The present invention relates to gaskets for use in sealing and EMI shielding applications, and particularly for aircraft related applications. More particularly, the present invention relates to a resilient crimped electrically-conductive mesh sheet encapsulated with a polymeric elastomer gel polymer for use in shielding and protecting external aircraft components which generate or receive electromagnetic radiation.
In general, electronic components are sources of electromagnetic (EM) radiation. Electronic components, for example, transmitters, transceivers, microcontrollers, microprocessors and the like radiate a portion of the electric signals propagating through a device as EM radiation. The EM radiation generated in this way is sometimes referred to as EM noise. Higher operating frequency ranges of the electronic components leads to the EM noise that primarily comprise radio frequency (RF) radiation. This RF radiation is normally referred to as RF noise. As may be used herein, EM noise and RF noise are used merely to refer to EM radiations emitted from an electronic device. Moreover, EM noise and RF noise, unless otherwise stated, may be used interchangeably throughout the specification. EM radiation may also be emitted from electronic devices in close proximity to each other (EMI, or electromagnetic interference).
Electronic devices have been conventionally shielded to impede the emission of EM noise. Specifically, the electronic devices can be enclosed in a shield. The shield may be made of various materials, for example, metal sheets, plastic composites, conductive polymer sprays, metal filled epoxy pastes and the like. The shield absorbs EM radiation thereby impeding the emission of EM noise from an assembly of the electronic devices and the shield.
Composite gaskets generally comprising a metal core material enclosed or encapsulated within a resilient polymeric material are well known in the art. Such gaskets have sufficient structural integrity to be useful in sealing components in corrosive and high performance environments, such as for pressure vessels, automotive engines and aircraft. Examples of such gaskets include U.S. Pat. Nos. 3,230,290; 4,865,905; 5,791,654; 5,929,138; 6,357,764; 6,454,267; 6,530,577; 6,695,320; and U.S. Pat. No. 6,719,293. Composite gaskets may also include EMI shielding capabilities, such as those disclosed in U.S. Pat. Nos. 2,477,267; 3,126,440; and U.S. Pat. No. 4,900,877. The disclosure of each of these patents is incorporated by reference herein in their entirety.
Many of the gaskets described in the aforementioned patents may not be acceptable for high performance applications, typically aircraft applications, where a variety of performance characteristics may be required in harsh working environments. For example, in addition to EMI shielding and sealing, electrical bonding of components and protection against corrosion may be a necessity.
Conventional gaskets typically have electrical contact only at the edge portion of the gasket. Most such gaskets involve a woven flat wire mesh buried within the body of the elastomer not near the surface. When the gasket is cut to size, the wire mesh is exposed at the edge of the gasket and bent up near the surface. Since the electrical contact of these gaskets and the sealed components is at the edge portion of the gasket, a caulk must be applied at the edge of the gasket to protect the wire mesh from corrosion while maintaining the electrical bonding and EMI shielding. The application and curing of the caulk requires several hours of application and curing time, increasing down time of the aircraft, for instance. When a gasket is replaced, the old caulk must first be removed, and the removal procedure can result in scratches to the protective coating of the aircraft, requiring a repainting of the aircraft surface, thereby expanding the scope and duration of the repair. In addition, most caulking compounds have a limited shelf life which can create inventory obsolescence and increase associated costs.
It would also be advantageous to have a commercial product with a greater deflection range, requiring the application of less closure force, fewer attachment bolts, and thinner mating flanges. Thinner flanges and fewer bolts lead to reduced weight which is important for aircraft applications. Additionally, a gasket with a greater deflection range would be able to provide environmental sealing between mating surfaces which may have a substantial lack of conformity for protection against environmental leakage.
Accordingly, there is a perceived need for an improved composite gasket design, particularly in aircraft applications, that would provide for improved sealing and EMI shielding, while necessitating fewer overall repair and maintenance problems.
The present invention, in one embodiment, is directed to composite EMI shielding gaskets adapted for placement between and compressed by adjacent interface surfaces, to provide sealing and electrical conductivity between said surfaces. Advantageously, such surfaces can form part of an external aircraft fuselage, such as an external avionics package.
