The subject invention generally relates to encapsulated glass frame assemblies and associated methods for forming encapsulated glass frame assemblies.
Polymeric encapsulants for encapsulated glass frame assemblies (sometimes referred to as window assemblies), such as those used on vehicles, are generally known in the art. Generally, these encapsulated glass frame assemblies include a transparent pane, commonly made from glass (i.e., a glass panel). The polymeric encapsulant is bonded to the perimeter of the glass panel to form a frame for the glass panel. The polymeric encapsulant can be bonded to one, two, or three surfaces of the transparent pane.
The polymeric encapsulants can be formed from either a thermosetting material or a thermoplastic encapsulating material. Exemplary thermosetting encapsulating materials include, for example, a reaction injection molded (RIM) material, while exemplary thermoplastic encapsulating materials include, for example, polypropylene (PP), polyvinylchloride (PVC) or thermoplastic elastomers (TPEs). Non-limiting examples of TPE elastomers that can be used as the encapsulating material include SBS (poly(styrene-butadiene-styrene), also alternatively referred to as a styrene-butadiene-styrene block copolymer) and SEBS (styrene-ethylene-butylene-styrene block copolymers).
In certain applications, the polymeric encapsulant is applied in a single application step, and therein forms a one-shot encapsulant. In other applications, the polymeric encapsulant is applied in two separate applications steps with two separate polymeric materials, and therein forms a two-shot encapsulant having a first encapsulation layer and a second encapsulation layer such that the first encapsulation layer is between the transparent pane and the second encapsulation layer.
While such encapsulated glass frame assemblies including one-shot or two-shot encapsulants are generally suitable for their intended purpose, these encapsulated glass frame assemblies do suffer from a variety of known deficiencies related to bonding strength and structural rigidity of the formed encapsulants functioning as frames for the glass panels.
For example, certain encapsulating materials, such as TPE, bond well to the glass (with the use of adhesion promoters) and therefore prevent water from migrating between the applied encapsulant and the glass. TPE-based encapsulants also provide good sealing to the vehicle body because it is softer. However, because the TPE-based encapsulants are softer, they do not provide structural rigidity that allows the TPE-based encapsulants to fix the glass strongly to the vehicle.
Conversely, other encapsulating materials, such as polypropylene, form encapsulants providing enhanced structural rigidity relative to TPE-based encapsulants, and therefore can fix the glass strongly to the vehicle. However, polypropylene does not bond well to the glass itself, and therefore polypropylene-based encapsulants do not provide good sealing between the applied encapsulant and glass to prevent water from migrating between the polypropylene encapsulant and glass. Still further, in one example that is representative of general formation conditions for forming encapsulated glass frame assemblies with these other encapsulating materials providing the desired structural rigidity, polypropylene-based encapsulants require the use of an injection molding process to apply the polypropylene to the glass that requires both high barrel temperatures (ranging generally from about 400 to 450 degrees Fahrenheit (about 200 to 235 degrees Celsius)) and high injection pressures (ranging generally from about 6600 to 7250 pounds per square inch (about 4.62 to 5.20 MPa (MegaPascals))). with these temperatures and pressures being application dependent. Such high temperatures and pressures can result in the breakage of the glass panel during the injection molding process, particularly when the glass panel is a laminated glass panel.
The present invention addresses many of the deficiencies found in such encapsulated glass frame assemblies.
The invention provides encapsulated glass frame assemblies having as its major components a glass panel, a plastic frame, and an encapsulant.
In certain embodiments, the encapsulated glass assembly comprises a glass panel having a first side and a second side and an edge between the first side and the second side and a plastic frame coupled to the glass panel. The plastic frame has at least three sides and has a corner located between each adjacent side. The plastic frame also includes an outer frame surface, with the outer frame surface including a channel extending within the outer frame surface, wherein the channel has a lower wall portion connected to a side wall portion. The outer frame surface further includes at least one upper wall portion extending from the side wall portion and extending along at least one side of the at least three sides of the plastic frame, each one of the at least one upper wall portions further defining a portion of the channel as a C-shaped channel. The glass panel is coupled to the plastic frame such that the glass panel is retained within the C-shaped channel and such that the edge of the glass panel is adjacent to the side wall portion along each of the at least three sides and corners of the plastic frame. An encapsulant is bonded to at least one of the first side and the second side of the glass panel and is bonded onto the outer frame surface of the plastic frame to secure the glass panel to the plastic frame. The encapsulant has a Shore hardness less than a Shore hardness of the plastic frame (i.e., the encapsulant is softer than the plastic frame).
