Encapsulated devices and method of making

Information

  • Patent Grant
  • 7767498
  • Patent Number
    7,767,498
  • Date Filed
    Thursday, August 24, 2006
    18 years ago
  • Date Issued
    Tuesday, August 3, 2010
    14 years ago
Abstract
A method of encapsulating an environmentally sensitive device. The method includes providing a substrate; placing at least one environmentally sensitive device adjacent to the substrate; and depositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from at least one polymer precursor, and wherein the polymeric decoupling layer has at least one of: a reduced number of polar regions; a high packing density; a reduced number of regions that have bond energies weaker than a C—C covalent bond; a reduced number of ester moieties; increased Mw of the at least one polymer precursor; increased chain length of the at least one polymer precursor; or reduced conversion of C═C bonds. An encapsulated environmentally sensitive device is also described.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to encapsulated devices, and more particularly to barriers for encapsulation, and to methods for making layers for said barriers.


Many devices are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing of the electronic product. Some devices are often encapsulated in order to prevent degradation.


Various types of encapsulated devices are known. For example, U.S. Pat. No. 6,268,695, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making,” issued Jul. 31, 2001; U.S. Pat. No. 6,522,067, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making,” issued Feb. 18, 2003; and U.S. Pat. No. 6,570,325, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making”, issued May 27, 2003, all of which are incorporated herein by reference, describe encapsulated organic light emitting devices (OLEDs). U.S. Pat. No. 6,573,652, entitled “Encapsulated Display Devices”, issued Jun. 3, 2003, which is incorporated herein by reference, describes encapsulated liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. U.S. Pat. No. 6,548,912, entitled “Semiconductor Passivation Using Barrier Coatings,” issued Apr. 15, 2003, which is incorporated herein by reference, describes encapsulated microelectronic devices, including integrated circuits, charge coupled devices, light emitting diodes, light emitting polymers, organic light emitting devices, metal sensor pads, micro-disk lasers, electrochromic devices, photochromic devices, microelectromechanical systems, and solar cells.


One method of making encapsulated devices involves depositing barrier stacks adjacent to one or both sides of the device. The barrier stacks typically include at least one barrier layer and at least one decoupling layer. There could be one decoupling layer and one barrier layer, there could be multiple decoupling layers on one side of one or more barrier layers, or there could be one or more decoupling layers on both sides of one or more barrier layers. The important feature is that the barrier stack has at least one decoupling layer and at least one barrier layer.


One embodiment of an encapsulated display device is shown in FIG. 1. The encapsulated display device 100 includes a substrate 105, a display device 110, and a barrier stack 115. The barrier stack 115 includes a barrier layer 120 and a decoupling layer 125. The barrier stack 115 encapsulates the display device 110, preventing environmental oxygen and water vapor from degrading the display device.


The barrier layers and decoupling layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically about 100-1,000 Å thick, and the decoupling layers are typically about 1,000 Å thick.


Although only one barrier stack is shown in FIG. 1, the number of barrier stacks is not limited. The number of barrier stacks needed depends on the level of water vapor and oxygen permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for many applications, while three for four may be sufficient for most. The most stringent applications may require five or more barrier stacks. Another situation in which multiple barrier stacks may be required is where the thickness of the decoupling layer needs to be limited to limit the stress induced by the polymer shrinkage, such as with passive matrix devices.


The barrier layers can be deposited using a vacuum process, such as sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.


Suitable barrier materials include, but are not limited to, metals, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.


We have found that some of the devices being encapsulated have been damaged by the plasma used in depositing the barrier and/or decoupling layers. Plasma damage has occurred when a substrate with an environmentally sensitive device on it, such as an OLED, is encapsulated with a multi-layer barrier stack in which a plasma based and/or assisted process is used to deposit a barrier layer or decoupling layer. For example, plasma damage has occurred when reactively sputtering a barrier layer of AlOx under conditions suitable for achieving barrier properties, sputtering a barrier layer of AlOx onto the top surface of an environmentally sensitive device, and/or sputtering a barrier layer of AlOx on a vacuum deposited, acrylate based polymeric layer.


Plasma damage involves a negative impact on the electrical and/or luminescent characteristics of a device resulting from encapsulation. The effects will vary by the type of device, the manufacturer of the device, and the wavelength of the light emitted. It is important to note that plasma damage is dependent on the design of the device to be encapsulated. For example, OLEDs made by some manufacturers show little to no plasma damage, while OLEDs made by other manufacturers show significant plasma damage under the same deposition conditions. This suggests that there are features within the device that affect its sensitivity to plasma exposure.


One way to detect plasma damage is to observe changes in the I-V-L characteristics of the device.


The decoupling layers can be deposited using a vacuum process, such as flash evaporation with in situ polymerization under vacuum, or plasma deposition and polymerization, or atmospheric processes, such as spin coating, ink jet printing, screen printing, or spraying. U.S. Pat. Nos. 4,842,893, 4,954,371, and 5,032,461, which are incorporated herein by reference, describe a method of flash evaporation and polymerization. Suitable materials for the decoupling layer, include, but are not limited to, organic polymers, inorganic polymers, organometallic polymers, hybrid organic/inorganic polymer systems, and silicates.


It was believed that the primary contribution of the decoupling layer to the barrier performance of a barrier stack was that it prevented defects in one barrier layer from propagating into another. By alternating barrier layers and decoupling layers, defects in one layer tend to be isolated and are not carried forward in the next layer. This creates a longer and more tortuous path for contaminants, such as oxygen and water vapor.


For example, U.S. Pat. No. 5,681,666 (Treger) discusses the importance of the layers of inorganic material being separated by organic material to avoid crack and defect propagation in the inorganic material. Treger indicated that cracks, pinholes, or other defects in an inorganic layer tends to be carried into the next inorganic material layer if the next inorganic material layer is deposited directly onto the first layer of inorganic material with no intervening layer of organic material between the two inorganic layers. According to Treger, this phenomenon significantly reduces the usefulness of the composite as a moisture barrier, since the defects often propagate through all of the inorganic layers if no organic layer is interposed between them.


A similar phenomenon sometimes occurs with respect to organic layers. Thus, a macroscopic or microscopic pinhole, inclusion of a dust particle, etc., can occur during the deposition of the organic layer, and this provides an easy path for water vapor transmission. By depositing alternating organic and inorganic layers, the defects in any particular layer do not tend to propagate into the next layer. This provides a much longer and more tortuous path for the water vapor to go through, even to such an extent that the net result is as though such defects do not exist.


From technical view point, thinner layers and more layers provide more resistance to the transmission of water vapor through the composite. However, the cost of the moisture barrier increases with each layer that is deposited. Also, if the layers are too thin, there will be voids of incomplete coverage in the layers, and this will increase the permeability of the composite.


This thinking is also reflected in “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation,” G. L. Graff, et al., Journal of Applied Physics, Vol. 96, No. 4, p. 1840 (Aug. 15, 2004), which is incorporated herein by reference. Graff et al. explain that permeation through single and multilayer vapor barriers is controlled by defects, and that defect size and spatial density are the critical parameters for defining barrier performance. Although the long apparent diffusion path caused by separating low defect density inorganic layers from each other with polymer layers significantly increases lag times, the decrease in steady-state flux is much less significant. The increased lag time is primarily responsible for the improvement in barrier performance as additional barrier stacks are added.


Graff et al. suggest that lowering the diffusivity and solubility of the polymer layers will improve the barrier performance. This can be accomplished by polymer selection (hydrophobic moieties or organic/inorganic copolymers), physical modifications (such as ion bombardment or crosslinking), or chemical modification (reactive etch or plasma surface treatment). However, they indicate that the range of improvement that is possible with the polymer layer may be insignificant relative to the improvement of the inorganic layer because the effective diffusion of the inorganic layer is at least four orders of magnitude lower than that of the polymer layers.


There was an underlying assumption that the permeating species reaching and then directly degrading the OLED is the only factor in barrier failure.


It is known that plasma treatments can modify the properties of polymers. Several patents disclose the use of plasma treatment to improve properties for a multi-layer barrier on a substrate. U.S. Pat. No. 6,083,628 discloses plasma treatment of polymeric film substrates and polymeric layers from acrylates deposited using a flash evaporation process as a means of improving properties. U.S. Pat. No. 5,440,466 similarly discusses plasma treatment of substrates and acrylate layers to improve properties. On the other hand, it is known that in some cases plasma and/or radiation exposure degrades the functional properties of polymers. Thus, there is a need for improved polymeric decoupling layers for barrier stacks which are more compatible with all of the available deposition technologies.


SUMMARY OF THE INVENTION

The present invention meets this need by providing a method of encapsulating an environmentally sensitive device. The method includes providing a substrate; placing at least one environmentally sensitive device adjacent to the substrate; and depositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from at least one polymer precursor, and wherein the polymeric decoupling layer has at least one of: a reduced number of polar regions; a high packing density; a reduced number of regions that have bond energies weaker than a C—C covalent bond; a reduced number of ester moieties; increased Mw of the at least one polymer precursor; increased chain length of the at least one polymer precursor; or reduced conversion of C═C bonds.


In another embodiment, the method includes providing a substrate; placing at least one environmentally sensitive device adjacent to the substrate; and depositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer comprises a reaction product of at least one polymer precursor comprising at least one reactive functional group bound to a hydrocarbon, and wherein the polymeric decoupling layer has no more than about 8×1020 n/ml of ether linkages, and no more than about 4.0×1021 n/ml side chains.