The composite gasket comprises a resilient, electrically conductive mesh sheet which is embedded in or encapsulated by a polymer gel layer. The mesh sheet is a three dimensional structure, generally planar in shape with a thickness generally smaller than the length and width of the sheet. Prior to encapsulation by the polymer gel, the mesh is corrugated to form a series of waveforms having amplitudes extending in the direction of the thickness of the sheet (z-axis). Preferably, the mesh sheet is corrugated by a process of crimping the mesh using a suitable device, such as, for instance, passing the mesh sheet through a pair of adjacent rollers having ribbed surfaces configured for this purpose. The mesh sheet can be advantageously positioned close to both outer surfaces of the encapsulating polymer gel layer.
In one aspect, the outer perimeter of the gel layer extends beyond the mesh outer margin to define an edge portion of the gasket. The edge portion of the gasket can also extend beyond either or both of the interface surfaces. The edge portion of the gasket can be formed from an elastomeric gel which is a different gel polymer from the portion of the gel which encapsulates the mesh sheet. Preferably, the elastomeric gel forming the edge portion of the gasket has a durometer measurement higher than the durometer measurement for the gel forming the remaining portion of the gasket. In some applications, the edge portion of the gasket can be tapered in an outwardly extended direction, and the compressible surfaces of the gel contacting the interface surface to be sealed have a tacky surface quality.
The mesh sheet can be advantageously formed from conductive metal wires or fibers. Suitable metals include, for example, copper, nickel, silver, aluminum, bronze, steel, tin, or an alloy or combination thereof. The metal fibers can also be coated with one or more of the foregoing metals.
Alternatively, the mesh sheet can be formed from non-conductive fibers having an electrically conductive coating. Suitable non-conductive fibers include cotton, wool, silk, cellulose, polyester, polyamide, nylon, polyimide and combinations thereof. Suitable conductive coatings include copper, nickel, silver, aluminum, tin, carbon, graphite, or an alloy or combination thereof. Additional materials for fabricating the mesh include carbon fibers, graphite fibers and inherently conductive polymer fibers.
In another aspect, a fiberglass scrim can be molded in with the corrugated metal mesh prior to encapsulation with the polymer gel layer. During the molding process, the fiberglass sheet is melted and integrated into the metal mesh forming a composite structure. The fiberglass scrim acts like a reinforcement material to prevent distortion and elongation of the crimped metal mesh. In this manner, the composite gasket can be formed into sheets, cut to size for the particular application, and repositioned between adjacent aircraft surfaces without distorting the gasket.
In another embodiment, the invention is directed to an EMI shielded assembly comprising a first interface surface, a second interface surface, and an EMI shielding gasket compressed between the first and second interface surfaces and providing electrical conductivity between the surfaces. The EMI shielding gasket is as described above.
In yet another embodiment, the invention is directed to a method for providing EMI shielding to an assembly by interposing the composite gasket as described above between a first interface surface and a second interface surface, and compressing the gasket between said surfaces to establish sealing and electrical conductivity between the first interface surface and the second interface surface. In one aspect, the first and second interface surfaces can be part of an external aircraft assembly, such as an aircraft antenna mounted to the aircraft fuselage.
In a further embodiment, the invention is directed to a method of making an EMI shielding gasket adapted to be compressed between a first interface surface and a second interface surface by providing a resilient, electrically-conductive mesh sheet, corrugating the mesh sheet to form a series on waveforms in the sheet having amplitudes extending in the direction of the thickness of the sheet (z-axis), and embedding the corrugated mesh sheet within the polymer gel layer, wherein when the gasket is compressed between the first and second interface surfaces, the mesh sheet provides electrical conductivity between the first and second interface surfaces.
The present invention, accordingly, comprises the construction, combination of elements and components, and/or the arrangement of parts and steps which are exemplified in the following detailed disclosure. The foregoing aspect and embodiments of the invention are intended to be illustrative only, and are not meant to restrict the spirit and scope of the claimed invention.
