment of the present invention, the compositions of the present invention are substantially free of silicone oils (i.e., contain less than about 0.5% silicone oils). In another embodiment, the compositions are substantially free of non-silicone oils (i.e., contain less than about 0.5% non-silicone oils). In another embodiment, the compositions are substantially free of non-volatile oils (i.e., contain less than about 0.5% non-volatile oils).


Another preferred embodiment of the present invention is a composition which contains so little surfactant that the presence of surfactant does not affect the cosmetic properties of the composition. Preferably, the compositions are substantially free of surfactant (i.e., contain less than about 0.5% surfactant), essentially free of surfactant (i.e., contain less than about 0.25% surfactant) or free of surfactant (i.e., contain no surfactant).


According to preferred embodiments of the present invention, many of the compositions described above can be prepared at low temperatures (approximately room temperature) by adding the components of the composition in a vessel and agitating the vessel to distribute the components as long as none of the ingredients require heating. This does not apply where the compositions of the present invention include at least one polyamine and at least one oil-soluble polar modified polymer.


For example, the micronized wax can be added to an oil such as isododecane to disperse the wax in the oil, and then water and the oil phase (each of which may contain other ingredients) can be mixed together to form a composition.


According to other preferred embodiments, methods of treating, caring for and/or enhancing the appearance of keratinous materials such as skin or lips by applying compositions of the present invention to the keratinous material in an amount sufficient to treat, care for and/or enhance the appearance of the keratingous materials are provided. In accordance with these preceding preferred embodiments, the compositions of the present invention are applied topically to the desired area in an amount sufficient to treat, care for and/or enhance the appearance of the keratinous material. The compositions may be applied to the desired area as needed, preferably once or twice daily, more preferably once daily and then preferably allowed to dry before subjecting to contact such as with clothing or other objects (for example, a glass or a topcoat). Preferably, the composition is allowed to dry for about 1 minute or less, more preferably for about 45 seconds or less. The composition is preferably applied to the desired area that is dry or has been dried prior to application, or to which a basecoat has been previously applied.


According to a preferred embodiment of the present invention, emulsion compositions comprising at least one micronized wax and having improved cosmetic properties such as, for example, improved feel upon application (for example, texture, reduced drag or tackiness), reduced migration or feathering properties are provided.


According to a preferred embodiment of the present invention, emulsion compositions comprising at least one micronized wax, at least one polyamine and at least one oil soluble polar modified polymer, and having improved mattity properties are provided.


According to preferred embodiments of the present invention, compositions comprising at least one micronized wax but not at least one polyamine and at least one oil-soluble polar modified polymer described above can be prepared at low temperatures (approximately room temperature) by adding the components of the composition in a vessel and agitating the vessel to distribute the components as long as none of the ingredients require heating for incorporation into the composition. For example, the micronized wax can be added to an oil such as isododecane to disperse the wax in the oil to form an oil phase comprising the dispersed micronized wax, and this oil phase can be mixed with water to form an emulsion.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective measurements. The following examples are intended to illustrate the invention without limiting the scope as a result. The percentages are given on a weight basis.


Example 1
Lip Compositions
EXAMPLES
Lip Gloss


















Chemical
Comparative
Inventive
Inventive
Inventive


Phase
Name
Example 1
Example 1
Example 2
Example 3




















A
Bio Boom

5.00
10.00
15.00



Micronized



Beeswax


A
Beeswax
10.00


A
Octyldodecyl
54.70
59.70
54.70
49.70



Neopantanoate


A
PP207 in
10.00
10.00
10.00
10.00



Octyldodecyl



Neopantanoate


B
PEI
0.30
0.30
0.30
0.30


B
Deionized
25.00
25.00
25.00
25.00



Water









Procedure





    • For each composition, contents in phase A and


      1 contents in phase B were heated separately to 87 C.

    • When both phases were at temperature, Phase B was added to phase A while 2 homogenizing at 1300 rpm for 26 minutes


      3 The batch was cooled to 25 C with propeller blade before filling into containers.





In comparison, Inventive Example 1 was also able to form an emulsion. However, this emulsion resembled a light cream with soft texture. The down film was even and smooth.


Inventive Example 2 formed an emulsion with silky texture. Also, the draw down film was non sticky.


