The invention relates to the field of wireless networks and, particularly, to managing overlapping transmissions in a wireless network.
In some wireless networks, a plurality of wireless devices may attempt to access a transmission medium at the same time. The channel access may comprise sensing the channel for pending transmissions. If the transmission medium is sensed to be busy, a wireless device may back off and attempt the channel access after the channel is sensed to be available. Allowing overlapping transmissions may improve spectrum efficiency but induce interference unless managed properly.
The invention is defined by the independent claims.
Embodiments of the invention are defined in the dependent claims.
Embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which
The following embodiments are exemplary. Although the specification may refer to “an”, “one”, or “some” embodiment(s) in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments. Furthermore, words “comprising” and “including” should be understood as not limiting the described embodiments to consist of only those features that have been mentioned and such embodiments may contain also features/structures that have not been specifically mentioned.
A general wireless communication scenario to which embodiments of the invention may be applied is illustrated in
The different access nodes may operate at least partly on different channels, e.g. on different frequency channels. IEEE 802.11n specification specifies a data transmission mode that includes 20 megahertz (MHz) wide primary and secondary channels. The primary channel is used in all data transmissions with clients supporting only the 20 MHz mode and with clients supporting higher bandwidths. A further definition in 802.11n is that the primary and secondary channels are adjacent. The 802.11n specification also defines a mode in which a STA may, in addition to the primary channel, occupy one secondary channel which results in a maximum bandwidth of 40 MHz. IEEE 802.11ac task group extends such an operation model to provide for wider bandwidths by increasing the number of secondary channels from 1 up to 7, thus resulting in bandwidths of 20 MHz, 40 MHz, 80 MHz, and 160 MHz. A 40 MHz transmission band may be formed by two contiguous 20 MHz bands, and an 80 MHz transmission band may be formed by two contiguous 40 MHz bands. However, a 160 MHz band may be formed by two contiguous or non-contiguous 80 MHz bands. Different BSSs may employ different primary channels.
As mentioned above, the transmission band of a BSS contains the primary channel and zero or more secondary channels. The secondary channels may be used to increase data transfer capacity of a transmission opportunity (TXOP). The secondary channels may be called a secondary channel, a tertiary channel, a quaternary channel, etc. However, let us for the sake of simplicity use the secondary channel as the common term to refer also to the tertiary or quaternary channel, etc. The primary channel may be used for channel contention, and a TXOP may be gained after successful channel contention on the primary channel. Some IEEE 802.11 networks are based on carrier sense multiple access with collision avoidance (CSMA/CA) for channel access. Some networks may employ enhanced distributed channel access (EDCA) which provides quality-of-service (QoS) enhancements to medium access control (MAC) layer. The QoS enhancements may be realized by providing a plurality of access categories (AC) for prioritizing frame transmissions. The access categories may comprise the following priority levels in the order of increasing priority: background (AC_BK), best effort (AC_BE), video streaming (AC_VI), and voice (AC_VO). A higher priority frame transmission may use a shorter contention window and a shorter arbitration inter-frame spacing (AIFS) that result in higher probability of gaining the TXOP. Furthermore, some networks may employ restricted access windows (RAW) where a reduced set of wireless devices of the wireless network may carry out channel contention. The access node may define the RAW and a group of wireless devices that are allowed to attempt the channel access within the RAW. Grouping allows partitioning of the wireless devices into groups and restricting channel access only to wireless devices belonging to a specified group at any given time period. The time period may be enabled by allocating slot duration and a number of slots in RAW access. The grouping may help to reduce contention by restricting access to the medium only to a subset of the wireless devices. The grouping may also reduce the signalling overhead.
As described above, the BSS may be represented by the access node and one or more terminal devices connected to the access node. In the example of
With respect to the definition of the wireless network in the context of the present description, the wireless network may comprise a single BSS or a plurality of BSSs. According to a viewpoint, the wireless network may comprise a plurality of BSSs that have the same service set identifier (SSID) the same roaming identifier, and/or the same roaming partnership.