In certain of these embodiments, the glass panel is a laminated glass panel, while in other embodiments the glass panel is a tempered glass panel.
The present invention also provides a method for forming the encapsulated glass assemblies having the features described above.
The present invention thus provides simplified encapsulated glass assemblies having high strength and a simplified manufacturing process. In addition, the coupling of the plastic frame in accordance with the present invention forms encapsulated glass assemblies with high strength that cannot be reliably achieved using the one-shot or two-shot encapsulation techniques as described above. Still further, the application of the encapsulant onto the glass panel and frame to secure the glass panel to the frame in accordance with the present invention may be done at lower temperatures and pressures than required to bond high hardness plastic materials such as polypropylene to the glass panel, thus minimizing or preventing the breakage of the glass panels during the application process. Accordingly, the present invention allows the use of lower strength and better acoustical glass panels, such as laminated glass panels, in this manufacturing process. Still further, the encapsulant also provides a sealing and strong bond between the encapsulant and the glass panel, thus prevent minimizing or preventing water or other liquids from migrating between the applied encapsulant and glass panel prior to use or during use wherein the glass assembly is installed within a vehicle.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, the present invention is directed to an encapsulated glass assembly 25 that may be used in a variety of applications. As illustrated herein, the encapsulated glass assembly 25 is included in a vehicle, such as an automobile.
Referring now to
As also shown in
Referring to
The glass panel 30 may be formed in any shape depending upon its use. Thus, for example, the glass panel 30 may be formed having at least three sides 38 defined along the edge 36. In these embodiments, each adjacent pair of the sides 38 may be connected by transition regions, or corners 40 (i.e., wherein the sides 38 and corners 40 collectively define the shape of the glass panel 30). Accordingly, in embodiments having three sides 38, such as when used as the side windows coupled to either the A-pillar or C-pillar of the vehicle through the support frame 500 as described above, the glass panel 30 may be triangular shaped. Still further, in embodiments have four sides 38 and four corners 40, the glass panel 30 may have a generally square or rectangular shape or may have another quadrilateral shape that does not generally define a square or rectangle. In these embodiments, the corners 40 may form abrupt transitions between sides 38 or may be generally rounded between the sides 38. In still further embodiments, the segment of the plastic frame 100 corresponding to one of the sides 38 may be straight along its length (as in a triangle or square), may be rounded, or may take on any other respective shape along the length of the side 38. Still further, in other embodiments, the transitions along the corners 40 may be slightly rounded or perfectly rounded, (i.e., less or not abrupt). In these embodiments, the sides 38 may correspond in roundness to the corners, and thus form round or oval parts to correspond to the round or oval shape of the glass panel 108. Thus, for example, wherein the glass panel 30 is round or oval, the sides 38 correspond to segments of a round or oval shaped plastic frame 100, and the corners 40 represent round or oval transitional segments between the respective round or oval segments. For illustrative purposes, the glass panel 30 in the embodiments illustrated herein have a triangular shape including three sides 38 and three corresponding corners 40, with one corner 40 positioned between each pair of adjacent sides 38.
In certain embodiments, the glass panel 30 is in the form of a laminated window assembly 50. As shown best in
In certain embodiments, the inner and outer transparent sheets 60, 70 are panes of glass that are substantially transparent. However, in other embodiments, the inner and outer transparent sheets 60, 70 may be plastic, fiberglass, or any other suitable substantially transparent material. As defined herein, the term “substantially transparent”, as used with respect to the transparent sheets 60 and 70, refers to a material that allows 70% or more of light transmission in a predefined wavelength range, such as the visible light range. The panes of glass are preferably automotive glass and, more specifically, soda-lime-silica glass. However, in other embodiments, the inner and outer transparent sheets 60, 70 may be plastic, fiberglass, or other suitable substantially transparent material.
