ENAMEL COMPOSITION, METHOD FOR PREPARING ENAMEL COMPOSITION, AND COOKING APPLIANCE

Information

  • Patent Application
  • 20200270170
  • Publication Number
    20200270170
  • Date Filed
    February 20, 2020
    5 years ago
  • Date Published
    August 27, 2020
    4 years ago
Abstract
An enamel composition, a method for preparing an enamel composition, and a cooking appliance are provided. The enamel composition may include 15 to 50 wt % of phosphorus pentoxide (P2O5); 1 to 20 wt % of silicon dioxide (SiO2); 1 to 20 wt % of boron oxide (B2O3); 5 to 20 wt % of one or more of lithium superoxide (Li2O), sodium oxide (Na2O), or potassium oxide (K2O); 1 to 5 wt % of one or more of sodium fluoride (NaF), calcium fluoride (CaF2), or aluminum fluoride (AlF3); 1 to 35 wt % of one or more of magnesium oxide (MgO), barium oxide (BaO), or calcium oxide (CaO); and 5 to 30 wt % of one or more of titanium dioxide (TiO2), vanadium pentoxide (V2O5), molybdenum trioxide (MoO3), or iron oxide (Fe2O3). With such an enamel composition, cleaning may be performed at a low temperature for thermal decomposition, and contaminants, such as fat, may be more completely removed.
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and the benefit of Korean Patent Application No. 10-2019-0021142, filed in Korea on Feb. 22, 2019, the disclosure of which is incorporated herein by reference in its entirety.


BACKGROUND
1. Field

An enamel composition, a method for preparing an enamel composition, and a cooking appliance are disclosed herein.


2. Background

Enamel is a substance where a glass glaze is applied onto a surface of a metallic plate. Ordinary enamel is used for cooking appliances, such as microwave ovens and ovens, for example. Cooking appliances, such as electric ovens and gas ovens, for example, are devices that cook food or other items (hereinafter, collectively “food”) using a heat source. Contaminants, for example, produced during cooking, are attached to an inner wall of a cavity of a cooking appliance. Accordingly, the inner wall of the cavity needs to be cleaned. Enamel is coated on a surface of the inner wall of the cavity of the cooking appliance, for example, and helps remove contaminants attached to the cooking appliance easily. Among the technologies for readily cleaning the inner wall of a cavity, a process of pyrolysis (thermal decomposition) by which contaminants are burned to ashes at high temperatures is widely known. Enamel compositions including components, such as phosphorus pentoxide (P2O5), silicon dioxide (SiO2), and boron oxide (B2O3), for example, are known as an enamel composition to which the process of pyrolysis can be applied.


However, in the case of the enamel composition widely known, temperatures for pyrolysis (thermal decomposition) are 450 to 500° C. When an enamel coating layer is heated for a long time at high temperatures, its durability may be decreased. Further, as the related art enamel composition has to be heated at high temperatures, a large amount of energy is spent on cleaning. Furthermore, in the case of the related art enamel composition, contaminants, such as fat including tallow, lard, and poultry fat, are not readily removed.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, and wherein:



FIG. 1 is a front perspective view of a cooking appliance according to an embodiment;



FIG. 2 is a partial enlarged cross-sectional view of a portion of an inner surface of a cavity of the cooking appliance in FIG. 1;



FIG. 3 is enlarged cross-sectional view of a portion of an inner surface of a door of the cooking appliance in FIG. 1; and



FIG. 4 is a flow chart of a method for preparing an enamel composition according to an embodiment.





DETAILED DESCRIPTION

Enamel Composition


An enamel composition according to embodiments may include 15 to 50 wt % of phosphorus pentoxide (P2O5); 1-20 wt % of silicon dioxide (SiO2); 1-20 wt % of boron oxide (B2O3); 5 to 20 wt % of one or more of lithium superoxide (Li2O), sodium oxide (Na2O), or potassium oxide (K2O), 1 to 5 wt % of one or more of sodium fluoride (NaF), calcium fluoride (CaF2), or aluminum fluoride (AlF3), 1 to 35 wt % of one or more of magnesium oxide (MgO), barium oxide (BaO), or calcium oxide (CaO); and 5 to 30 wt % of one or more of titanium dioxide (TiO2), vanadium pentoxide (V2O5), molybdenum trioxide (MoO3) and iron oxide (Fe2O3).