A terminal device may establish a connection with any one of the access nodes it has detected to provide a wireless connection within the neighbourhood of the terminal device. In the example of
In a conventional 802.11 network, a wireless device initiating a TXOP may transmit a frame that triggers a network allocation vector (NAV). The frame may be a control frame such as a request-to-send (RTS) frame or a data frame. The frame may comprise a Duration field defining the duration of the NAV. Any other wireless device detecting the frame and extracting the Duration field suspends access to the same channel for the duration of the NAV. This mechanism may reduce simultaneous transmissions in the proximity that may be renamed as collisions. In some collisions the receiver cannot receive transmissions resulting to wasted transmission resources. The 802.11 networks may employ another collision avoidance mechanism called clear-channel assessment (CCA). A wireless device trying to access the channel scans for the channel before the access. If the channel is sensed to contain radio energy that exceeds a CCA threshold, the wireless device refrains from accessing the channel. If the channel is sensed to be free and no NAV is currently valid, the wireless device may access the channel. A conventional value for the CCA threshold may be −82 decibel-milliwatts (dBm) or −62 dBm depending on a channel access scheme, for example.
The wireless devices 110, 112, 114 may employ a randomized back-off time defining a minimum time interval they refrain from frame transmissions after detecting that the channel is busy. During the channel sensing, the back-off time may be decremented while the channel is sensed to be idle or available for the channel access. When the back-off time reduces to zero and the channel is still sensed to be idle, the wireless device may carry out the frame transmission. The back-off time value may be maintained for the duration the channel is sensed to be busy and, in some systems, for a determined guard time interval (e.g. the AIFS) after the detection that the channel has become idle.
In dense deployment scenarios with multiple overlapping wireless networks operating at least partially on the same channel(s), constant backing off may be a reality and it may cause inefficiency in the spectrum utilization. On the other hand, uncontrolled overlapping transmissions potentially increase interference and cause degradation of the performance of the wireless networks. As a consequence, a scheme for enabling overlapping transmissions in a controlled manner may be advantageous.
In an embodiment, the information element allows another apparatus of the same wireless network to carry out the overlapping transmission. In another embodiment, the information element allows another apparatus of another wireless network to carry out the overlapping transmission. In another embodiment, the information element allows another apparatus of the same and different wireless network to carry out the overlapping transmission. In an embodiment, the other apparatus receiving the frame indicating the allowance of the overlapping transmissions may carry out the overlapping transmission if the overlapping transmission is carried out in the same wireless network as where the received frame was transmitted (see the definition of the wireless network above). In another embodiment, the other apparatus receiving the frame indicating the allowance of the overlapping transmissions may carry out the overlapping transmission if the overlapping transmission is carried out in a wireless network that belongs to the same set of wireless networks as the wireless network where the received frame was transmitted. The set of wireless networks may be created according to a determined criterion, e.g. it may consist of wireless networks to which the other apparatus may associate.
In an embodiment, the information element indicating that another apparatus is allowed to carry out transmission overlapping with the transmission interval is comprised in a physical layer convergence protocol (PLOP) header of the frame. In another embodiment, the information element indicating that another apparatus is allowed to carry out transmission overlapping with the transmission interval is comprised in a medium access control (MAC) header of the frame.
In an embodiment, the frame is a PLOP protocol data unit (PPDU). In an embodiment, the frame is the PPDU of a 802.11 network.
In an embodiment, the first wireless device transmits the frame in step 204 as omnidirectional transmission, e.g. transmitting the frame as a radio wave having power distributed substantially uniformly in all directions in a plane around the first wireless device.
In an embodiment, the second wireless device employs a second, different threshold in the CCA procedure upon detecting no information element allowing the overlapping transmission. The first threshold may be higher than the second threshold, thus increasing the probability of the second wireless device to determine that the channel is idle and the probability of gaining channel access.