Another aspect of the invention is an encapsulated environmentally sensitive device. The encapsulated display device includes a substrate; at least one environmentally sensitive device adjacent to the substrate; and at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from at least one polymer precursor, the at least one polymer precursor having a functionalized hydrocarbon backbone, and wherein the polymeric decoupling layer has no more than about 8×1020 n/ml of ether linkages, and no more than about 4.0×1021 n/ml side chains.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-section of a portion of one embodiment of an encapsulated display device.



FIG. 2 are photographs showing polymer film morphology for different polymer formulations after aging.



FIG. 3 are photographs showing polymer film discoloration and morphology for different polymer formulations after aging.



FIG. 4 are photographs showing polymer film morphology for different polymer formulations after aging.



FIG. 5 are graphs showing interference spectra for different polymer formulations before and after aging.



FIG. 6 are photographs showing calcium tests for different polymer formulations after aging.



FIG. 7 are photographs showing passive matrix displays for different polymer formulations before and after aging.



FIG. 8 are photographs showing plasma damage for different polymer formulations after aging.



FIG. 9 are photographs showing plasma damage for different polymer formulations before and after aging.



FIG. 10 are photographs showing the electroluminescence and photoluminescence of encapsulated and unencapsulated devices before and after aging.



FIG. 11 are photographs showing shrinkage for different polymer formulations before and after aging.



FIG. 12 is a graph of deposition efficiency v. substrate temperature.



FIG. 13 is a graph showing starting pixel area after encapsulation for different formulations.



FIG. 14 is a graph showing the shrinkage of the polymer layer as a function of the thickness of the polymer layer for different formulations.



FIG. 15A is a top plan view of a passive matrix device, and FIGS. 15B and 15C are cross-sections of the passive matrix device of FIG. 15A along lines 15B-15B and 15C-15C.



FIG. 16 are photographs showing mechanical damage to the device of FIG. 10F.





DETAILED DESCRIPTION OF THE INVENTION

Conventional teaching with respect to the decoupling layer in a barrier stack suggested that its importance was limited to preventing defects in one layer from propagating into the next. There was no recognition that the decoupling layer can have an important effect on the overall barrier performance, nor was there any discussion of the properties that should be controlled to provide a barrier stack with improved performance. In addition, some of the materials suggested actually result in barrier stacks with inferior performance and/or which are incompatible with the preservation of the electroluminescence performance and the appearance of the device.


Some published literature, for example Graff's “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation,” model diffusion through the barrier stack by applying a Fickian diffusion model to a multilayer stack using a mathematical model developed by Ash. The general finding obtained from the model that the permeation is controlled by defect density and size in the inorganic layer by creating a tortuous path to the contaminants is valid. However, the assumption of a Fickian diffusion model is generally not suitable for diffusion in a polymer and leads to an underestimation of the role that polymer layers with different characteristics play in the total permeation of the barrier stack.


Furthermore, the effect of polymer stability on overall barrier performance has not been taken into consideration. There has been no recognition of the effect that structural or chemical changes have on the overall barrier performance.


Processes employed for depositing multi-layer barrier stacks on substrates such as polymer films were not believed to impact devices subsequently emplaced adjacent to the stacks. However, we have also discovered that adverse impacts on devices can occur when barrier stack deposition processes include exposure to plasma.


We observed that damage occurred when barrier stacks employing polymeric decoupling layers were deposited prior to emplacement or deposition of an OLED. This damage consisted of black spots with surrounding areas which show a decrease in luminescence. Although not wishing to be bound by theory, we believe that the existence of damage under these conditions suggests that modifications originating from plasma interaction with the polymeric decoupling layer generate reactive species and these migrate through adjacent layers to reach the device and adversely interact with it.


We have discovered that design deficiencies in the polymer layer can lead to failures of the barrier structure that are independent of a permeating species, e.g., plasma damage and shrinkage induced stress. In addition, adverse interaction of polymeric layers with one or more permeating species can result in barrier failures and subsequent early device degradation/failure in advance of what would otherwise be observed if only defects and lag times were involved.


A number of properties of the polymer films have a significant effect on the performance of the barrier stack as a whole. These properties include polymer film morphology, polymer composition, plasma damage, and mechanical stress induced by polymerization. Some of these properties can be affected by changes to the monomer composition as well as by processing parameters.


Polymer morphology is a function of the monomer composition and the degree of cure of the polymer. The effect of polymer composition on barrier failure depends on monomer composition, layer thickness, and degree of curing. Plasma damage is a function of monomer blend composition, monomer structure, degree of cure, and monomer purity (e.g., residual alcohols, acrylic/methacrylic acid, cyclic ether byproducts, and other potential byproducts, etc.) The mechanical stress induced by polymerization depends on monomer composition, monomer molecular weight, polymer Tg, layer thickness, and degree of cure.


This understanding led to a set of design rules for the formulation of the polymer layer in the barrier stack.


The polymer layer should have low solubility of the undesirable permeating species within the layer. The most important permeating species for environmentally sensitive display devices is water. However, other species might also be important in some circumstances. A species which is soluble in a layer will seek to achieve an equilibrium solution/saturation of the layer, which means there is a driving force for the species to enter the layer. This can lead to a weakening and/or reorganization of the structure of the polymeric layer, causing adhesion failures and may, in severe cases, result in swelling (a dimensional change) that induces catastrophic interlayer separations or damage to the barrier layer.


The undesirable species (again, in most cases this will be water) should have low diffusivity through the polymer layer. The polarity or non-polarity of the permeating species, the size of the permeating species, the polarity or non-polarity of the polymeric layer and its conformation (3D dimensions), the packing density of the chains within the polymeric layer, H-bonding, etc. all come into play because a permeating species can interact with the medium it is permeating, and the interaction can impact the rate of permeation. Non-interaction through an open network will obviously result in the highest rates of diffusion. Thus, it is not sufficient for a polymeric layer just to be hydrophobic in order for it to be a good choice for a layer to be a moisture barrier. The polymer can be hydrophobic and non-interactive with a water molecule, but if it also has an open structure with widely spaced chains, the water can move through the layer and not be slowed by any interaction with sites on the polymer chains. The concentration of water vapor/water molecules will not be high, but the residence time will be short and so a large amount can move through the layer in relatively short periods of time.


The polymer layer should have resistance to damage when exposed to plasma. Actual experience with the phenomena involves exposure to plasma during reactive sputtering of aluminum oxide using conditions that produce a thin, dense layer that has barrier properties. However, plasma exposure damage to a polymer layer is assumed to be a more general phenomena and may include exposure to plasma used for surface treatments (adhesion promotion, etc.).


Finally, the polymer layer should demonstrate low mechanical stress transmitted by the polymeric layer to adjacent surfaces (i.e., low shrinkage). The significant issue is shrinkage/contraction during cure of a precursor blend, but casting from a solvent solution (polymer is in solution in a solvent which is evaporated leaving only a layer of the polymer) can also result in assorted stresses.


With respect to solubility and diffusivity, the formulations should be designed to have a reduced number of polar regions (e.g., ether linkages), thereby improving the resistance of the resulting film to water. Polymer films made from such formulations demonstrate a significant increase in structural stability (i.e., do not swell or significantly change their structural morphology) upon exposure to water. An example of these types of materials are those with saturated hydrocarbon backbones.


The formulations should also be selected to have a high packing density in the resulting film to reduce the migration of moisture though the polymer film. Packing density can be controlled by changing the structure of the monomers. For high packing density, materials without branching should be used, as well as materials with minimal branching such as the polybutadiene dimethacrylate. One example of low packing density monomers would be those with methyl branches on the backbone. Others include caged materials such as isobornyl acrylate/methacrylate, tricyclodecane dimethanol diacrylate and the norbornene based polymers.


Packing density can also be controlled by the number of cross linking site in the system. In some cases, more reactive sites will actually cause the polymer to hit the gel point faster, thereby preventing further reaction and movement of the reactive site, and this can leave “voids” in the resulting polymer. Changing the trifunctional component can have that effect because some are more flexible and will react further than others.


Packing density can also be controlled by changing the UV dose used for curing. Undercured polymer will swell more. These issues are discussed in more detail below.


With respect to plasma damage, the formulations should be designed to have a reduced number of regions that have weaker bond energies than a typical c-c covalent bond (e.g., ether linkages, ester bonds, C—S bonds), thereby improving the resistance of the resulting film to a plasma. Beyond reducing these moieties in the monomer backbone, it can also be advantageous to limit the number of esters moieties in the resulting polymer. One example of such a material is polybutadiene dimethacrylate.


In some instances, it is advantageous to minimize the N/(Nc−No) ratio (where N is the total number of atoms in the monomer unit, No represent the number of oxygen atoms on a monomer unit, and Nc is the number of carbon atoms). This ratio is termed the Ohnishi parameter in the literature. Ghoken et al., Dry Etch Resistance of Organic Materials, J. Electrochem. Soc.; SOLID-STATE SCIENCE AND TECHNOLOGY Vol. 130, No. 1 January 1983), which is incorporated herein by reference.


With respect to polymer shrinkage, the formulations should be designed to have reduced cure induced shrinkage stress. 1. Increased Mw and/or chain length in the mono, di and trifunctional components in the formulation. 2. Use reactive oligomers, polymers, or high Mw non-reactive polymers delivered in a solvent system. 3. Reduction of packing density in the polymer film by the addition of certain types of acrylate/methacrylate materials. Examples include: long chain length monofunctional acrylates/methacrylates, such as lauryl acrylate, and stearyl acrylate; cage or ring structure acrylates/methacrylates, such as isobornyl acrylate/methacrylate, tricyclodecane dimethanol diacrylate, tricyclodecane dimethanol diacrylate, and reactive hyper-branched materials (e.g., reactive hyper-branched acrylates). 4. Reducing the conversion of C═C to reduce shrinkage through the hindrance of reaction sites or curing the system to lesser degree than theoretically or practically possible. 5. Use of other chemistries that have reduced cure shrinkage. Examples include: thiol-ene type chemistries that undergo step growth as opposed to a chain growth mechanism; norbornene and norbornene-thiol type chemistries; and epoxy based chemistries.