P2O5 is a component that forms an alkali phosphate glass structure. P2O5 is also a glass former that helps addition of a large amount of transition metal oxides into an enamel composition, and helps water to permeate between an enamel surface and a contaminant, such that the contaminant is easily removed. P2O5 is contained in a range of 15 to 50 wt %. When more than 50 wt % of P2O5 is included, the enamel composition is hardly glazed, and thermal properties of the enamel composition may be deteriorated. Additionally, when less than 15 wt % of P2O5 is included, an amount of added transition metal oxides is reduced. Thus, a cleaning performance may be deteriorated.


SiO2 is a component that forms a glass structure. SiO2 reinforces a skeleton of the glass structure and enhances chemical resistance of the enamel composition. SiO2 is contained in a range of 1 to 20 wt %. When more than 20 wt % of SiO2 is included, the component interferes with the addition of transition metal oxides, thereby deteriorating a cleaning performance. When less than 1 wt % of SiO2 is included, the glass composition may collapse.


B2O3 serves as a glass former and helps each component of the enamel composition to melt uniformly. B2O3 enhances coating performance by adjusting a coefficient of thermal expansion and fusion flow of the enamel composition. B2O3 may be contained in a range of 1 to 20 wt %. When more than 20 wt % of B2O3 is included, the component may interfere with the addition of transition metal oxides, thereby deteriorating a cleaning performance. When less than 1 wt % of B2O3 is included, the glass composition may collapse and crystallization of the glass composition may occur. Li2O, Na2O, and K2O improve a cleaning performance of an enamel composition. One or more of Li2O, Na2O, or K2O are contained in the enamel composition in a range of 5 to 20 wt %. When more than 20 wt % of the one or more of Li2O, Na2O, or K2O is included, the coefficient of thermal expansion of glass may be extremely increased. Accordingly, a coating performance may be deteriorated. When less than 5 wt % of the one or more of Li2O, Na2O, or K2O is included, a cleaning performance may be deteriorated.


NaF, CaF2, and AlF3 are components that control surface tension of an enamel coating layer and improve surface properties of the enamel coating layer. One or more of NaF, CaF2, or AlF3 are included in the enamel composition in a range of 1 to 5 wt %. When more than 5 wt % of the one or more of NaF, CaF2, or AlF3 is included, thermal properties may be deteriorated. When less than 1 wt % of the one or more of NaF, CaF2, or AlF3 is included, surface properties of the enamel coating layer may be deteriorated.


MgO, BaO, and CaO are components that improve adhesion between the enamel coating layer and a base metal plate. One or more of the MgO, BaO, or CaO are contained in the enamel composition in a range of 1 to 35 wt %. When more than 35 wt % of the one or more of MgO, BaO, or CaO is included, a cleaning performance may be deteriorated. When less than 1 wt % of the one or more of MgO, BaO, or CaO is included, adhesion between the enamel coating layer and the metal plate may be reduced. Thus, glass stability may be reduced.


TiO2, V2O5, MoO3, and Fe2O3 function as a catalyst on a surface of the enamel coating layer. Accordingly, TiO2, V2O5, MoO3 and Fe2O3 easily disconnect the surface of the enamel coating layer and the contaminant. One or more of TiO2, V2O5, MoO3, or Fe2O3 are included in a range of 5 to 30 wt %. When more than 30 wt % of the one or more of TiO2, V2O5, MoO3, or Fe2O3 is included, the enamel composition is hardly glazed and thermal properties of the enamel composition are deteriorated. When less than 5 wt % of one or more of TiO2, V2O5, MoO3, or Fe2O3 is included, a catalytic reaction on the surface of the enamel coating layer occurs less frequently. Accordingly, a cleaning performance may be deteriorated.


Next, the enamel composition may further include 1 to 20 wt % of aluminum oxide (Al2O3); 1 to 5 wt % of zirconium dioxide (ZrO2); and 1 to 10 wt % of one or more of tin oxide (SnO) or zinc oxide (ZnO). The above-described components of Al2O3, ZrO2, SnO, and ZnO may enhance durability of a weak alkali phosphate glass structure and may improve hardness of the enamel surface. When more than 20 wt % of Al2O3 is included, melting temperatures go up and fusion flow increase, thereby reducing adhesion of the enamel coating layer. When more than 5 wt % of ZrO2 is included, or when more than 10 wt % of SnO and/or ZnO is included, a glass structure may not be formed. Additionally, when a content of each component is less than a minimum content thereof, durability of the enamel coating layer may be reduced.