Inventive example 3 formed a creamy emulsion with firmer texture. Also, the draw down film was non sticky.


Example 5
Foundation


















Example 5
Example 6
Example 7
Example 8





















A1
Isododecane
41.5
51.5
41.5
51.5



BioBoom
20
10



Beeswax


20
10



Peg-10-Dimethicone
3
3
3
3


A2
TITANIUM DIOXIDE (and) DISODIUM
8
8
8
8



STEAROYL GLUTAMATE (and)



ALUMINUM HYDROXIDE



IRON OXIDES (and) DISODIUM
1.4
1.4
1.4
1.4



STEAROYL GLUTAMATE (and)



ALUMINUM HYDROXIDE



IRON OXIDES (and) DISODIUM
0.4
0.4
0.4
0.4



STEAROYL GLUTAMATE (and)



ALUMINUM HYDROXIDE



IRON OXIDES (and) DISODIUM
0.2
0.2
0.2
0.2



STEAROYL GLUTAMATE (and)



ALUMINUM HYDROXIDE


B
DI Water
25
25
25
25



PHENOXY-2 ETHANOL
0.5
0.5
0.5
0.5









Procedure:

1. In container A, mix BioBoom/Beeswax 75C at medium sheer in isododecane until fully dissolved.


2. Add PEG-10 Dimethicone

3. Add pre-prepared pigment


grind (TITANIUM DIOXIDE


(and) DISODIUM STEAROYL


GLUTAMATE (and)


ALUMINUM HYDROXIDE and

the IRON OXIDES (and)


DISODIUM STEAROYL

GLUTAMATE (and)


ALUMINUM HYDROXIDES

with Isododecane—mixing at


high sheer (1000 rpm)


4 In separate container B, mix water and preservative at 75 C until dissolved.


5. Add B to A slowly at high sheer (˜1000 rpm)


6. Mix for 30 min at 75 C
7. Cool to RT

while mixing


Comparison

Inventive Examples 5&6 compared to Comparative Examples 7&8 showed improved cosmetic properties including higher transfer resistance, better feel, enhanced spreadability, higher mattity, and more even end look.

Claims
  • 1. An emulsion composition comprising water, at least one oil-dispersible micronized wax, and at least one oil.
  • 2. The composition of claim 1, further comprising at least one oil-soluble polar modified polymer and at least one polyamine.
  • 3. The composition of claim 1, further comprising at least one colorant.
  • 4. The composition of claim 1, further comprising at least one surfactant.
  • 5. The composition of claim 1, wherein the composition is essentially free of surfactant.
  • 6. The composition of claim 1, wherein the oil-dispersible micronized wax constitutes the main wax of the composition.
  • 7. The composition of claim 6, wherein the oil-dispersible micronized wax constitutes at least 80% by weight of the total amount of wax in the composition.
  • 8. The composition of claim 2, wherein the at least one oil-soluble polar modified polymer constitutes 3% to 35% by weight of the total weight of the composition.
  • 9. A method of making up skin comprising applying the composition of claim 2 to skin.
  • 10. A method of making up lips comprising applying the composition of claim 1 to lips.
  • 11. A method of moisturizing skin comprising applying the composition of claim 2 to skin in an amount sufficient to moisturize the skin.
  • 12. The composition of claim 2, in the form of a foundation.
  • 13. The composition of claim 1, in the form of a lip gloss.
  • 14. The composition of claim 1, wherein the at least one micronized wax constitutes 1% to 45% by weight of the total weight of the composition.
  • 15. The composition of claim 2, wherein the at least one micronized wax constitutes 1% to 45% by weight of the total weight of the composition.
  • 16. A method of improving mattity properties of an emulsion foundation composition comprising at least one polyamine and at least one oil-soluble polar modified polymer as compared to an emulsion composition containing at least one polyamine, at least one oil-soluble polar modified polymer and beeswax comprising adding at least one micronized wax to the composition in an amount sufficient to improve mattity.
  • 17. A method of making an emulsion composition at room temperature comprising adding the components of the composition comprising water, at least one micronized wax and at least one oil and agitating the vessel to distribute the components
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 61/428,537, filed Dec. 30, 2010, the entire contents of which is hereby incorporated by reference.

Provisional Applications (1)
Number Date Country
61428537 Dec 2010 US