Materials with a shrinkage greater than about 15% by volume should be avoided. Desirably, the materials should have a bulk shrinkage of less than about 15% by volume, less than about 10% by volume, or less than about 5% by volume for multilayer stacks where the polymer layers have thickness in the range of about 1,000 to about 10,000 Å.


The use of these design rules is device and application dependent. For example, on one type of device structure, shrinkage may not be an issue, but the materials/structure for the OLED may be very sensitive to the products generated from plasma damage to the poly layer. In that case, the emphasis would be placed on using materials with better plasma damage resistance and not focus as much on the shrinkage. In other cases, the device may not be as sensitive to water, but may be sensitive to shrinkage and plasma damage, and materials would be selected that address those issues.


Stacks can also be built using multiple types of formulations to address various device issues. For instance, the polymer layer close to the device may have very low shrinkage to protect the device structure but poor moisture resistance, while the rest of the polymer layers in the barrier stack have higher shrinkage but much better moisture resistance.


Examples illustrating these design rules follow. Although most, but not all, of the examples relate to acrylate and methacrylate chemistry deposited by vacuum evaporation, the design rules indicate that other types of polymer chemistries could be used. Examples of other polymer chemistries that could be used in vacuum evaporation processes include, but are not limited to: urethanes; cationic polymers; acrylate oligomers; thiol-ene systems (step growth polymerization mechanism); thiol-acrylate systems (step growth polymerization mechanism); and epoxide (ring opening) monomers/oligomers. U.S. Pat. No. 6,506,461 describes flash evaporation and polymerization of urethanes and various reactive groups which can be used as polymer precursors. U.S. Pat. No. 6,498,595 describes a cationic polymerization approach and various reactive groups which can be used as polymer precursors.


Alternative deposition techniques can be used to form the polymer layer, including, but not limited to, inkjet, screen printing, spin coating, blade coating, etc. Alternative deposition technologies allow chemistries to be used that may not be compatible with vacuum evaporation processes. Examples of these polymer chemistries include, but are not limited to: acrylate and methacrylate oligomer based systems; acrylate monomers with a large molecular weight mismatch, e.g., isobornyl acrylate and ethoxylated (3) trimethylolpropane triacrylate; acrylate oligomers such as polybutadiene diacrylate; thiol-ene systems (step growth polymerization mechanism); thiol-acrylate systems (step growth polymerization mechanism); polymers in solution with a solvent, such as isobornyl based polymers, polybutadiene, etc.; and epoxide (ring opening) monomers/oligomers.


One factor that should be considered in selecting the polymer is the polymer film morphology. This can be evaluated by aging samples and observing the film for morphology changes, discoloration, and/or spectral shift of transmitted light through a multilayer stack that includes the polymer layers, which are indicators of structural changes in the polymer layer. These changes can have several negative effects on the performance of the barrier stack. Structural changes can damage the integrity of thin barrier layers (e.g., barrier layers less than 100 nm). They can also cause a decrease in the adhesion between layers. In addition, they can alter the optical properties of the barrier stack (e.g., they can lead to a shift in the transmission maxima and minima). This would be particularly important for applications in which the light is emitted through the barrier layer, such as encapsulated top or bottom emitting devices on flexible substrates).


EXAMPLE 1

Polymer films were made using different blends of acrylate monomers. The formulations are shown in Table 1. Polymer layers made using tripropyleneglycol diacrylate have been described in, for example, “Plasma treatment of PET and acrylic coating surfaces-I. In-situ XPS measurements,” Shi, et al., J. Adhesion Sci. Technol., Vol. 14, No. 12, pp 1485-1498 (2000), which is incorporated herein by reference. Formulation 1, which incorporates tripropyleneglycol diacrylate, has been used as a basis for comparison for the other formulations.











TABLE 1









Component Wt %














Component
1
2
3
4
5
6
7

















Methoxy Tripropyleneglycol Acrylate
3.5








Lauryl Acrylate

17.4
23.2
22.2


Hexanediol Diacrylate (HDODA)


65.1
62.2


19.5


Tripropyleneglycol Diacrylate (TPGDA)
69.6


Dodecanediol Dimethacrylate

73.5


Propoxylated Hexanediol Diacrylate




93.0


Trimethylolpropane Triacrylate (TMPTA)

8.0
10.6


Triethoxy Trimethylolpropane Triacrylate



14.5


Esterdiol diacrylate





99


Polyfunctional Adhesion Promoter
19.8


Polybutadiene Dimethacrylate






79.4


Photoinitiator 1

1.1
1.1
1.1

1
1.1


Photoinitiator 2
7.1



7.0


Tg (by DMA, * literature value)
62° C.
107° C.
88° C.
75° C.
14° C.*

−75° C.*


Ohnishi parameter
4.7
3.6
4.1
4.2
4.5
4.6
2.6


Calculated Shrinkage (at 100% conversion)
16.0
13.8
19.7
20.4
12.4
16.4
0.5


Approximate Number of ether bonds (n/ml)
3.6 × 1021
0
0
5.5 × 1020
3.2 × 1021
0
0


Approximate Number of ester bonds (n/ml)
3.5 × 1021
3.8 × 1021
4.9 × 1021
4.7 × 1021
3.2 × 1021
5.2 × 1021
1.4 × 1021


Approximate Number of side chains (n/ml)
4.5 × 1021
0
0
0
0
6.9 × 1021
2.8 × 1021









The samples were aged for 100 hr at 60° C. and 90% RH. Pictures were taken at 200× magnification with differential interference contrast. FIG. 2A shows the formation of bumps in the polymer layer of formulation 1. Formulation 4 has very few bumps in the film, as shown in FIG. 2B.


After 400 hr at 60° C. and 90% RH, visual changes can also be seen between different formulations. Formulation 1 showed discoloration (FIG. 3A) and surface morphologies (FIG. 3B), while formulation 2 did not (FIGS. 3C and 3D).



FIG. 4A shows an image (50× magnification) of the surface of a stack made with formulation 1 after being aged for 100 hr at 60° C. and 90% RH, and FIG. 4B shows it after being aged for an additional 150 hr. FIG. 4C is a portion of FIG. 4B at a magnification of 200×, and it shows that the bumps are formed in different planes within the polymer layer. The formation of the bumps in deeper polymer layers produced by later diffusion of moisture may lead to the loss of adhesion between polymer and oxide layers and/or the introduction of defects in the oxide layers.


Spectral shift is a change in the interference spectra peak maxima position of more than 5 nm after aging more than 200 hr at 60° C. and 90% RH for transmitted light through the multilayer stack. The largest spectral shift, about 20 nm, occurred with formulation 6, as shown in FIG. 5A. Formulation 6 contains an esterdiol diacrylate (SR606A available from Sartomer Co. Inc., Exton Pa.). Formulation 3 showed no spectral shift, as shown in FIG. 5B.



FIGS. 5C and 5D show the spectral shift for formulations 1 and 2 after 400 hr aging. Formulation 1 shows a spectral shift of 15 nm, while formulation 2 shows no spectral shift.


Curing conditions can affect the morphology of the polymer. Polymer films were cured with different doses, described in the table and aged for more than 300 hr at 60° C. and 90% RH. The results are shown in Table 2.











TABLE 2





UV Dose
Formulation 1
Formulation 2







90-100% UV @ 30 cm/min
 3 nm
0 nm


60% UV @ 75 cm/min
15 nm
0 nm


30% UV @ 75 cm/min
15 nm
9 nm









The results demonstrate that the more complete the cure, the lower the spectral shift regardless of the formulation. In addition, differences exist between the formulations at all cure levels. Formulation 1 has a higher spectral shift at all cure levels than formulation 2 does. The main component in formulation 1 is tripropyleneglycol diacrylate which has two ether linkages in the backbone, making it a hydrophilic polymer, as well as two methyl groups. The hydrophilic polymer reacts with the moisture. In contrast, the main components in formulation 2 are aliphatic hydrocarbons (no ether linkages), making it a hydrophobic polymer, with no methyl groups. The hydrophobic polymer does not react with moisture.


Another factor which should be considered in selecting a polymer is the influence of the composition on different mechanisms by which the polymer can contribute to barrier failure. One way barrier failure can be detected is by the corrosion of metallic calcium coupons on glass encapsulated with multilayer barrier stacks. The formation of transparent calcium oxide and hydroxide by permeation of moisture through the barrier increases the transmission of visible light through the film.


EXAMPLE 2

The change in transmission of Ca coupons on glass substrates encapsulated with a multilayer barrier is a good vehicle to test the effectiveness of barrier structures. In the examples shown in FIG. 6A-C the multilayer structure was constituted by an oxide layer 100 nm thick and 6 polymer/oxide pairs [polymer (0.5 μm)/oxide (40 nm)]. Encapsulated Ca coupons were aged for 400 hr at 60° C. and 90% RH. FIG. 6A shows that formulation 4 (5.5×1020 n/ml of ether linkages) has no increased transmission, and thus, no barrier failure. FIG. 6B shows that formulation 1 (3.6×1021 n/ml of ether linkages) has increased transmission at the edges of the calcium area. In FIG. 6C, the entire calcium area is fading, indicating extreme barrier failure for formulation 5 (3.2×1021 n/ml of ether linkages). FIG. 6D shows a Ca coupon with a multilayer structure constituted by an oxide layer 100 nm thick and only 3 polymer/oxide pairs (polymer (0.7 μm)/oxide (40 nm)). The polymer layer was made with Formulation 7 in Table 1. The formulation is based on polybutadiene dimethacrylate (PBDM) and was deposited by spin-on coating. The sample was aged for 500 hr at 60° C. and 90% RH. FIG. 6D shows that formulation 7 (0 n/ml of ether linkages) has no increased transmission, and thus, no barrier failure.