The enamel composition may include 5 to 15 wt % of one or more of MoO3 or V2O5, and may include 5 to 15 wt % of one or more of MoO3 or Fe2O3, to maximize a cleaning performance while lowering a temperature for thermal decomposition. Mo and V and/or Mo and Fe perform the function of lowering the temperature of thermal decomposition for removing contaminants.


The enamel composition according to embodiments has a new composition ratio that is described above. Accordingly, with the enamel composition according to embodiments, contaminants may be cleaned in a range of temperatures of 350 to 380° C. which are 100° C. lower than temperatures at which contaminants are removed in the related art enamel composition. Thus, the enamel composition according to embodiments may ensure energy savings and reduce time spent on cleaning. Further, the enamel composition according to embodiments may ensure perfect cleaning of contaminants, such as fat, and may ensure easy hygiene management of a cooking appliance.


Method of Preparing Enamel Composition


The method 100 for preparing an enamel composition according to embodiments may include providing the above-described materials for the enamel composition (110); melting the materials (120); and quenching the melted materials (130) to form the enamel composition. The materials may be sufficiently mixed and then melted. The materials may be melted in a range of temperatures of 1200 to 1400° C. Additionally, the materials may be melted for one to two hours. Then, the melted materials may be rapidly cooled by a chiller, for example, such as a quenching roller.


Cooking Appliance


An enamel composition according to embodiments may be coated on a surface of a target object. The target object may be all or a portion of a metallic plate, a glass plate, or a cooking appliance, for example. The enamel composition may be coated on an inner surface of a cavity of a cooking appliance, or on an inner surface of a door of a cooking appliance, for example.


Referring to FIG. 1, a cooking appliance 1 according to an embodiment may include a cavity 11 in which a cooking chamber is formed, a door 14 that opens and closes the cooking chamber, at least one of heat sources 13, 15, 16 that supplies heat to the cooking chamber 11, and a coating layer formed by the enamel composition according to embodiments coated on an inner surface of the cavity 11 or an inner surface of the door 14. The cavity 11 may have a cuboid shape, a front surface of which is open. The heat sources 13, 15, 16 may include a convection assembly 13 that discharges heated air into the cavity 11, an upper heater 15 disposed at an upper portion of the cavity 11, and a lower heater 15 disposed at a lower portion of the cavity 11. The upper heater 15 and the lower heater 16 may be provided inside or outside of the cavity 11. The heat sources 13, 15, 16 may not include all of the convection assembly 13, the upper heater 15, and the lower heater 16. That is, the heat sources 13, 15, 16 may include any one or more of the convection assembly 13, the upper heater 15, and the lower heater 16.


Referring to FIGS. 3 and 4, the enamel composition according to embodiments may be coated on an inner surface of the cavity 11 of the cooking appliance 1 or on an inner surface of the door 14 of the cooking appliance 1 through a dry process or a wet process, for example. The cavity 11 and the door 14 may include a metallic plate. The coating layer 17, 18 using the enamel composition according to embodiments may be directly coated on the metallic plate in a single layer.


During the dry process, materials for the enamel composition may be dispersed in an organic binder, the mixed materials and organic binder may be milled in a ball mill, and a glass frit may be manufactured. During the wet process, materials for the enamel composition may be dispersed in water (H2O) and pigment, the mixed materials, water (H2O), and pigment may be milled in a ball mill, and a glass frit may be manufactured.


Then, the glass frit prepared according to the dry process or the wet process may be applied onto the inner surface of the cavity 11 of the cooking appliance 1 or onto the inner surface of the door 14 of the cooking appliance 1 through a spray process, for example. The applied glass frit may be calcinated for 100 to 450 seconds in a range of temperatures of 600 to 900° C., and may be coated on the inner surface of the cavity 11 or the inner surface of the door 14 of the cooking appliance 1.


Hereinafter, embodiments will be discussed with respect to examples.