The foregoing and other advantages and features of the invention will become apparent upon reading the following detailed description with reference to the accompanying drawings in which:
The composite gasket of the present invention is intended for insertion and compression between adjacent surfaces where both sealing and EMI shielding may be required. The gasket includes a resilient, electrically conductive mesh sheet embedded within a polymer gel layer. The mesh sheet can be, for example, an expanded metal mesh or a metal wire screen or a metal-plated fabric sheet. Typically, the mesh sheet may be formed from metal or metal alloy wires or fibers, graphite or carbon fibers, or metallized or metal-coated or metal plated non-conductive woven or non-woven fabric, such as nylon fabric or nylon fibers. In general, the surface resistivity of the mesh sheet is less than about 0.1 Ω/sq. As used herein, the term “mesh” includes fabrics, cloths, webs, mats, screens, meshes and the like, which may be open, such as in the case of a screen, or closed, such as in the case of a fabric.
The mesh can be inherently conductive if formed from a metal or metal alloy, graphite, carbon, etc., as wires, monofilaments, yarns, bundles, or other fibers or materials which are inherently conductive. Alternatively, the mesh can be non-conductive and rendered electrically-conductive by means of an applied coating, plating, sputtering, or other treatment of the electrically conductive material. Representative of the inherently electrically conductive materials include metals, such as copper, nickel, silver, aluminum, steel, tin and bronze, alloys thereof, such as Monel nickel-copper alloys, non-metals, such as carbon, graphite, and inherently conductive polymers, and plated or clad wires or other fibers such as one or more of copper, nickel, silver, aluminum, steel, tin, bronze, or an alloy thereof, e.g. silver-plated copper, nickel-clad copper, Ferrex® (Parker Chomerics, Woburn, Mass.), tin-plated copper-clad steel, tin-clad copper, and tin-plated phosphor bronze. Representative non-conductive fibers include cotton, wool, silk, cellulose, polyester, polyamide, nylon, and polyimide monofilaments or yarns which are plated, clad or otherwise coated with an electrically-conductive material which may be a metal mesh such as copper, nickel, silver, aluminum, tin, or an alloy or combination thereof, or a non-metal such as carbon, graphite, or a conductive polymer. The plating, cladding or other coating may be applied to individual fiber strands or to the surface of the fabric after weaving, knitting or other fabrication. Combinations of one or more of the foregoing conductive fibers and/or one or more of the foregoing coated non-conductive fibers may also be employed.
As indicated previously, the mesh sheet is corrugated to provide a series of waveforms in the mesh sheet by, for instance, the use of a crimping process. The crimping process is designed to create a planar wave in the mesh sheet to allow for deflection in the thickness direction (z-axis) to provide for low closure force. Typically, the mesh sheet is an expanded metal mesh, a metal wire screen, or a metal-plated fabric sheet.
The crimping or corrugation allows for a greater deflection range with less closure force, thereby permitting the gasket to be used with fewer bolts and thinner mating flanges. The greater deflection range permits mechanical sealing on surfaces with a large lack of conformity to provide an environmental seal. The use of thinner flanges and fewer bolts reduces the weight of the items being sealed together, such as, e.g. an aircraft antenna. The use of fewer bolts also reduces maintenance time. The overall lower deflection force required for sealing prevent flange bowing upon bolt torquing, thereby providing an improved environmental seal. The environmental seal protects against environmental leakage, provides pressure sealing, and improves corrosion resistance in the flange.
Moreover, crimping allows the mesh to be positioned at the opposing surfaces and to establish electrical contact with opposed interface surfaces at lower deflection forces than conventional gaskets, eliminating the need for the exposed wire mesh at the outer edges of the gasket to achieve electrical contact. Therefore, the wire mesh can be cut smaller than the gasket footprint, permitting the edges to be formed entirely from an elastomer. This prevents corrosion of the wire mesh and eliminates galvanic corrosion with mating flanges.
Following crimping of the mesh sheet, the mesh sheet is encapsulated or embedded in a polymer gel layer to form the gasket.
In a preferred embodiment, prior to encapsulation with the polymer gel, a fiberglass scrim sheet can be combined with the metallic corrugated mesh structure in a molding process to form a composite structure. During the molding process, the fiberglass sheet melts and is incorporated into the metal mesh structure. The purpose of the fiberglass scrim sheet is to provide additional reinforcement for the metal mesh. This serves to prevent distortion and elongation of the mesh during processing and final application of the gasket as a seal. This also facilitates the manufacture of larger sheets of the gasket which can be cut to size for particular end use applications. The fiberglass reinforcement additionally provides support for repositioning and removing the gasket without distorting it.