Barrier failure leads to OLED display degradation. Large non-emitting areas appear on the displays. FIG. 7A shows a passive matrix display before aging. FIG. 7B shows a display with formulation 1 after 650 hr at 60° C. and 90% RH. FIG. 7C shows a display with formulation 2 after 650 hr at 60° C. and 90% RH. Formulation 2 shows much less degradation than formulation 1.


Another factor that should be considered in selecting a polymer is plasma damage to the polymer layer.


One way to evaluate plasma damage is to expose a barrier stack which has previously been exposed to plasma to UV/ozone. FIG. 8A shows severe bubbling after exposure to UV/ozone for 15 min for a barrier stack made with formulation 1 (3.6×1021 n/ml of ether linkages; 4.7—Ohnishi parameter), while there were only two bubbles for the barrier stack made with formulation 2 (0 n/ml of ether linkages; 3.6 Ohnishi parameter), as shown in FIG. 8B. FIGS. 8C and 8D show that for the barrier stack made with formulation 7 (0 n/ml of ether linkages; 2.6—Ohnishi parameter) based on PBDM, no bubbles appeared following UV/ozone exposure in the same conditions described above. In this case, the polymer layers were deposited by a spin-on process.


Plasma damage can also be assessed using OLED test pixels. Black spots, which are microscopic non-emitting areas, form by diffusion of reactive species produced by plasma damage.


EXAMPLE 3

Barrier stacks were formed on OLED test pixels using various polymer formulations. The samples were stored for 500 hr and tested in a dry box to avoid exposure to moisture. Differences were visually observed within 24 hr.



FIG. 9A shows formulation 1 (3.6×1021 n/ml of ether linkages; 4.7—Ohnishi parameter) after coating, and FIG. 9B shows the appearance of black spots after storage. FIG. 9C shows formulation 4 (5.×1020 of ether linkages; 4.2—Ohnishi parameter) after coating, while FIG. 9D shows that no black spots appeared after storage.


Polymeric decoupling layers can be formed from blends of one or more reactive precursors. These will have one or more reactive groups per unit (molecule) that undergo a linking/cross-linking reaction. The reactive groups born by all members of the blend may be the same (e.g., acrylic, methacrylic and vinyl), which self react and/or undergo addition reactions to form chains (e.g. polymethylmethacrylate or polyvinyl acetate). A distinction of this approach is that monofunctional precursors (those bearing one reactive group) will form an extended chain via addition, but crosslinking between chains and branching will be minor to absent. The reactive groups can also be different (isocyanate mixed with hydroxy, isocyanate mixed with amino, or epoxy mixed with amino), which co-react to form cross-links between the precursors. A distinction here is that formation of polymers requires that each species of reactant bear at least two functional groups; monofunctional versions of either will act as blocks/chain terminators.


A consideration in selecting the precursor blend is the structure of the precursor excluding the functional group or groups. One or more precursors is preferably a hydrocarbon that is typically linear or cyclic. These may be further characterized as saturated, e.g., functionalized linear dodecanes or tricyclodecanes. By saturated, we mean that the hydrocarbon does not include any double or triple bonds. Alternatively, they may be unsaturated, with one or more double (or triple) bonds, e.g., functionalized polybutadienes, or they may be based on aromatics, e.g., functionalized diphenylmethanes. Further, the hydrocarbon is characterized by a limited presence of side chains and pendent, activated methyl groups. Finally, when crosslinking is based on additional reactions of monofunctional precursors, consideration has to be given to the structure of the hydrocarbon because these will become pendent moieties spaced along a chain that can, if excessively large, result in open (chains are widely spaced) polymeric layers.


Another consideration in selecting the precursor blend is to avoid structures based on, or that include, polyethers (carbon-oxygen-carbon linkages, e.g., polyethylene glycol and polypropylene glycol) essentially as the structure bearing the reactive group, or as a portion of a larger structure that may include a hydrocarbon. The latter versions are commonly referred to as ethoxylated or propoxylated versions of the parent hydrocarbon. In “Plasma treatment of PET and acrylic coating surfaces-I. In-situ XPS measurements,” Shi, et al., J. Adhesion Sci. Technol., Vol. 14, No. 12, pp 1485-1498 (2000), which is incorporated herein by reference, the structural and compositional modifications induced by nitrogen and argon plasma exposure on PET (aromatic structure) and an acrylic polymer are discussed in the context of treatments to improve adhesion. The comparison between a polymer with aromatic structure (PET) and tripropyleneglycol diacrylate, the main component of Formulation 1, is done showing how structural changes are much stronger for the latter polymer and are strongly correlated with the destruction upon irradiation of ether and ester groups. The higher rate of destruction of ether groups compared to ester groups is also discussed. By comparing the destruction of ester groups in PET and the acrylic polymer, faster in the latter, it is also speculated how ether groups accelerate the damage. Although this and similar experimental data have been widely available in literature, to our knowledge no one has correlated them to possible damage in the encapsulated OLED devices by the decomposition of the formed radical by-products (e.g., CO and CO2) trapped in the barrier structure.


Still another factor that should be considered in selecting a polymer is the mechanical stress induced by polymerization. With certain types of OLED devices, the shrinkage that occurs during the cure of the monomer through the formation of covalent bonds can lead to mechanical and/or structural damage. This has been demonstrated in a photoluminescence study of passive matrix OLED devices.


The light emitting polymers emit light when stimulated by light (photoluminescence (PL)) or electricity (electroluminescence (EL)). A structure emitting light by EL is the basic foundation of OLED devices. Comparing the PL and EL images of a given OLED device shows which areas of the polymer have been degraded and have lost the characteristics that allow them to emit light vs. those that have lost electrical contact.



FIGS. 10A-10C show the EL, PL and EL+PL images of a device encapsulated with a high shrinkage process and material (formulation 1). A sketch of a passive matrix (PM) device is shown in FIG. 15A-C. A glass substrate 205 is covered with a layer of indium tin oxide (ITO) 210. The ITO layer 210 is removed from portions of the device. There is a polymer light-emitting diode/polyethylenedioxythiophene (PLED/PDOT) layer 215 over the ITO layer 210. The aluminum cathode layer 220 is over the PLED/PDOT layer 215. There are cathode separators 225 which separate the aluminum cathode layer 220.


The sample was not exposed to moisture after encapsulation or before testing (there was exposure to moisture during shipping before coating). The so called “black spots” (localized areas where the contact was deteriorated by chemical reaction with a reactive species (mostly water, oxygen, or other species containing oxygen (e.g., CO2)) were present before coating and originate from moisture exposure during shipping. The EL luminescence image 10A shows that only a thin central area of the almost square pixels emits light when stimulated by current. The thin strip is decorated by the black spots created during shipping. FIG. 10B shows the PL image of the same area. In this picture, the full area of the pixels emits light. All over the pixel area brighter spots corresponding to the chemically deteriorated contact areas forming “black spots” are evident. FIG. 10C is an image taken with the two simultaneous stimulations (current and light) and allows an easier comparison of the different features.



FIG. 10D shows the PL image of the uniform degradation of a metal canned device at end of life time (EOL). This degradation is due to the loss of efficiency of the light emitting polymer.



FIGS. 10E-10H show an unencapsulated device. The device was purposely exposed to the ambient atmosphere to produce chemical damage and was measured over a short time scale (FIG. 10E at t=0, FIG. 10F at t=5 min., and FIGS. 10G and 10H at t=10 min.). Looking at the widening with time of the brighter longitudinal bands at the edge of the Al cathode, it is possible to see the effect of a chemical deterioration of the contact area produced by the leaking atmosphere, in analogy to what is seen with the black spots on FIG. 10A-C. Comparing FIGS. 10B and 10F, it is also evident that the deterioration in the pixels coated with Formulation 1 is not of a pure chemical nature. Evidence of mechanical damage to the cathode was collected by microscope observations of the devices like the one shown as an example in FIGS. 16A and B. A line indicating bending/fracture of the cathode is visible defining the edge between light emitting and dark areas in the EL image of the pixels. Although other causes cannot be excluded, we think that this shows that the shrinkage of the polymer (which is significantly thicker near the cathode separators) is mechanically reducing the contact between the cathode and the OLED device thereby limiting the current that can flow in that area.


The polymer shrinkage and, as a consequence, the stress induced on the cathode of the OLED device, depend on cure conditions and polymer layer thickness, and they correlate with the bulk material properties of the formulation. This is shown in FIG. 13, where the area of the illuminated pixels for identical PM OLED devices is reported. The displays were encapsulated with the same multilayer structure (100 nm oxide/6 polymer/oxide pairs (0.5 μm polymer/40 nm oxide), and using the same UV conditions (30% UV setting (30 mW/cm2, 30 cm/min track speed) (Fusion Systems 10 inch irradiator with an H-type bulb)) for curing the polymer layers. One set of displays was coated with Formulation 2, and another set was coated with a variation of Formulation 2 in which the trimethylolpropane triacrylate (TMPTA) was substituted with the same amount of the more reactive triethoxy trimethylolpropane triacrylate. The area of the illuminated pixel was reduced 15% immediately after encapsulation and prior to any aging testing (see data points at the equivalent dose of 1.0 mW/cm2 track speed in FIG. 13 with respect to the value measured before coating).