In other embodiments, the inner and outer transparent sheets 60, 70 are panes of glass that are less transparent. For example, wherein the glass assembly is a privacy glass, the transparency of the glass is substantially reduced, and thus allows less than 70% light transmission in a predefined wavelength range, such as from greater than 0 to 70% light transmission at the predefined wavelength range. As used hereinafter, the term transparent, as it relates to the transparent sheets 60 or 70 or interlayer 80 of the present invention, or more generally as it relates to the glass panel 30, refers to a sheet or panel having at least some degree of transparency at the predefined wavelength range and is not intended to be limited to substantial transparent as defined in the previous paragraph.
As best shown in
As noted above, the laminated glass panel 50 also includes an interlayer 80 disposed between the inner and outer transparent sheets 60, 70. Preferably, the interlayer 80 bonds the inner and outer transparent sheets 60, 70 and allows the laminated glass panel 50 to retain glass panels piece upon impact or breakage.
The interlayer 80 typically is substantially transparent to light and includes a polymer or thermoplastic resin, such as polyvinyl butyral (PVB). However, other suitable materials for implementing the interlayer 80 may be utilized. Similar to the inner and outer transparent sheets 60, 70, the interlayer 80 is also substantially transparent or otherwise transparent to light, and accordingly the glass panel 50 assembled to include the interlayer 80 between the inner and outer transparent sheets 60, 70 is also substantially transparent or otherwise transparent to light. The interlayer 80 includes a first side 82 and a second side 84 and an edge 86 defined between the first and second sides 82, 84.
When assembled, the first side 82 of the interlayer 80 bonds to the second side 64 of the inner transparent sheet 60, and a second side 84 of the interlayer 80 bonds to a first side 72 of the second transparent sheet 70 such that the interlayer 80 bonds to each of the inner and outer transparent sheets 60, 70 to form the laminated glass panel 50.
When assembled, the relative thickness of each of the edges 66, 76, 86 of the laminated glass panel 50 corresponds to the edge 36 of the glass panel 30. In addition, the first surface 62 and the second surface 74 correspond to the first side 32 and second side 34, respectively, of the glass panel 30.
As noted above, in another embodiment, the glass panel 30 is a tempered glass panel 90. As opposed to a laminated glass panel 50, a tempered glass panel 90 is a single layer glass panel that has been processed by controlled thermal or chemical treatments to increase its strength compared to normal glass (i.e., untempered or annealed glass). Accordingly, the tempered glass panel 90, as shown in
In still further embodiments, such as illustrated in
For ease in description hereinafter, the glass panel 30, 50, 90 of any of the above embodiments (including glass panels having a primer 85 as in
In addition to the glass panel 30, the encapsulated glass assembly 25 also includes a frame (shown as 100 in
The plastic frame 100 is preferably formed from a hard plastic material and includes an outer frame surface (shown as 106 in
In certain embodiments, the plastic frame 100 is a one-piece structure that is formed to generally coincide to the shape of the glass panel 30 such that the glass panel 30 may be contained within the plastic frame 100 when the glass panel 30 is coupled to the plastic frame 100. Exemplary one-piece frames 100 are described below. As noted above the glass panel described with respect to these respective glass assemblies 25 is designated by reference numeral 30 and includes the afore-mentioned first and second sides 32, 34 and edge 36 unless otherwise indicated. Still further, the glass panel 30 described in these assemblies can be either the laminated glass panel 50 or tempered glass panel 90 unless otherwise expressly specified.
In general, the plastic frame 100 is formed in its final shape prior to coupling to glass panel 30, or otherwise provided in its final shape prior coupling to the glass panel 30, as described in further detail below.