Examples

Method for Preparation of Enamel Composition


An enamel composition having a composition ratio described in the following Table 1 was prepared. Raw materials of each component were sufficiently mixed for three hours in a V-mixer. ammonium dihydrogen phosphate (NH4H2PO4) was used as a raw material for phosphorus pentoxide (P2O5), and sodium carbonate (Na2CO3), potassium carbonate (K2CO3), and lithium carbonate (Li2CO3) were, respectively, used as raw materials for Na2O, K2O, and Li2O. The mixed materials were sufficiently melted for one and a half hours at 1300° C. and were rapidly cooled in a quenching roller. Then a glass cullet was obtained.


For producing frits (powder), initial granularity of the glass cullet obtained through the above-described processes was controlled with the ball mill, was ground for about five hours using a jet mill, and then passed through a 325 mesh sieve (ASTM C285-88) such that a particle diameter of the glass cullet was limited to 45 μm or less.














TABLE 1












Comparative









Component
Embodiment
example













(wt %)
1
2
3
4
1
2
















SiO2
14.44
15.01
15
12.87
0
32.1


P2O5
24.8
25.58
22.54
21.94
47.66
0


B2O3
9.08
10.83
14.03
9.29
0
0


Na2O
4.62
4.52
4.8
3.88
2.05
2.05


K2O
10.38
12.5
9.4
10.72
5.03
5.03


Li2O
0.88
0
0.45
0
0
0


NaF
0
1.72
0
1.47
0
12.1


CaF2
1.74
0
0
0
0
3.16


AlF3
0
0
1.2
0
0
0


MgO
0
0
0
0
7.99
7.99


Al2O3
16.6
16.5
17.25
14.15
0
0


CaO
0
0
0
0
3.05
3.05


TiO2
3.52
1.41
2.88
1.21
2.05
2.35


V2O5
0
9.35
0
9.1
10.4
10.4


Fe2O3
0
0
2.52
0
0
0


ZnO
0
0
0
0
1.03
1.03


ZrO2
4.19
2.58
4.35
2.21
0
0


MoO3
8.86
0
5.58
13.16
0
0


SnO
0.89
0
0
0
0
0


BaO
0
0
0
0
20.74
20.74









Preparation of Sample of Enamel Composition


Next, the frits, which were manufactured using the enamel composition according to Embodiments 1 to 5, and Comparative Examples 1 to 2, were respectively sprayed onto a low carbon steel sheet having 200×200 mm and a thickness of 1 mm or less with a corona discharge gun. A voltage of the corona discharge gun was controlled under the conditions of 40 kV to 100 kV, and an amount of the frits sprayed on the low carbon steel sheet was 300 g/m2. The low carbon steel sheet onto which the frits were sprayed was calcinated at temperatures of 830° C. to 870° C. for 300 to 450 seconds to form a coating layer on one surface of the low carbon steel sheet. In this case, the coating layer was formed to have thicknesses of about 80 μm to 250 μm. By doing so, the sample was prepared according to Embodiments 1 to 7, and Comparative Examples 1 to 3.


Experimental Example

Performance of the sample according to the above-described embodiments and comparative examples was evaluated as follows. Table 3 shows the results.


1. Cleaning Performance of Chicken Fat as Contaminant


One gram of chicken fat was thinly applied as a contaminant onto the surface of the sample, where a metallic substrate (100×100 (mm)) was coated with the enamel composition, with a brush evenly. Then the sample to which the contaminant was applied was put into a thermostat and the contaminant was fixed for an hour in a range of temperatures of 250 to 290° C. After the contaminant was fixed, the sample was cooled naturally and was burned for an hour at a temperature of 350° C. Then the hardened contaminant was cleaned with a kitchen scrubber for a frying pan, which was wet with room-temperature water, using a force of 3 kgf or less. Cleaned portions of the contaminated surface of the sample were uniformalized using a rod having a flat bottom and a diameter of 5 cm.


2. Cleaning Performance of Monster Mash


Cleaning performance of monster mash was evaluated using the same method as the above-described method. Frequency of back and forth cleaning motions made to the samples was measured and the frequency was defined as a frequency of back and forth cleaning motions. Table 2 shows indices of evaluation of cleaning performance.