The stress induced by the polymer shrinkage may be controlled by choosing appropriate curing conditions in order to reduce the conversion of the monomer units and therefore reduce shrinkage. This is shown in FIG. 13 for displays coated with Formulation 2. The normalized illuminated area of the pixels measured immediately after coating is close to 1 for curing condition 30% UV setting (30 mW/cm2, 30 cm/min track speed), about 0.85 when cured at 60% UV setting (100 mW/cm2, 75 cm/min track speed) and 0.8 when cured at 90% UV setting (200 mW/cm2, 75 cm/min track speed). For all displays, the multilayer structure was 100 nm oxide/6 polymer/oxide pairs (0.5 μm polymer/40 nm oxide). If stress is controlled by reducing cure, consideration should be given to the adverse effect of increasing moisture permeation. In the cases presented in FIG. 13, even at the lower UV dose, the conversion was enough to maintain barrier performance compatible with the testing protocol commonly required for telecommunication displays (500 hr at 60° C. and 90% RH).


The stress induced by the monomer polymerization depends also on the thickness of the polymer layers used in the structure. This is shown in FIG. 14 where the shrinkage after aging 250 hr at 85° C. is shown as a function of the thickness of polymer used in the multilayer structure. For a display encapsulated with Formulation 2 (bulk shrinkage of 13.8) and polymer layers with thickness less than 1 μm, the illuminated area left is about 70% of the initial value. It decreases to 40% when the polymer thickness increases to 2.2 μm per layer (only 4 polymer layers in the multilayer structure were used in this case). For comparison, the area left for displays coated with Formulation 1 (bulk shrinkage of 16.0) (all other variables remaining constant) is also shown. In this case, the illuminated area is only 35% for polymer layers 0.5 μm thick.


The stress induced by the polymer layers used in multilayer encapsulation to the OLED devices should not increase due to later process steps involving higher temperature or during aging upon accelerated testing conditions or operation. High temperature is defined in this context as 80° C.<T<100° C., conditions compatible with the materials used in the fabrication of OLED devices. For example, stress may build up at higher temperature if the Tg of the formulation used in multilayer encapsulation is lower than 85° C., a typical temperature used for accelerated lifetime testing. At temperatures higher or close to the Tg, further conversion reaction may occur due to increased chain mobility for formulations which are not completely cured. As a consequence, the induced stress increases, and therefore the illuminated area may decrease.



FIGS. 11A and 11B show formulation 1 after coating. The non-uniform light distribution is visible. FIG. 11B shows substantial shrinkage after aging 100 hr at 85° C. in nitrogen. FIGS. 11C and 11D show formulation 2 after coating. FIG. 11D shows that formulation 2 has significantly reduced shrinkage after aging 100 hr at 85° C. compared to formulation 1. Because the samples were aged in nitrogen, the shrinkage is not due to moisture. The large difference in shrinkage is due to continued reaction of the polymer. When formulation 1 is aged at 85° C., it is closer to the Tg (62° C.) of the polymer. The polymer continues to crosslink, and as a result shrinks more. With formulation 2 (Tg of 107° C.), some reaction occurs, but it is about one half as much as with formulation 1.


The polymer layer can be deposited using a variety of approaches including vacuum processes and atmospheric processes. Vacuum based approaches offer an advantage in that the processes are run in an environment essentially free of moisture, oxygen and other environmental contaminants, and are conveniently combined with vacuum based approaches for OLED deposition used for similar reasons. Atmospheric processes involve deposition at atmospheric pressures, but they can employ non-reactive, anhydrous gas (or mixed gases), rather than an ambient atmosphere.


Vacuum based approaches are disclosed by U.S. Pat. Nos. 4,842,893, 4,954,371, and 5,032,461, and they are particularly suited for the application of acrylate functional precursor blends. This approach utilizes a precursor deposition station (to supply the acrylate blend) combined with a curing station downstream to cure the deposited blend, and a central process drum that enables thermal control (chilling) of the substrate upon which the deposited blend condenses. The deposition station and curing unit are placed adjacent to a station configured to deposit an inorganic layer, such as a metal, an oxide, a nitride, or any of a wide range of other inorganic compounds. The inorganic layer can be deposited using thermal evaporation, sputtering, or another suitable process. The process allows for deposition and cure of the acrylate blend prior to deposition of an overlying inorganic layer, or deposition of an inorganic layer followed by deposition and cure of an acrylate layer. Multiple precursor deposition and curing station pairs and inorganic deposition stations can be used to enable single pass, multilayer stacks. As taught, the approach is well suited for depositing acrylate functional blends onto web substrates (substrates supplied in roll form) in a vacuum environment. While the approach has developed in detail for acrylate functional precursor blends cured by UV or EB exposure, it is applicable to other chemistries. U.S. Pat. No. 6,498,595 describes a cationic polymerization approach and uses reactive groups in addition to acrylates as precursors.


There are approaches using a similar configuration and central process drum that do not require a curing station immediately downstream from the precursor deposition station. One group of approaches is based on plasma polymerization of the precursor blend, a process that exposes a precursor blend to a plasma simultaneously with deposition, the exposure rendering the blend highly reactive and therefore polymerizing as it deposits. U.S. Pat. Nos. 5,902,641 and 6,224,948 teach plasma polymerization of flash evaporated precursor blends. U.S. Pat. No. 4,301,765 discloses an apparatus configured for plasma polymerization that does not rely on flash evaporation of the precursor blend, and further provides for a masking means to enable control of where deposition occurs. All three result in deposition and cure of the precursor blend, which can be important for enabling subsequent deposition (inline deposition) of an overlying inorganic layer, for contact with a transport roll, or for protecting an underlying layer or layers when the layer in question (after polymerization) will be the final, topmost layer of a multilayer stack applied to a web substrate. Another approach is disclosed by U.S. Pat. No. 6,506,461 which teaches flash evaporation and polymerization of precursors blends containing isocyanate (multiple —NCO) and polyol functional (multiple —OH groups) groups to form urethanes, and further, combinations of isocyanate and acrylate functional groups to enable dual curing approaches.


Vacuum deposition onto substrates in the form of discrete sheets, particularly if these sheets are also rigid requires alternative approaches. U.S. application Ser. No. 10/412,133, entitled Apparatus for Depositing a Multilayer Coating on Discrete Sheets, filed Apr. 11, 2003, (VIT-0018 PA) and Ser. No. 11/112,880, entitled Apparatus for Depositing a Multilayer Coating on Discrete Sheets, filed Apr. 22, 2005, (VIT-0018 IA) disclose vacuum based approaches using linear and hybrid apparatus combining cluster and linear elements. An important feature of these processes is the replacement of a central process drum with a conveying means and/or robotic arms to transport and position sheet substrates. The absence of the central process drum and the process temperature control (thermal management) it enables becomes an important consideration.


Coating discrete sheets imposes conditions which do not exist for coating continuous webs. First, coating discrete sheets is a start/stop process requiring multiple starts and stops of the precursor feed to the coating chamber. It also requires conveying apparatus and often masking apparatus to limit the coating deposition to the areas in which a coating application is desired. As a result, the substrate to be coated cannot conveniently be placed in contact with a heat sink, or other thermal regulation equipment, as can be done with web coating by placing the web in contact with a temperature controlled process drum. Thus, condensation on discrete sheet substrates takes place at higher temperatures than on continuous webs, and continuing deposition of subsequent coatings results in a general rise in the substrate temperatures.


Coating discrete sheets rather than continuous webs resulted in the recognition of the importance of deposition efficiency. Deposition efficiency is a characterization of the rate of condensation of a blend of precursors (monomers) on a substrate under a given set of conditions, and how the condensation rate will vary in response to changes in conditions. Deposition efficiency is determined by the following formula:







Deposition











Efficiency

=


Polymer













thickness


(
μm
)



track













speed


(

cm
/
min

)




Monomer












flow


(

ml
/
min

)








The thickness of the polymer layer was measured (an n&k Analyzer 1512RT reflectometer available from n&k Technology, Inc. of Santa Clara Calif. was used, and the measurement was in angstroms). For each sample used in generating the efficiency curve as a function of temperature, the speed of the discrete sheet through the processing chamber and the monomer flow rate were measured, and the deposition efficiency was calculated at the measured substrate temperature.


The substrates were pre-heated by passing them over the UV curing source prior to monomer deposition. The substrate temperature was measured by a thermocouple attached to the deposition surface on the glass plate used as a substrate. The substrate temperature during deposition is taken to be the temperature at the bottom of the step in the profile as the thermocouple passed over the monomer slit.


The deposited polymer thickness varies most strongly with substrate temperature and monomer flux at the substrate surface. Increasing the substrate temperature decreases the deposited thickness. This is believed to be due the reduced sticking coefficient and the increased re-evaporation rate. Increasing the monomer flow to the evaporator increases the vapor pressure of the monomer at the surface which increases the flux impinging on the substrate.


Deposition efficiency was evaluated as a function of temperature for formulation 2 in Table 3 (deposited using three tools of similar, but not identical design), as shown in FIG. 12. The deposition efficiency was found to increase with a decrease in substrate temperature. Thus, one way to improve the deposition efficiency is to decrease the substrate temperature.


Deposition efficiency is important for processes involving condensation of a vapor, such as a vacuum flash evaporation process, onto discrete sheets. It becomes another consideration in selecting the precursor blend when the polymer layer is deposited using processes in which a vapor is condensed on discrete sheets.