For polypropylene frame plastic frames 100, the manufacturing (i.e., molding) may be performed in an injection mold having a cavity portion having the desired dimensions and the shape, such as the dimensions and shapes for any of the plastic frames 100 illustrated in any one of the
Referring first to
As noted above, the plastic frame 100 is generally shaped to coincide to the shape of the glass panel 30 such that such that the glass panel 30 is at least partially contained within the plastic frame 100. In embodiments wherein the glass panel 30 is formed having at least three sides 38 defined along the edge 36 and including corners 40 disposed between each adjacent pair of sides 38, the inner surface 109 thus includes a corresponding number of adjacent sides 111 and corners 112, with each of the corners 112 defined as the transition between the adjacent sides 111.
In these embodiments, a channel 115 extends within the outer frame surface 106. The channel 115, as shown best in
In one embodiment in which the plastic frame 100 has exactly one upper wall portion 116, such as shown in
Accordingly, in one embodiment as shown in
In an alternative embodiment, as shown best in
Thus, as represented by
In yet another alternative embodiment in which the plastic frame 100 has exactly one upper wall portion 116, the upper wall portion 116 does not extend the entire length of the side wall portion 118 on each of the respective sides 111 and corners 112 of the plastic frame 100, but does extend along at least two adjacent sides 111 and includes each corresponding corner 112 between the two or more respective adjacent sides 111. In these embodiments, the channel 115 of at least two or more respective adjacent sides 111 (and the respective corner 112 between each pair of the respective adjacent sides 111) includes the upper wall portion 116 (in addition to the side wall portion 118 and lower wall portion 117) and therefore defines a single respective C-shaped channel 135 (as described above), while another portion of the channel 115 not having the upper wall portion 116 (but having the side wall portion 118 and lower wall portion 117) along each of the respective adjacent sides 111 and along each of the other sides 111 defines a single respective L-shaped channel 136.
Thus, as represented by
In still another alternative embodiment of the present invention, the plastic frame 100 may include a plurality of spaced apart upper wall portions 116 along one or more of the respective sides 111 of the plastic frame 100. In one representative depiction of this alternative embodiment, as illustrated in
In yet another alternative embodiment (not shown), the plastic frame 100 includes two more upper wall portions 116 spaced apart relative to one another along a single side 111 of the plastic frame 100. Accordingly, in this embodiment, the respective side 111 includes at least two C-shaped channels 135 (with each of the two C-shaped channels 135 defined by a respective one of the upper wall portions 116, the side wall portion 118, and the lower wall portion 117), with each respective pair of C-shaped channels 135 separated from one another by a respective L-shaped channel 136. In embodiments having exactly two upper wall portions 116 extending to the respective corners 112, exactly one L-shaped channel 136 is provided on the single one side 111 of the plastic frame 100. In embodiments having exactly two upper wall portions 116, but wherein only one of the upper wall portions 119 extends to the respective corners 112, the single side 111 includes two C-shaped channels 135 and two L-shaped channels 136. In embodiments having exactly two upper wall portions 116, but wherein neither one of the upper wall portions 116 extends to the respective corners 112, the single side 111 includes two C-shaped channels 135 and three L-shaped channels 136, wherein two of the three L-shaped channels 136 extends to a respective corner 112 along the one side 111 of the plastic frame.
As noted briefly above, each respective C-shaped channel 135 of the plastic frame 100, in accordance with any embodiment described herein and as best shown in
In addition, each respective one of the upper wall portions 116 of the plastic frame 100 also has an inner surface 121 extending from the side wall portion 118 to its respective edge portion 120. Yet still further, each respective one of the at least one upper wall portions 116 of the plastic frame 100 also has an opposing outer surface 122 extending from the respective edge portion 120 such that the edge portion 120 connects the inner and outer surfaces 121, 122 of a respective one of the at least one upper wall portion 116 and such that the inner surface 121 is located between the lower wall portion 117 and the outer surface 122. The outer surface 122 may be defined as a portion of the upper surface 107 or may be considered to extend from the upper surface 107.