TABLE 2





Frequency of back



and forth cleaning motions
Level







1~5
LV. 5


 6~15
LV. 4


16~25
LV. 3


26~50
LV. 2


51~
LV. 1





















TABLE 3












Comparative










Embodiment
example














1
2
3
4
1
2





Cleaning
LV.5
LV.5
LV.5
LV.5
LV.2
LV.2


performance of








chicken fat








Cleaning
LV.5
LV.4
LV.5
LV.4
LV.1
LV.1


performance of








monster mash









As shown in FIG. 4, the embodiments had excellent cleaning performance. The comparative examples were less excellent in cleaning performance than the embodiments as the comparative examples had a composition less optimal than the composition of the embodiments.


Embodiments disclosed herein provide a new enamel composition that may have a cleaning temperature lower than the related art enamel composition. Embodiments disclosed herein also provide a new enamel composition where contaminants, such as fat, may be more completely removed.


To provide a new enamel composition having a heating temperature for thermal decomposition lower than the related art enamel composition and reduced energy consumption for cleaning, the enamel composition may include 15 to 50 wt % P2O5; 1 to 20 wt % SiO2; 1 to 20 wt % B2O3; 5 to 20 wt % of one or more of Li2O, Na2O, or K2O; 1 to 5 wt % of one or more of NaF, CaF2, or AlF3; 1 to 35 wt % of one or more of MgO, BaO, or CaO; and 5 to 30 wt % of one or more of TiO2, V2O5, MoO3, or Fe2O3. To provide a phosphate-based enamel composition where cleaning performance of contaminants, such as fat, may be maximized, the enamel composition may include 5 to 15 wt % of one or more of MoO3 or V2O5, and 5 to 15 wt % of one or more of MoO3 or Fe2O3.


The enamel composition may include a new phosphate-based glass composition, thereby making it possible to perform cleaning at a temperature which is approximately 100° C. lower than a temperature of the related art enamel composition. Thus, the enamel composition may ensure energy savings at the time of cleaning unlike the related art enamel composition.


The enamel composition where contaminants, such as fat, are more completely removed may ensure improved hygiene of a cooking appliance. The enamel composition may be directly coated on a base metal plate in a single layer with no intermediate buffer layer, thereby simplifying manufacturing.


The embodiments are described with reference to the embodiments illustrated in the drawings. However, the embodiments are not limited to the embodiments and the drawings set forth herein. Further, various modifications may be made by one having ordinary skill in the art within the scope of the technical spirit. Furthermore, though not explicitly described during description of the embodiments, effects and predictable effects according to the configuration of the disclosure should be included in the scope.


It will be understood that when an element or layer is referred to as being “on” another element or layer, the element or layer can be directly on another element or layer or intervening elements or layers. In contrast, when an element is referred to as being “directly on” another element or layer, there are no intervening elements or layers present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that, although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.


Spatially relative terms, such as “lower”, “upper” and the like, may be used herein for ease of description to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “lower” relative to other elements or features would then be oriented “upper” relative to the other elements or features. Thus, the exemplary term “lower” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the disclosure are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the disclosure. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the disclosure should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.


Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims
  • 1. An enamel composition, comprising: 15 to 50 wt % of phosphorus pentoxide (P2O5);1 to 20 wt % of silicon dioxide (SiO2);1 to 20 wt % of boron oxide (B2O3);5 to 20 wt % of one or more of lithium superoxide (Li2O), sodium oxide (Na2O), or potassium oxide (K2O);1 to 5 wt % of one or more of sodium fluoride (NaF), calcium fluoride (CaF2), or aluminum fluoride (AlF3);1 to 35 wt % of one or more of magnesium oxide (MgO), barium oxide (BaO), and calcium oxide (CaO); and5 to 30 wt % of one or more of titanium dioxide (TiO2), vanadium pentoxide (V2O5), molybdenum trioxide (MoO3), or iron oxide (Fe2O3).
  • 2. The enamel composition of claim 1, further comprising: 1 to 20 wt % of aluminum oxide (Al2O3);1 to 5 wt % of zirconium dioxide (ZrO2); and1 to 10 wt % of one or more of tin oxide (SnO) or zinc oxide (ZnO).
  • 3. The composition for enamel of claim 1, comprising: 5 to 15 wt % of one or more of MoO3 or V2O5.
  • 4. The enamel composition of claim 1, comprising: 5 to 15 wt % of one or more of MoO3 or Fe2O3.
  • 5. A cooking appliance, comprising: a cavity in which a cooking chamber is formed;a door that opens and closes the cooking chamber;at least one of heat sources that supply heat for heating an object to be cooked in the cooking chamber; anda coating layer formed using the enamel composition of claim 1 coated on an inner surface of the cavity or an inner surface of the door.
  • 6. A method of preparing an enamel composition, comprising: providing materials for the enamel composition, the materials comprising: 15 to 50 wt % of phosphorus pentoxide (P2O5);1 to 20 wt % of silicon dioxide (SiO2);1 to 20 wt % of boron oxide (B2O3);5 to 20 wt % of one or more of lithium superoxide (Li2O), sodium oxide (Na2O), or potassium oxide (K2O);1 to 5 wt % of one or more of sodium fluoride (NaF), calcium fluoride (CaF2), or aluminum fluoride (AlF3);1 to 35 wt % of one or more of magnesium oxide (MgO), barium oxide (BaO), or calcium oxide (CaO); and5 to 30 wt % of one or more of titanium dioxide (TiO2), vanadium pentoxide (V2O5), molybdenum trioxide (MoO3), or iron oxide (Fe2O3), melting the materials; andcooling the melted materials in a quenching roller to form the enamel composition.
  • 7. The method of claim 6, the enamel composition further comprising: 1 to 20 wt % of aluminum oxide (Al2O3);1 to 5 wt % of zirconium dioxide (ZrO2); and1 to 10 wt % of one or more of tin oxide (SnO) or zinc oxide (ZnO).
  • 8. The method of claim 6, the enamel composition further comprising: 5 to 15 wt % of one or more of MoO3 or V2O5.
  • 9. The method of claim 6, the enamel composition further comprising: 5 to 15 wt % of one or more of MoO3 or Fe2O3.
  • 10. A cooking appliance, comprising: a cavity in which a cooking chamber is formed;a door that opens and closes the cooking chamber;at least one of heat sources that supply heat for heating an object to be cooked in the cooking chamber; anda coating layer formed using the method for preparing the enamel composition of claim 6 coated on an inner surface of the cavity or an inner surface of the door.
  • 11. The method in claim 6, wherein the melting of the materials for the enamel composition includes melting the materials at about 1,200 to 1,400° C. for about one to two hours.
  • 12. The method in claim 11, wherein the melting of the materials for the enamel composition includes melting the materials at about 1,300° C. for about 1.5 hours.
  • 13. The method of claim 6, further comprising: mixing the materials for about 3 hours before melting the materials.
  • 14. The method of claim 6, wherein the quenching of the melted material includes quenching the melted materials using a quenching roller.
  • 15. The method of claim 6, further comprising: applying the enamel composition to at least one of an inner surface of a cavity of a cooking appliance or an inner surface a door of the cooking appliance.
  • 16. The method of claim 15, wherein the applying of the enamel composition includes applying the enamel composition by a dry process that includes dispersing the quenched materials for the enamel composition in an organic binder, milling the quenched materials for the enamel composition and the organic binder to prepare a frit, and applying the frit to the at least one of the inner surface of the cavity of the cooking appliance or the inner surface the door of the cooking appliance.
  • 17. The method of claim 15, wherein the applying of the enamel composition includes applying the enamel composition by a wet process that includes dispersing the quenched materials for the enamel composition in water and a pigment, milling the materials for the enamel composition, water, and the pigment to prepare a frit, and applying the frit to the at least one of the inner surface of the cavity of the cooking appliance or the inner surface the door of the cooking appliance.
  • 18. The method of claim 15, wherein the applying of the enamel composition includes: spraying a frit that includes the quenched materials for the enamel composition to the at least one of the inner surface of the cavity of the cooking appliance or the inner surface the door of the cooking appliance; andfiring the sprayed frit.
  • 19. The method of claim 18, wherein the spraying of the frit includes spraying about 300 g/m2 of the frit onto a steel sheet substrate.
  • 20. The method of 18, wherein the spraying of the frit includes directly applying a single layer of the frit onto a steel sheet substrate without using an interposing buffer layer, and wherein the frit is applied to form a coating layer having a thickness of about 80 to 250 μm, and the frit is fired at about 600 to 900° C. for about 100 to 450 seconds.
Priority Claims (1)
Number Date Country Kind
10-2019-0021142 Feb 2019 KR national