The deposition efficiency of a precursor blend is in part dependent on the average molecular weight of the blend. The precursor blend should generally have an average molecular weight of at least about 275, or at least about 300, or about 275 to about 350, or about 275 to about 325. (As used herein, average molecular weight refers to weight average molecular weight.) Although blends can be used which have lower average molecular weights, polymeric decoupling layers made from such blends may have one or more undesirable characteristics.


The precursor blend can have a deposition efficiency of at least about 250, or at least about 275, or at least about 300, or at least about 325, or at least about 350, or at least about 375, or at least about 400. Deposition efficiency is a function of the molecular weights of the components of the blend, and to a lesser extent, structural considerations that impact volatility. Selecting a precursor blend having a deposition efficiency of at least about 250 provides a polymeric decoupling layer having the stoichiometry of the starting precursor blend, and the precursor blend will condense to form liquid coatings via process conditions obtainable using available encapsulating apparatus.


It is possible to run at lower deposition efficiencies and obtain functional polymeric decoupling layers. However, the polymeric decoupling layers may have one or more undesirable characteristics. However, if other properties of the polymeric decoupling layer are particularly desirable, a decision can be made to use such blends. The compromise will be adjustment of the overall process parameters, such as speed, dwell time in coating stations, and cleaning requirements, to accommodate the less efficient blend.


By the appropriate selection of precursor blends, encapsulated environmentally sensitive devices having the necessary properties can be obtained.


EXAMPLE 4

Polymeric decoupling layers were made according to the formulations shown in Table 3. The deposition efficiency of the precursor blends was measured, and the average molecular weight was calculated.











TABLE 3









Component Wt %













Component
MW
1
2
3
4
5
















Methoxy Tripropyleneglycol Acrylate
260

3.5
3.4




Lauryl Acrylate
240
17.4


22.2


Hexanediol Diacrylate (HDODA)
226



62.2


Tripropyleneglycol Diacrylate (TPGDA)
300

69.6


Dodecanediol Dimethacrylate
338
73.5


Tricyclodecanedimethanol Diacrylate
304


70.5


Trimethylolpropane Triacrylate (TMPTA)
294
8.0


Triethoxy Trimethylolpropane Triacrylate
428



14.5
93.0


Polyfunctional Adhesion Promoter
  336 (avg)

19.8
19.0


Photoinitiator 1
208
1.1


1.1


Photoinitiator 2
217

7.1
7.1

7.0


Example Molecular Weight (avg)

316
300
302
258
413


Deposition Efficiency

370
209
232
128









Formulation 1, which had an average molecular weight of 316 and a deposition efficiency of 370, showed low shrinkage and resistance to plasma damage. TMPTA is a desirable trifunctional acrylate based on its hydrocarbon backbone, but it is a small molecule known for shrinkage during cure. Therefore, it should be used at a low level.


Formulation 2, which had an average molecular weight of 300 and a deposition efficiency of 209, which can be used satisfactorily in thin film applications, showed undesirable shrinkage and plasma damage when used for encapsulation (at least with some types of OLEDs). This shows the desirability of avoiding polar backbone precursors and having higher Mw.


Formulation 3 shows the use of a polycyclic hydrocarbon backbone diacrylate in place of TPGDA, compounds which have similar molecular weights. The precursor blend had a similar deposition efficiency (232 v. 209). This formulation shows that cyclic or polycyclic hydrocarbon backbone precursors can be used in place of polar backbone precursors to provide blends with similar deposition efficiencies when the resultant average molecular weights are similar.


Formulation 4 is based on HDODA, a lower molecular weight hydrocarbon backbone diacrylate. The polymeric decoupling layer is resistant to plasma damage, but it has poor deposition efficiency corresponding to its lower average molecular weight. It also resulted in poor barrier performance. Triethoxy trimethylolpropane triacrylate was used to reduce shrinkage, but its use also results in the introduction of polar ethylene oxide units that increase water vapor permeability. This shows the desirability of avoiding polar backbone precursors.


Formulation 5 is based on triethoxy trimethylolpropane triacrylate, and has a deposition efficiency of 338 and an average molecular weight of 413. It is included to provide insight into the relationship between deposition efficiency and precursor blends with higher molecular weights. It is essentially a single monomer combined with a photoinitiator, so it is not an ideal comparison with the other formulations because it does not directly address the situation in which the high average molecular weight results from a blend of predominantly lower molecular weight precursors with a much higher molecular weight precursor. However, any differences are not believed to be significant.


One example of a suitable polymer precursor blend for encapsulation, which provides low shrinkage and adequate resistance to plasma damage, includes about 60 to about 90 wt % of a dimethacrylate, such as dodecanediol dimethacrylate, typically about 65 to about 75 wt %. It can include 0 to about 20 wt % of a monoacrylate, such as lauryl acrylate, typically about 10 to about 20 wt %. It can include 0 to about 20 wt % of a triacrylate, such as trimethylolpropane triacrylate, typically about 5 to about 15 wt %. It can also include about 1 to about 10 wt % of a photoinitiator, typically about 1 to about 3 wt %. Suitable photoinitiators are known to those in the art, and include, but are not limited to, diethoxyacetophenone (DEAP) or Esacure TZT (Trimethylbenzophenone based photoinitiator), available from Sartomer.


While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claims
  • 1. A method of encapsulating an environmentally sensitive device comprising: providing a substrate;placing at least one environmentally sensitive device adjacent to the substrate; anddepositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from a polymer precursor blend comprising:about 60 to about 90 wt % of a dimethacrylate;0 to about 20 wt % of a monoacrylate;0 to about 20 wt % of a triacrylate; andabout 1 to about 10% of a photoinitiator.
  • 2. The method of claim 1 wherein the polymeric decoupling layer has no more than about 8×1020 n/ml of ether linkages.
  • 3. The method of claim 1 wherein the polymer precursor blend has an average molecular weight of at least about 275.
  • 4. The method of claim 1 wherein at least one polymer precursor has a functionalized hydrocarbon backbone.
  • 5. The method of claim 4 wherein the backbone is saturated.
  • 6. The method of claim 4 wherein the backbone is unsaturated.
  • 7. The method of claim 1 wherein the polymeric decoupling layer has no more than about 4.0×1021 n/ml side chains.
  • 8. The method of claim 1 wherein at least one polymer precursor has a functionalized hydrocarbon backbone, and wherein the polymeric decoupling layer has no more than about 8×1020 n/ml of ether linkages.
  • 9. The method of claim 8 wherein the hydrocarbon backbone is saturated.
  • 10. The method of claim 8 wherein the hydrocarbon backbone is unsaturated.
  • 11. The method of claim 8 wherein the polymeric decoupling layer has no more than about 4.0×1021 n/ml side chains.
  • 12. The method of claim 8 wherein the polymer precursor blend has an average molecular weight of at least about 275.
  • 13. The method of claim 1 wherein the dimethacrylate is present in an amount of about 65 to about 75 wt %.
  • 14. The method of claim 1 wherein the monoacrylate is present in an amount of about 10 to about 20 wt %.
  • 15. The method of claim 1 wherein the triacrylate is present in an amount of about 5 to about 15 wt %.
  • 16. The method of claim 1 wherein the photoinitiator is present in an amount of about 1 to about 3 wt %.
  • 17. The method of claim 1 wherein the at least one polymer precursor comprises: about 65 to about 75 wt % dodecane dimethacrylate;about 10 to about 20 wt % lauryl acrylate;about 5 to about 15 wt % trimethylolpropane triacrylate;about 1 to about 3 wt % of a photoinitiator.
  • 18. A method of encapsulating an environmentally sensitive device comprising: providing a substrate;placing at least one environmentally sensitive device adjacent to the substrate; anddepositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from a polymer precursor blend comprising:about 60 to about 90 wt % of a dimethacrylate;0 to about 20 wt % of a monoacrylate;0 to about 20 wt % of a triacrylate; andabout 1 to about 10% of a photoinitiator;
Parent Case Info

This application claims the benefit of U.S. Provisional Application Ser. No. 60/711,136, filed Aug. 25, 2005, entitled “Encapsulated Devices and Method of Making.”