In certain embodiments as shown in
Alternatively, the plane P1 and the plane P2 of the plastic frame 100 are not parallel with one another. Accordingly, as shown in one embodiment in
To couple the glass panel 30 to the plastic frame 100 in accordance with any embodiment described above, and illustrated with respect to the embodiments shown in FIGS. 11-14 below, the glass panel 30 is pressed onto the outer surface 122 of the one or more upper wall portions 116 on each of the respective sides 111 and/or corners 112 of the plastic frame 100 including a respective upper wall portion 116 in a direction towards the lower wall portion 117, causing the outer edge 124 of the respective one of the upper wall portions 116 to move in a direction inwardly towards the side wall portion 118 (shown best in
Once the edge 36 of the glass panel 30 clears the outer edge 124 of the upper wall portion 116, as shown in
In embodiments of the plastic frame 100 wherein P1 is parallel to P2, as shown in
In embodiments including at least one L-shaped channel 136 in addition to the one or more C-shaped channels 135, as shown in
In embodiments having a single C-shaped channel 135 located along a single side 111 of the plastic frame 100, such as the frame illustrated in
Once the glass panel 30 coupled to the plastic frame 100 in accordance with any of the embodiments as shown above, and as further shown in
In one embodiment that includes the afore-mentioned at least one C-shaped channel 135 and optionally the at least one L-shaped channel 136, the encapsulant 200 is bonded to the first side 32 of the glass panel 30 and to a portion of the plastic frame 100 including the at least one C-shaped channel 135 and optionally the L-shaped channel 136 associated with the first side 32 of the glass panel 30. Accordingly, as shown in
Relatedly, in another embodiment (not shown), as opposed to bonding the encapsulant 200 to the first side 32 of the glass panel 30 in accordance with
In an alternative embodiment that includes the afore-mentioned at least one C-shaped channel 135 and optionally the at least one L-shaped channel 136, the encapsulant 200 is also bonded to the outer surface 110 of the side wall portion 118 of the plastic frame 100 in addition to being bonded to the glass panel 30 and plastic frame 100 as described in
Relatedly, in another embodiment (not shown), as opposed to bonding the encapsulant 200 to the first side 32 of the glass panel 30 in accordance with
In yet another alternative embodiment that includes the afore-mentioned at least one C-shaped channel 135 and optionally the at least one L-shaped channel 136, the encapsulant 200 is also bonded to the lower surface 108 of the lower wall portion 117 and onto the second side 34 of the glass panel 30 in addition to being bonded to the glass panel 30 and plastic frame 100 as described in
In further embodiments, as shown in
In certain embodiments, as shown in
In certain embodiments, as shown in
In embodiments wherein the clamping device 140 is not attached to the side wall portion 118, as shown in
In embodiments wherein the clamping device 140 is attached to the side wall portion 118, as shown in
In alternative embodiments (not shown), wherein the fastening device 148 is a nail or a screw, the procedure for installing the clamping device 140 and then coupling the encapsulant 200 is as follows. First, the clamping device 140 is positioned onto the first side 32 of the glass panel 30 such that the inner surface 141 is positioned adjacent to first side 32 near the edge 36 and such that inner edge surface 143 is abutting side wall portion 118. Next, the fastening device 148 is installed to couple the inner edge surface 143 of the clamping device 140 to the side wall portion 118. For example, when the fastening device 148 is a screw or nail, the screw or nail are fastened through the side wall portion 118 of the plastic frame 100 and into the inner edge surface 143 to secure the side wall portion 118 to the inner edge surface 143. Next, the encapsulant 200 is applied as described above.