In an embodiment of
The above-described time interval during which the overlapping transmissions are allowed may comprise the duration the frame indicating the allowance of the overlapping transmissions. In an embodiment, the time interval consists of the duration of the frame. In another embodiment, the time interval comprises a transmission opportunity of the first wireless device transmitting the frame, wherein the transmission opportunity may be longer than the duration of the frame. In yet another embodiment, the time interval may comprise the duration of the frame and a determined time interval after the frame.
When the transmitting device (the first wireless device) controls the overlapping transmissions with the information element called “HitMe” in the following and in the Figures, the transmitting device may have the control when to allow the overlapping transmissions in such manner that interference levels stay in sustainable levels. In an embodiment, the overlapping transmissions are allowed when the transmitting device transmits a short frame.
In another embodiment, the overlapping transmissions are allowed when the transmitting device transmits a frame with a low-order modulation and coding scheme. The low-order modulation and coding scheme (MCS) may be considered as a MCS that sustains interference better than a high-order MCS. The low-order MCS may employ stronger modulation and stronger channel coding than the high-order MCS.
In an embodiment, block 500 comprises intentionally selecting a lower-order MCS than that necessitated by the estimated channel quality. Then, block 500 may comprise determining the MCS necessitated by the channel quality and decreasing the order of the MCS by a determined degree. In another embodiment where certain frames are transmitted with a certain MCS, block 500 comprises selecting a MCS mapped to the frame and, in block 502, it is determined whether or not the MCS is the minimum requirement for the current channel quality.
In another embodiment, the overlapping transmissions are allowed when the transmitting device transmits a short frame with the low-order modulation and coding scheme. This embodiment is basically a combination of the embodiments of
In yet another embodiment, the overlapping transmissions are allowed when the transmitting device transmits a determined type of frame. In this embodiment, upon determining to transmit a frame, the transmitting device may determine a type of the frame. If the type of the frame is mapped to a set of frame types for which the overlapping transmissions are allowed, the transmitting device may set the value of the “HitMe” information element to indicate that the overlapping transmissions are allowed. On the other hand, if the type of the frame is mapped to a set of frame types for which the overlapping transmissions are not allowed, the transmitting device may set the value of the “HitMe” information element to indicate that the overlapping transmissions are not allowed. The set of frame types of the frame for which the overlapping transmissions are allowed may comprise at least one of a management frame, a short data frame, an acknowledgment frame, and a block acknowledgment frame. The definition of the short may be considered as a frame having the length smaller than the above-described threshold for the length of the frame in block 402.
In an embodiment, the transmission interval of the first wireless device is defined by a maximum duration of a transmission opportunity of the first wireless device. The maximum duration may be shorter for the frame comprising the information element indicating that the overlapping transmission is allowed than for another frame indicating that the overlapping transmission is not allowed. As a consequence, the first wireless device may allow the overlapping transmissions only when transmitting short frames that are, in some embodiments, transmitted with a robust low-order MCS. Such short frames may include acknowledgment frames, block acknowledgment frames, and short data frames, for example. The duration may be defined by a dot11HitMeTXOPLimit parameter specified in IEEE 802.11 networks separately for the short frames that allow overlapping transmissions. For a conventional frame having a long duration and/or a MCS matched to the minimum requirement set by the channel quality another, longer duration specified by parameter dot11TXOPLimit may be employed.
The frame transmitted by the first wireless device may further comprise an information element indicating whether or not the wireless device carrying out the overlapping transmission may allow further overlapping transmissions. This information element may be the same information element described above that indicates whether or not the overlapping transmissions are allowed, or the information element may be a logically different information element. In one embodiment, the “HitMe” information element may have four logical values defined in Table 1 below. Table 1 illustrates four two-bit values for the “HitMe” information element that are merely exemplary.
In another embodiment, another information element is used to indicate whether or not the wireless device initiating the overlapping TXOP is allowed to “spread” the information on the possibility for the overlapping TXOPs. Let us call that other information element a “Continuation” element that may be provided in the header in a separate field with respect to the “HitMe” information element. The Continuation element may indicate to a receiver of the frame whether or not it may set the value of the HitMe element of a frame it transmits as the overlapping transmission to indicate that further transmissions are allowed.