US Referenced Citations (330)
Number Name Date Kind
2382432 McManus et al. Aug 1945 A
2384500 Stoll Sep 1945 A
3475307 Knox et al. Oct 1969 A
3496427 Lee Feb 1970 A
3607365 Lindlof Sep 1971 A
3661117 Cornelius et al. May 1972 A
3941630 Larrabee Mar 1976 A
4061835 Poppe et al. Dec 1977 A
4098965 Kinsman Jul 1978 A
4266223 Frame May 1981 A
4283482 Hattori et al. Aug 1981 A
4313254 Feldman et al. Feb 1982 A
4426275 Meckel et al. Jan 1984 A
4521458 Nelson Jun 1985 A
4537814 Itoh et al. Aug 1985 A
4555274 Kitajima et al. Nov 1985 A
4557978 Mason Dec 1985 A
4572845 Dietrich et al. Jan 1986 A
4581337 Frey et al. Apr 1986 A
4624867 Iijima et al. Nov 1986 A
4695618 Mowrer Sep 1987 A
4710426 Stephens Dec 1987 A
4722515 Ham Feb 1988 A
4768666 Kessler Sep 1988 A
4842893 Yializis et al. Jun 1989 A
4843036 Schmidt et al. Jun 1989 A
4855186 Grolig et al. Aug 1989 A
4889609 Cannella Dec 1989 A
4913090 Harada et al. Apr 1990 A
4931158 Bunshah et al. Jun 1990 A
4934315 Linnebach et al. Jun 1990 A
4954371 Yializis Sep 1990 A
4977013 Ritchie et al. Dec 1990 A
5032461 Shaw et al. Jul 1991 A
5036249 Pike-Biegunski et al. Jul 1991 A
5047131 Wofe et al. Sep 1991 A
5059861 Littman et al. Oct 1991 A
5124204 Yamashita et al. Jun 1992 A
5189405 Yamashita et al. Feb 1993 A
5203898 Carpenter et al. Apr 1993 A
5204314 Kirlin et al. Apr 1993 A
5237439 Misono et al. Aug 1993 A
5260095 Affinito Nov 1993 A
5336324 Stall et al. Aug 1994 A
5344501 Hashimoto et al. Sep 1994 A
5354497 Fukuchi et al. Oct 1994 A
5356947 Ali et al. Oct 1994 A
5357063 House et al. Oct 1994 A
5376467 Abe et al. Dec 1994 A
5393607 Kawasaki et al. Feb 1995 A
5395644 Affinito Mar 1995 A
5402314 Amago et al. Mar 1995 A
5427638 Goetz et al. Jun 1995 A
5440446 Shaw et al. Aug 1995 A
5451449 Shetty et al. Sep 1995 A
5461545 Leroy et al. Oct 1995 A
5464667 Kohler et al. Nov 1995 A
5510173 Pass et al. Apr 1996 A
5512320 Turner et al. Apr 1996 A
5536323 Kirlin et al. Jul 1996 A
5547508 Affinito Aug 1996 A
5554220 Forrest et al. Sep 1996 A
5576101 Saitoh et al. Nov 1996 A
5578141 Mori et al. Nov 1996 A
5607789 Treger et al. Mar 1997 A
5620524 Fan et al. Apr 1997 A
5629389 Roitman et al. May 1997 A
5652192 Matson et al. Jul 1997 A
5654084 Egert Aug 1997 A
5660961 Yu Aug 1997 A
5665280 Tropsha Sep 1997 A
5681615 Affinito et al. Oct 1997 A
5681666 Treger et al. Oct 1997 A
5684084 Lewin et al. Nov 1997 A
5686360 Harvey, III et al. Nov 1997 A
5693956 Shi et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5711816 Kirlin et al. Jan 1998 A
5725909 Shaw et al. Mar 1998 A
5731661 So et al. Mar 1998 A
5736207 Walther et al. Apr 1998 A
5747182 Friend et al. May 1998 A
5757126 Harvey, III et al. May 1998 A
5759329 Krause et al. Jun 1998 A
5771177 Tada et al. Jun 1998 A
5771562 Harvey, III et al. Jun 1998 A
5782355 Katagiri et al. Jul 1998 A
5792550 Phillips et al. Aug 1998 A
5795399 Hasegawa et al. Aug 1998 A
5811177 Shi et al. Sep 1998 A
5811183 Shaw et al. Sep 1998 A
5821138 Yamazaki et al. Oct 1998 A
5821692 Rogers et al. Oct 1998 A
5844363 Gu et al. Dec 1998 A
5861658 Cronin et al. Jan 1999 A
5869791 Young Feb 1999 A
5872355 Hueschen Feb 1999 A
5891554 Hosokawa et al. Apr 1999 A
5895228 Biebuyck et al. Apr 1999 A
5902641 Affinito et al. May 1999 A
5902688 Antoniadis et al. May 1999 A
5904958 Dick et al. May 1999 A
5912069 Yializis et al. Jun 1999 A
5919328 Tropsha et al. Jul 1999 A
5920080 Jones Jul 1999 A
5922161 Wu et al. Jul 1999 A
5929562 Pichler Jul 1999 A
5934856 Asakawa et al. Aug 1999 A
5945174 Shaw et al. Aug 1999 A
5948552 Antoniadis et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955161 Tropsha Sep 1999 A
5965907 Huang et al. Oct 1999 A
5968620 Harvey et al. Oct 1999 A
5994174 Carey et al. Nov 1999 A
5996498 Lewis Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6013337 Knors Jan 2000 A
6040017 Mikhael et al. Mar 2000 A
6045864 Lyons et al. Apr 2000 A
6066826 Yializis May 2000 A
6083313 Venkatraman et al. Jul 2000 A
6083628 Yializis Jul 2000 A
6084702 Byker et al. Jul 2000 A
6087007 Fuji et al. Jul 2000 A
6092269 Yializis et al. Jul 2000 A
6106627 Yializis et al. Aug 2000 A
6117266 Horzel et al. Sep 2000 A
6118218 Yializis et al. Sep 2000 A
6137221 Roitman et al. Oct 2000 A
6146225 Sheates et al. Nov 2000 A
6146462 Yializis et al. Nov 2000 A
6150187 Zyung et al. Nov 2000 A
6165566 Tropsha Dec 2000 A
6178082 Farooq et al. Jan 2001 B1
6195142 Gyotoku et al. Feb 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6198220 Jones et al. Mar 2001 B1
6203898 Kohler et al. Mar 2001 B1
6207238 Affinito Mar 2001 B1
6207239 Affinito Mar 2001 B1
6214422 Yializis Apr 2001 B1
6217947 Affinito Apr 2001 B1
6224948 Affinito May 2001 B1
6228434 Affinito May 2001 B1
6228436 Affinito May 2001 B1
6231939 Shaw et al. May 2001 B1
6264747 Shaw et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6274204 Affinito Aug 2001 B1
6322860 Stein et al. Nov 2001 B1
6333065 Arai et al. Dec 2001 B1
6348237 Kohler et al. Feb 2002 B2
6350034 Fleming et al. Feb 2002 B1
6352777 Bulovic et al. Mar 2002 B1
6358570 Affinito Mar 2002 B1
6361885 Chou Mar 2002 B1
6387732 Akram May 2002 B1
6397776 Yang et al. Jun 2002 B1
6413645 Graff et al. Jul 2002 B1
6416872 Maschwitz Jul 2002 B1
6420003 Shaw et al. Jul 2002 B2
6436544 Veyrat et al. Aug 2002 B1
6460369 Hosokawa Oct 2002 B2
6465953 Duggal Oct 2002 B1
6468595 Mikhael et al. Oct 2002 B1
6469437 Parthasarathy et al. Oct 2002 B1
6492026 Graff et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6497924 Affinito et al. Dec 2002 B2
6509065 Affinito Jan 2003 B2
6512561 Terashita et al. Jan 2003 B1
6522067 Graff et al. Feb 2003 B1
6537688 Silvernail et al. Mar 2003 B2
6544600 Affinito et al. Apr 2003 B2
6548912 Graff et al. Apr 2003 B1
6569515 Hebrink et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6573652 Graff et al. Jun 2003 B1
6576351 Silvernail Jun 2003 B2
6592969 Burroughes et al. Jul 2003 B1
6597111 Silvernail et al. Jul 2003 B2
6613395 Affinito et al. Sep 2003 B2
6614057 Silvernail et al. Sep 2003 B2
6624568 Silvernail Sep 2003 B2
6627267 Affinito Sep 2003 B2
6628071 Su Sep 2003 B1
6653780 Sugimoto et al. Nov 2003 B2
6656537 Affinito et al. Dec 2003 B2
6660409 Komatsu et al. Dec 2003 B1
6664137 Weaver Dec 2003 B2
6681716 Schaepkens Jan 2004 B2
6720203 Carcia et al. Apr 2004 B2
6734625 Vong et al. May 2004 B2
6737753 Kumar et al. May 2004 B2
6743524 Schaepkens Jun 2004 B2
6749940 Terasaki et al. Jun 2004 B1
6765351 Forrest et al. Jul 2004 B2
6803245 Auch et al. Oct 2004 B2
6811829 Affinito et al. Nov 2004 B2
6815887 Lee et al. Nov 2004 B2
6818291 Funkenbusch et al. Nov 2004 B2
6827788 Takahashi Dec 2004 B2
6835950 Brown et al. Dec 2004 B2
6836070 Chung et al. Dec 2004 B2
6837950 Berard Jan 2005 B1
6852356 Nishikawa Feb 2005 B2
6864629 Miyaguchi et al. Mar 2005 B2
6866901 Burrows et al. Mar 2005 B2
6867539 McCormick et al. Mar 2005 B1
6872114 Chung et al. Mar 2005 B2
6872248 Mizutani et al. Mar 2005 B2
6872428 Yang et al. Mar 2005 B2
6878467 Chung et al. Apr 2005 B2
6888305 Weaver May 2005 B2
6888307 Silvernail et al. May 2005 B2
6891330 Duggal et al. May 2005 B2
6897474 Brown et al. May 2005 B2