In other alternative embodiments, as shown in
In certain embodiments, as shown in
In embodiments wherein the outer surface 157 of the one or more clamping devices 150 are not attached to the side wall portion 118, as shown in
Alternatively, in embodiments wherein the one or more clamping devices 150 are attached to the side wall portion 118 via the fastening device 148 and wherein the fastening device 148 is an adhesive, as shown in
Alternatively, in embodiments wherein the one or more clamping devices 150 are attached to the side wall portion 118 via the fastening device 148 and wherein the fastening device 148 is not an adhesive (not shown), the procedure for installing the clamping device 150 onto the glass panel 30 and frame 100 and then coupling the encapsulant 200 is as follows. First, the clamping device 150 is positioned onto the first side 32 of the glass panel 30 such that the inner surface 152 of the first leg 151 is positioned adjacent to first side 32 and such that second leg 155 is positioned between the edge 36 and the side wall portion 118, wherein the inner surface 156 is adjacent to the edge 36 of the glass panel 30 and wherein the outer surface 157 is adjacent to the inner surface 109 of the side wall portion 118. Next, the fastening device 148 is installed to couple the outer surface 157 to the inner surface 109 of the side wall portion 118. For example, when the fastening device 148 is a screw or nail, the screw or nail are fastened through the inner surface 109 of the side wall portion 118 of the plastic frame 100 and into the outer surface 157 to secure the side wall portion 118 to the second leg 155. Next, the encapsulant 200 is applied as described above.
As noted above, in addition to the glass panel 30 and plastic frame 100 as described above in accordance with any embodiment, the encapsulated glass assembly 25 also includes an encapsulant 200 which is bonded to at least one of the first side 32 and the second side 34 of the glass panel 30 and which is also bonded to the outer surface of the plastic frame 100 and therefore secures the glass panel 30 to the plastic frame 100.
The encapsulant 200 has a Shore hardness that is less than the Shore Hardness of the respective plastic frame 100. In other words, the encapsulant 200 is softer than the respective plastic frame 100. Still further, the encapsulant 200 sealingly bonds to the glass panel 30 and therefore provides a moisture seal to prevent water migration between the glass panel 30 and the encapsulant 200 that could not be achieved using polypropylene encapsulants.
The Shore Hardness of the encapsulant 200 is dependent upon the composition of the encapsulating material used to form the encapsulant 200. However, as noted above, the Shore hardness of the encapsulant 200, in any embodiment of the present invention as described above and regardless of the composition of the encapsulating material used to form the encapsulant, is less than the Shore hardness of the plastic frame 100.
In certain embodiments, the encapsulating material used to form the encapsulant 200 is a thermoplastic elastomer, or TPE (i.e., it is a TPE-based encapuslating material). Accordingly, in these embodiments, the encapsulant 200 is, or otherwise may be referred to, as TPE. Exemplary TPE-based materials that can be used as the encapsulating material is SBS (poly(styrene-butadiene-styrene), also alternatively referred to as a styrene-butadiene-styrene block copolymer), and SEBS (styrene-ethylene-butylene-styrene block copolymers). Exemplary TPE materials such as SBS and SEBS form encapsulants 200 having a Shore hardness ranging from 0A to 60D, as measured in accordance with ASTM D2240.
To form the encapsulant 200 from the encapsulating material and in accordance with any of the embodiments above, in one exemplary method of the present invention, after the glass frame 30 is installed within the respective plastic frame 100, the installed glass frame and plastic frame 100 are placed into a mold (not shown), such an injection mold, wherein an encapsulant 200 is molded onto one or both of the first side 32 and second side 34 of the glass panel 30 and onto the outer surface of the plastic frame 100 to sealingly secure the plastic frame 100 to the glass panel 30. The encapsulant 200 is formed by introducing the encapsulating material, as described above, in a flowable or liquid form and at a desired pressure within the cavity portion of the mold and onto the at least one of the first side and the second side of the glass panel and onto the outer surface of the plastic frame 100. To ensure that the encapsulating material (which is non-flowable and/or non-liquid at temperatures such as room temperature or ambient temperature and also at temperatures typically experienced by vehicles to which it is coupled during operating conditions) is in a flowable or a liquid form for introduction into the cavity of the mold, the encapsulating material is first heated to a flowable temperature sufficient to wherein the encapsulating material is in flowable and/or a liquid form. The desired pressure is sufficient to allow the encapsulating material to fill the cavity portion of the mold and contact the portions of the glass panel 30 and plastic frame 100 for bonding as desired but insufficient to cause premature opening of the mold and flash. Once the encapsulating material is cooled to harden the encapsulating material from its liquid or its flowable form to a non-liquid (i.e., solid) or non-flowable form to form the encapsulant 200, the encapsulated glass assembly 25 may be removed from the mold. In most plastics used as the encapsulating material herein, the flowable temperature of the encapsulating material corresponds to a temperature greater than its glass transition temperature, and thus the encapsulating material is introduced at a temperature above its glass transition temperature to fill the cavity, and subsequently cooled to a temperature below its glass transition temperature to form the encapsulant 200.