In an embodiment, the second wireless device may determine, before initiating the overlapping TXOP, whether or not the second wireless device itself or the third wireless device addressed with the potential overlapping transmission is an intended recipient of the frame received in step 204. This may be determined from a receiver address comprised in the received frame. If the receiver address is an address associated with the second wireless device or an address associated with the third wireless device, the second wireless device may choose not to carry out the overlapping transmission. Otherwise, it may choose to carry out the overlapping transmission. In this manner, the wireless device may check whether or not the wireless device itself or its intended recipient is busy and, if at least one of them considered busy, prevent the overlapping transmission. For example, if an access node is receiving a frame from the a terminal device allowing the overlapping transmissions during the transmission of the frame, another terminal device having a frame to be transmitted to the access node may prevent the overlapping transmission when considering the access node to be busy.
Let us now consider some embodiments with respect to the timing of the different CCA thresholds employed in the CCA procedure. As described above, the reception of a frame comprising the “HitMe” information element allowing overlapping transmissions may allow the use of a higher CCA threshold during the TXOP of the wireless device transmitting the “HitMe” information element. The timing for using the higher CCA threshold may be determined on the basis of one or more information elements comprised in the received frame. In an embodiment, the one or more information elements of the received frame may allow the use of the higher CCA threshold only for the duration of the frame. This embodiment is illustrated in
In an embodiment, the one or more information elements allowing the use of the higher CCA threshold only for the duration of the frame may be the Continuation element and, particularly, a specific value of the Continuation element.
In another embodiment, the one or more information elements allowing the use of the higher CCA threshold only for the duration of the frame may be a combination of the HitMe element allowing the overlapping transmissions and a specific value or range of values of a Duration element comprised in the header 800. The Duration element indicates the length of the frame.
On the other hand, if the value of the Duration field is higher than the maximum duration of the TXOP applicable to the received frame, the wireless device 114 may determine that the higher CCA threshold is applicable only after the frame has ended. The wireless device 114 may then assume that the frame has been transmitted with the MCS matched to the channel quality and without a safety margin in the order of the MCS. Accordingly, the wireless device 114 may be configured to use the lower CCA threshold during the frame. After the frame ends, the wireless device 114 may be configured to employ the higher CCA threshold for the above-described determined time interval, e.g. the dot11HitMeInitiationLimit. In this embodiment, the wireless device 114 may start counting the time interval from the end of the header 800 or from the end of the frame. Even in the case the time interval is counted from the end of the header 800, the higher CCA threshold may be applicable only after the frame has ended. Accordingly, the time interval may be shorter with respect to the embodiment where the same time interval is counted from the end of the frame.
In an embodiment, the above-described time interval dot11HitMeInitiationLimit may be used as a time interval for transmitting the overlapping transmission allowing further overlapping transmissions. For example, the first wireless device may send the frame allowing overlapping transmissions, as described above in
In an embodiment, the ability to allow the overlapping transmissions may be time-limited even for the first wireless device considered above as an originator of the allowance of the overlapping transmissions. The time-limitation may be associated with the above-described RAWs, e.g. the overlapping transmissions may be allowed only during the RAW. In a further embodiment, a special time interval or a sub-period within the RAW may be defined when the wireless devices may be configured to allow overlapping transmissions, if they choose to allow them.