6897607 Sugimoto et al. May 2005 B2
6905769 Komada Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6923702 Graff et al. Aug 2005 B2
6936131 McCormick et al. Aug 2005 B2
6975067 McCormick et al. Dec 2005 B2
6994933 Bates Feb 2006 B1
6998648 Silvernail Feb 2006 B2
7002294 Forrest et al. Feb 2006 B2
7012363 Weaver et al. Mar 2006 B2
7015640 Schaepkens et al. Mar 2006 B2
7018713 Padiyath et al. Mar 2006 B2
7029765 Kwong et al. Apr 2006 B2
7033850 Tyan et al. Apr 2006 B2
7056584 Iacovangelo Jun 2006 B2
7086918 Hsiao et al. Aug 2006 B2
7112351 Affinito Sep 2006 B2
7122418 Su et al. Oct 2006 B2
7156942 McCormick et al. Jan 2007 B2
7166007 Auch et al. Jan 2007 B2
7183197 Won et al. Feb 2007 B2
7186465 Bright Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7221093 Auch et al. May 2007 B2
7255823 Guenther et al. Aug 2007 B1
7621794 Lee et al. Nov 2009 B2
20010015074 Hosokawa Aug 2001 A1
20010015620 Affinito Aug 2001 A1
20010044035 Morii Nov 2001 A1
20020015818 Takahashi et al. Feb 2002 A1
20020022156 Bright Feb 2002 A1
20020025444 Hebrink et al. Feb 2002 A1
20020068143 Silvernail et al. Jun 2002 A1
20020069826 Hunt et al. Jun 2002 A1
20020091174 Soane et al. Jul 2002 A1
20020102363 Affinito et al. Aug 2002 A1
20020102818 Sandhu et al. Aug 2002 A1
20020125822 Graff et al. Sep 2002 A1
20020139303 Yamazaki et al. Oct 2002 A1
20020140347 Weaver Oct 2002 A1
20030038590 Silvernail et al. Feb 2003 A1
20030045021 Akai Mar 2003 A1
20030085652 Weaver May 2003 A1
20030098647 Silvernail et al. May 2003 A1
20030117068 Forrest et al. Jun 2003 A1
20030124392 Bright Jul 2003 A1
20030127973 Weaver et al. Jul 2003 A1
20030134487 Breen et al. Jul 2003 A1
20030184222 Nilsson et al. Oct 2003 A1
20030197197 Brown et al. Oct 2003 A1
20030199745 Burson et al. Oct 2003 A1
20030205845 Pichler et al. Nov 2003 A1
20030218422 Park et al. Nov 2003 A1
20030235648 Affinito et al. Dec 2003 A1
20040002729 Zamore Jan 2004 A1
20040018305 Pagano et al. Jan 2004 A1
20040029334 Bijker et al. Feb 2004 A1
20040046497 Schaepkens et al. Mar 2004 A1
20040071971 Iacovangelo Apr 2004 A1
20040113542 Hsiao et al. Jun 2004 A1
20040115402 Schaepkens Jun 2004 A1
20040115859 Murayama et al. Jun 2004 A1
20040119028 McCormick et al. Jun 2004 A1
20040175512 Schaepkens Sep 2004 A1
20040175580 Schaepkens Sep 2004 A1
20040187999 Wilkinson et al. Sep 2004 A1
20040209090 Iwanaga Oct 2004 A1
20040219380 Naruse et al. Nov 2004 A1
20040229051 Schaepkens et al. Nov 2004 A1
20040241454 Shaw et al. Dec 2004 A1
20040263038 Ribolzi et al. Dec 2004 A1
20050003098 Kohler et al. Jan 2005 A1
20050006786 Sawada Jan 2005 A1
20050051094 Schaepkens et al. Mar 2005 A1
20050079295 Schaepkens Apr 2005 A1
20050079380 Iwanaga Apr 2005 A1
20050093001 Liu et al. May 2005 A1
20050093437 Ouyang May 2005 A1
20050094394 Padiyath et al. May 2005 A1
20050095422 Sager et al. May 2005 A1
20050095736 Padiyath et al. May 2005 A1
20050112378 Naruse et al. May 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050122039 Satani Jun 2005 A1
20050129841 McCormick et al. Jun 2005 A1
20050133781 Yan et al. Jun 2005 A1
20050140291 Hirakata et al. Jun 2005 A1
20050146267 Lee et al. Jul 2005 A1
20050174045 Lee et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050202646 Burrows et al. Sep 2005 A1
20050212419 Vazan et al. Sep 2005 A1
20050224935 Schaepkens et al. Oct 2005 A1
20050238846 Arakatsu et al. Oct 2005 A1
20050239294 Rosenblum et al. Oct 2005 A1
20060001040 Kim et al. Jan 2006 A1
20060003474 Tyan et al. Jan 2006 A1
20060028128 Ohkubo Feb 2006 A1
20060061272 McCormick et al. Mar 2006 A1
20060062937 Padiyath et al. Mar 2006 A1
20060063015 McCormick et al. Mar 2006 A1
20060132461 Furukawa et al. Jun 2006 A1
20060216951 Moro et al. Sep 2006 A1
20060246811 Winters et al. Nov 2006 A1
20060250084 Cok et al. Nov 2006 A1
20060291034 Patry et al. Dec 2006 A1
20070009674 Okubo et al. Jan 2007 A1
20070049155 Moro et al. Mar 2007 A1
20070187759 Lee et al. Aug 2007 A1
20070281089 Heller et al. Dec 2007 A1
20080032076 Dujardin et al. Feb 2008 A1
20090258235 Tateishi Oct 2009 A1
Foreign Referenced Citations (129)
Number Date Country
704297 Feb 1968 BE
2 353 506 May 2000 CA
196 03 746 Apr 1997 DE
696 15 510 Jun 1997 DE
10 2004 063 619 Jul 2006 DE
0 147 696 Jul 1985 EP
0 299 753 Jan 1989 EP
0 340 935 Nov 1989 EP
0 390 540 Oct 1990 EP
0 468 440 Jan 1992 EP
0 547 550 Jun 1993 EP
0 590 467 Apr 1994 EP
0 611 037 Aug 1994 EP
0 722 787 Jul 1996 EP
0 777 280 Jun 1997 EP
0 777 281 Jun 1997 EP
0 787 824 Jun 1997 EP
0 787 826 Jun 1997 EP
0 915 105 May 1998 EP
0 916 394 May 1998 EP
0 931 850 Jul 1999 EP
0 977 469 Feb 2000 EP
1 021 070 Jul 2000 EP
1 127 381 Aug 2001 EP
1 130 420 Sep 2001 EP
1 278 244 Jan 2003 EP
1 426 813 Jun 2004 EP
1514317 Mar 2005 EP
1 719 808 Nov 2006 EP
1 857 270 Nov 2007 EP
2 210 826 Jun 1989 GP
S63-96895 Apr 1988 JP
63136316 Aug 1988 JP
6418441 Jan 1989 JP
01041067 Feb 1989 JP
S64-41192 Feb 1989 JP
02183230 Jul 1990 JP
3-183759 Aug 1991 JP
03290375 Dec 1991 JP
4-14440 Jan 1992 JP
4-48515 Feb 1992 JP
04267097 Sep 1992 JP
06158305 Nov 1992 JP
05-217158 Jan 1993 JP
5501587 Mar 1993 JP
5-147678 Jun 1993 JP
05182759 Jul 1993 JP
5290972 Nov 1993 JP
06-136159 May 1994 JP
61-79644 Jun 1994 JP
6234186 Aug 1994 JP
07-074378 Mar 1995 JP
07147189 Jun 1995 JP
07192866 Jul 1995 JP
8-72188 Mar 1996 JP
08171988 Jul 1996 JP
08179292 Jul 1996 JP
08325713 Oct 1996 JP
8-318590 Dec 1996 JP
09059763 Apr 1997 JP
09132774 May 1997 JP
9-161967 Jun 1997 JP
09161967 Jun 1997 JP
9-201897 Aug 1997 JP
09-232553 Sep 1997 JP
10-725 Jan 1998 JP
10-013083 Jan 1998 JP
10-016150 Jan 1998 JP
10312883 Nov 1998 JP
10-334744 Dec 1998 JP
11-017106 Jan 1999 JP
11040344 Feb 1999 JP
11-149826 Jun 1999 JP
11255923 Sep 1999 JP
200058258 Feb 2000 JP
2002505969 Feb 2002 JP
2003282239 Oct 2003 JP
2006-294780 Oct 2006 JP
WO 8707848 Dec 1987 WO
WO 8900337 Jan 1989 WO
9107519 May 1991 WO
WO 9510117 Apr 1995 WO
WO 9623217 Aug 1996 WO
WO 9704885 Feb 1997 WO
WO 9716053 May 1997 WO
WO 9722631 Jun 1997 WO
WO 9810116 Mar 1998 WO
WO 9818852 May 1998 WO
WO 9916557 Apr 1999 WO
WO 9916931 Apr 1999 WO
9933651 Jul 1999 WO
WO 9946120 Sep 1999 WO
WO 0026973 May 2000 WO
WO 0035603 Jun 2000 WO
WO 0035604 Jun 2000 WO
WO 0035993 Jun 2000 WO
WO 0036661 Jun 2000 WO
WO 0036665 Jun 2000 WO
0053423 Sep 2000 WO
0157904 Aug 2001 WO
WO 0168360 Sep 2001 WO
WO 0181649 Nov 2001 WO
WO 0182336 Nov 2001 WO
WO 0182389 Nov 2001 WO
WO 0187825 Nov 2001 WO
WO 0189006 Nov 2001 WO
WO 0226973 Apr 2002 WO
02051626 Jul 2002 WO
02071506 Sep 2002 WO
WO 03016589 Feb 2003 WO
WO 03098716 Nov 2003 WO
WO 03098716 Nov 2003 WO
WO 2004006199 Jan 2004 WO
WO 2004016992 Feb 2004 WO
WO 2004070840 Aug 2004 WO
WO 2004089620 Oct 2004 WO
2004112165 Dec 2004 WO
WO 2005015655 Feb 2005 WO
WO 2005045947 May 2005 WO
WO 2005048368 May 2005 WO
2005050754 Jun 2005 WO
WO 2006036492 Apr 2006 WO
2006093898 Sep 2006 WO
2008097297 Aug 2008 WO
2008097297 Aug 2008 WO
2008097297 Aug 2008 WO
2008144080 Nov 2008 WO
2008140313 Nov 2008 WO
2008142645 Nov 2008 WO
Related Publications (1)
Number Date Country
20070049155 A1 Mar 2007 US
Provisional Applications (1)
Number Date Country
60711136 Aug 2005 US