In some applications, a dual elastomer system can be employed. Following this approach, the elastomer encapsulating the mesh can be a soft, tacky elastomer having nominal mechanical strength, while the elastomer used for the edge portion of the gasket can be a high abrasion resistant high tensile strength elastomer. The high strength elastomer can be used exclusively for the edge portion of the gasket without encapsulating any portion of the mesh (see
The gaskets of the invention can be used in a variety of applications and under a variety of environmental conditions. One particularly useful application is for avionics, on both military and civilian aircraft, and particularly for external aircraft seals used to bond exterior electrical and electronic components, such as antennas, lights and altimeters, etc., to the aircraft skin, to provide EMI shielding and sealing around such components. Due to the high resistance to corrosion of the gaskets of the invention, the gaskets can be used in applications other than aviation where a harsh operating environment and a flat gasket form fits the mechanical design of the particular application.
Gasket assembly 16 includes gasket 14, first interface surface 26 and second interface surface 28. As shown in
The following example is intended to illustrate one aspect of the invention, without limiting it thereby.
A series of composite gaskets were prepared or obtained, the gaskets were evaluated, and the performance characteristics of the gaskets were compared. The following composite gaskets were prepared:
Samples (1 inch diameter) of each of the above-identified gaskets were obtained and subjected to varying loads and tested with a 0.25″×0.25″ Al probe at 0.025 inches/minute. Each of the above gaskets was subjected to varying load levels (lbs.), and the % deflection was measured and recorded for each sample. The results are shown in
Samples of the above-identified gaskets were again evaluated for deflection, and the results above were confirmed. The deflection (in mils) for each of the samples was measured as a function of the applied load (lbs.), and the results for each sample are shown in
Samples were also evaluated for electrical continuity vs. deflection. The gaskets of the invention were found to have lower deflection than comparative gaskets
As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted as illustrative and not in a limiting sense. All references cited herein are expressly incorporated herein by reference thereto in their entirety.
This application claims the benefit of priority of U.S. Provisional Application No. 61/378,148, filed on Aug. 30, 2010, and International Application No. PCT/US2010/055037, filed Nov. 2, 2010, the disclosures of which are incorporated herein by reference thereto in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2477267 | Robinson | Jul 1949 | A |
3126440 | Goodloe | Mar 1964 | A |
3206536 | Goodloe | Sep 1965 | A |
3230290 | Nelson et al. | Jan 1966 | A |
4381979 | De Nora et al. | May 1983 | A |
4533685 | Hudgin et al. | Aug 1985 | A |
4678699 | Kritchevsky et al. | Jul 1987 | A |
4865905 | Uken | Sep 1989 | A |
4900877 | Dubrow et al. | Feb 1990 | A |
5250342 | Lang et al. | Oct 1993 | A |
5791654 | Gaines et al. | Aug 1998 | A |
5929138 | Mercer et al. | Jul 1999 | A |
6357764 | Gaines et al. | Mar 2002 | B1 |
6454267 | Gaines et al. | Sep 2002 | B1 |
6454276 | Gaines et al. | Sep 2002 | B2 |
6530577 | Busby et al. | Mar 2003 | B1 |
6695320 | Busby et al. | Feb 2004 | B2 |
6719293 | Coles et al. | Apr 2004 | B1 |
6784363 | Jones | Aug 2004 | B2 |
20030047718 | Narayan et al. | Mar 2003 | A1 |
20030173100 | Flaherty et al. | Sep 2003 | A1 |
20040209064 | Kaplo | Oct 2004 | A1 |
20090086459 | Bicket et al. | Apr 2009 | A1 |
20090295103 | Ebina et al. | Dec 2009 | A1 |
20100116543 | Ikeda et al. | May 2010 | A1 |
Entry |
---|
International Search Report of PCT/US2011/49312 dated Dec. 29, 2011. |
International Search Report of corresponding application, International Application No. PCT/US10/55037, dated Dec. 29, 2010. |
Number | Date | Country | |
---|---|---|---|
20120048612 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61378148 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2010/055037 | Nov 2010 | US |
Child | 13103192 | US |