Referring to
The communication control circuitry 10 may further comprise a channel access controller 14 configured to determine transmission opportunities of the wireless device. The channel access controller 14 may employ the above-described channel sensing procedure (CCA procedure) in which the channel is sensed for conflicting frame transmissions that prevent the channel access of the wireless device. The channel access controller 14 may comprise a threshold selector circuitry 18 for selecting the reception sensitivity threshold (e.g. the CCA threshold) in the above-described manner. The control part 12 may be configured to monitor for frames transmitted by other wireless devices and extract one or more information elements indicating the allowance of the overlapping transmissions. The control part 12 may output such information elements or information contained in such information elements to the channel access controller 14. The selector circuitry of the channel access controller 14 may then select which one of a plurality of reception sensitivity thresholds to employ at a time. Upon determining to attempt channel access, the channel access controller 14 may control the control part 12 to carry out the channel sensing and determine whether or not a signal stronger than the reception sensitivity threshold currently selected by the selector circuitry is detected. As described above, the higher threshold may be employed if the overlapping transmissions are currently allowed. Upon determining that the channel is idle, the channel access controller 14 may initiate frame transmission.
The circuitries 12 to 18 of the communication controller circuitry 10 may be carried out by the one or more physical circuitries or processors. In practice, the different circuitries may be realized by different computer program modules. Depending on the specifications and the design of the apparatus, the apparatus may comprise some of the circuitries 12 to 18 or all of them.
The apparatus may further comprise a memory 20 that stores computer programs (software) 22 configuring the apparatus to perform the above-described functionalities of the wireless device. The memory 20 may also store communication parameters and other information needed for the wireless communications. The memory 20 may store a configuration database 24 storing configuration parameters of a wireless network of the wireless device. The configuration database may store, for example, a plurality of reception sensitivity threshold values and rules when to apply each threshold value. The rules may comply with the above-described embodiments for using the plurality of thresholds (e.g. CCA thresholds). The configuration database 24 may further store rules for carrying out the overlapping transmissions upon detecting that another wireless device has allowed the overlapping transmissions. The configuration database 24 may further store rules for allowing other wireless devices to carry out transmissions that overlap with a transmission by the apparatus.
The apparatus may further comprise radio interface components 30 providing the apparatus with radio communication capabilities within one or more wireless networks. The radio interface components 30 may comprise standard well-known components such as an amplifier, filter, frequency-converter, (de)modulator, and encoder/decoder circuitries and one or more antennas. The apparatus may in some embodiments further comprise a user interface enabling interaction with the user of the communication device. The user interface may comprise a display, a keypad or a keyboard, a loudspeaker, etc.
In an embodiment, the apparatus carrying out the embodiments of the invention in the wireless device comprises at least one processor 10 and at least one memory 20 including a computer program code 22, wherein the at least one memory and the computer program code are configured, with the at least one processor, to cause the apparatus to carry out the functionalities of the wireless device according to any one of the embodiments of
As used in this application, the term ‘circuitry’ refers to all of the following: (a) hardware-only circuit implementations such as implementations in only analog and/or digital circuitry; (b) combinations of circuits and software and/or firmware, such as (as applicable): (i) a combination of processor(s) or processor cores; or (ii) portions of processor(s)/software including digital signal processor(s), software, and at least one memory that work together to cause an apparatus to perform specific functions; and (c) circuits, such as a microprocessor(s) or a portion of a microprocessor(s), that require software or firmware for operation, even if the software or firmware is not physically present.
This definition of ‘circuitry’ applies to all uses of this term in this application. As a further example, as used in this application, the term “circuitry” would also cover an implementation of merely a processor (or multiple processors) or portion of a processor, e.g. one core of a multi-core processor, and its (or their) accompanying software and/or firmware. The term “circuitry” would also cover, for example and if applicable to the particular element, a baseband integrated circuit, an application-specific integrated circuit (ASIC), and/or a field-programmable grid array (FPGA) circuit for the apparatus according to an embodiment of the invention.
The processes or methods described in
The present invention is applicable to wireless networks defined above but also to other wireless networks. The protocols used, the specifications of the wireless networks and their network elements develop rapidly. Such development may require extra changes to the described embodiments. Therefore, all words and expressions should be interpreted broadly and they are intended to illustrate, not to restrict, the embodiment. It will be obvious to a person skilled in the art that, as technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
1413188.2 | Jul 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2015/050436 | 6/16/2015 | WO | 00 |