Optionally, the encapsulant 200 may be formed in a single step or in multiple steps in associated exemplary methods for application of the present invention. For example, a first encapsulating material may be applied to a first portion of the respective frame 100 and to one of the first side 32 or second side 34 the glass panel 30, and a second encapsulating material 200 may be applied to another portion of the respective frame 100 and to other one of the first side 32 or second side 34 of the glass panel. In further embodiments, the first and second encapsulating material may be integrally formed, while in further embodiments the first and second encapsulating material may form separate encapsulants 200 for the encapsulated glass assembly 25, but wherein the first and second encapsulating materials form a single integral encapsulant 200. In certain embodiments, the first encapsulating material and the second encapsulating material, when separately applied, are formed from the same polymeric material. In yet further embodiments, the first encapsulating material and second encapsulating material are formed from different polymeric materials.
The temperatures and pressures used to form the encapsulant 200 within the mold, and in particular within the injection mold in accordance with one exemplary method of application, are dependent upon numerous factors, including but not limited to the type of encapsulating material used, the type of characteristics of the molding equipment used (including mold temperature, melt temperature, nozzle temperature, zone temperatures, and feed temperatures), and to a lesser extent the desired shape and thickness of the encapsulant 200 applied onto the glass frame 100 and glass panel 30. Notably, because the encapsulating material used to form the encapsulant 200 as described above may be molded at relatively low pressures and temperatures within the mold, such as the injection mold described above, the risk of cracking or breaking the glass panel 30 during the molding process is minimized or prevented.
Exemplary injection molding equipment having these molding characteristics that may be used in the exemplary application methods of the present invention include, but are not limited, those sold commercially from Krauss-Maffei Corporation of Munich, Germany (described above with respect to molding the plastic frame 100).
When TPEs such as SBS or SEBS are utilized as the encapsulating material (i.e., the encapsulating material is a TPE-based encapsulating material such as SBS or SEBS) and the material is injection molded onto the glass panel using conventional injection molding equipment (such as those sold commercially from Krauss-Maffei Corporation), in one exemplary method of the present invention, the molding conditions are as follows: mold temperatures ranging from about 100 to 130 degrees Fahrenheit (about 38 to 55 degrees Celsius); injection pressures ranging from about 3000 to 4500 pounds per square inch (about 2.07 to 3.10 MPa (MegaPascals)); barrel temperatures ranging from about 400 to 430 degrees Fahrenheit (about 204 to 221 degrees Celsius), and fill times ranging from 2.1 to 2.6 seconds.
Notably, these injection pressures are generally lower than the corresponding injection pressures, at corresponding or lower barrel temperatures and at slower fill times, as compared with molding conditions required to mold polypropylene encapsulants onto glass as described above. Improvement in any one of the factors (lower injection pressure; lower molding and barrel temperatures; and increased fill times) much less a combination of any two or more of these factors, is believed to decrease the risk of glass panel 30 breakage during the molding process.
After cooling, the mold is released, and the encapsulated glass assembly 25 is formed that includes the glass panel 30, plastic frame 100, and the encapsulant 200.
The present invention thus provides simplified glass assemblies having high strength and a simplified manufacturing process. In addition, the coupling of the plastic frame and encapsulant to the glass panel in accordance with the present invention forms glass assemblies with high strength that cannot be achieved using the one-shot or two-shot encapsulation techniques that form softer enclosures. Still further, the application of the encapsulating material to form an encapsulant onto the glass panel and frame to secure the glass panel to the frame in accordance with the present invention may be done at lower temperatures and pressures than required to bond high hardness plastic materials such as polypropylene to the glass panel as the encapsulant, thus minimizing or preventing the breakage of the glass panels during the application process. Accordingly, the present invention allows the use of lower strength and better acoustical glass panels, such as laminated glass panels, in this manufacturing process.
The present invention has been described herein in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims.
This application claims priority to and all advantages of U.S. Provisional Application No. 62/415,823, filed on Nov. 1, 2016, the content of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2587354 | Mauck | Feb 1952 | A |
2606059 | Wernig | Aug 1952 | A |
2723427 | Bobel | Nov 1955 | A |
3274740 | Hall | Sep 1966 | A |
3388698 | Satkunas | Jun 1968 | A |
4524978 | Mauser | Jun 1985 | A |
4671013 | Friese et al. | Jun 1987 | A |
4947606 | La See | Aug 1990 | A |
5617695 | Brimmer | Apr 1997 | A |
5628155 | Nolte et al. | May 1997 | A |
5713167 | Durham et al. | Feb 1998 | A |
5944324 | Schultheis et al. | Aug 1999 | A |
5997793 | Lahnala | Dec 1999 | A |
6223470 | Millard et al. | May 2001 | B1 |
6409251 | Kaye et al. | Jun 2002 | B1 |
6766617 | Purcell | Jul 2004 | B2 |
7219470 | Lahnala | May 2007 | B2 |
7395631 | Lahnala | Jul 2008 | B2 |
7934342 | Lahnala | May 2011 | B2 |
8127498 | Lahnala | Mar 2012 | B2 |
8322075 | Lahnala | Dec 2012 | B2 |
8388043 | Lahnala | Mar 2013 | B2 |
8595981 | Lahnala | Dec 2013 | B2 |
8844203 | Lahnala | Sep 2014 | B2 |
9126474 | Cicala | Sep 2015 | B2 |
9211780 | Lahnala | Dec 2015 | B2 |
9463684 | Lahnala | Oct 2016 | B2 |
9878599 | Lahnala | Jan 2018 | B2 |
9920566 | Bennett et al. | Mar 2018 | B1 |
20100122495 | Lahnala | May 2010 | A1 |
20110214717 | Halahmi et al. | Sep 2011 | A1 |
20120139289 | Lahnala | Jun 2012 | A1 |
20130185973 | Scheyer et al. | Jul 2013 | A1 |
20140165343 | Gibbs et al. | Jun 2014 | A1 |
20140230333 | Lahnala | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
3203580 | Sep 1983 | DE |
3932724 | Apr 1991 | DE |
4008702 | Sep 1991 | DE |
0076924 | Apr 1983 | EP |
799711 | Jun 1936 | FR |
2970756 | Jul 2012 | FR |
458974 | Dec 1936 | GB |
484765 | May 1938 | GB |
Entry |
---|
English language abstract not found for FR 799 711; however, see English language equivalent GB 458 974. Original document extracted from espacenet.com database on Apr. 5, 2018, 4 pages. |
English language abstract and machine-assisted English translation for DE 32 03 580 extracted from espacenet.com database on Nov. 6, 2017, 9 pages. |
English language abstract and machine-assisted English translation for DE 39 32 724 extracted from espacenet.com database on Nov. 6, 2017, 6 pages. |
English language abstract and machine-assisted English translation for DE 40 08 702 extracted from espacenet.com database on Nov. 6, 2017, 9 pages. |
English language abstract and machine-assisted English translation for EP 0 076 924 extracted from espacenet.com database on Nov. 6, 2017, 12 pages. |
English language abstract and machine-assisted English translation for FR 2 970 756 extracted from espacenet.com database on Nov. 6, 2017, 9 pages. |
Hexpol Group, “Dryflex, Mediprene, Lifoflex—TPE Processing Guide”, downloaded from http://www.hexpoltpe.com/getfile.php?type=site_documents&id=tpe-processing-guide.pdf in May 2016, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20180119479 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62415823 | Nov 2016 | US |