Encapsulated polymerization initiators, polymerization systems and methods using the same

Information

  • Patent Grant
  • 9683147
  • Patent Number
    9,683,147
  • Date Filed
    Friday, April 8, 2016
    8 years ago
  • Date Issued
    Tuesday, June 20, 2017
    7 years ago
Abstract
A polymerizable system includes a curable composition and one or more encapsulated initiator particles. The curable composition can include one or more 1,1-disubstituted alkene compounds and the encapsulated initiator particles can include one or more polymerization initiators encapsulated by a cured composition. The cured composition includes one or more 1,1-disubstituted alkene compounds.
Description
TECHNICAL FIELD

The present disclosure generally relates to polymerizable systems containing encapsulated initiator particles or materials. The polymerizable systems can be useful as one-part adhesive compositions.


BACKGROUND

Polymerizable compositions are useful components in a number of applications and products and can be used, for example, as an adhesive, a coating, a sealant, a molding, a film, or as a composite binder. Known polymerizable compositions, however, have suffered from a number of significant drawbacks that have limited their potential applications and uses. For example, addition-type polymer systems have required relatively large quantities of polymerization initiators, extensive time requirements, and intense mixing to polymerize which have limited their use to certain applications. Other known polymerizable compositions suffer from other issues that preclude widespread utility. For example, cyanoacrylate compositions suffer from short shelf-lives and difficulty in application due to inactive substrate surfaces. It would therefore be advantageous to provide a polymerizable system that exhibits improved properties including on-demand polymerization without the need for additional ex situ curing agents, superior ease-of-use, long-term shelf stability, and excellent mechanical properties.


SUMMARY

According to one embodiment, a polymerizable system includes a curable composition, and one or more encapsulated initiator particles. The curable composition includes one or more 1,1-disubstituted alkene compounds. Each of the one or more encapsulated initiator particles includes one or more polymerization initiators substantially encapsulated by a cured composition. The cured composition includes one or more 1,1-disubstituted alkene compounds. Each polymerization initiator is capable of initiating polymerization of the curable composition.


According to another embodiment, a polymerizable system includes a curable composition, and one or more encapsulated initiator particles. The curable composition includes one or more 1,1-disubstituted alkene compounds. The one or more encapsulated initiator particles include an initiator matrix. The initiator matrix includes a first cured composition and one or more polymerization initiators substantially encapsulated by the first cured composition. The first cured composition includes one or more 1,1-disubstituted alkene compounds. The one or more polymerization initiators are capable of initiating polymerization of the curable composition.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 pictorially depicts different types of encapsulated initiator articles.



FIG. 2 pictorially depicts a matrix encapsulation of polymerization initiators according to one embodiment.



FIG. 3 pictorially depicts a shell encapsulation of an initiator matrix including polymerization initiators according to one embodiment.



FIG. 4 is a chart depicting the tensile shear strength of example polymerizable systems on various substrates.



FIG. 5 is a chart depicting the tensile strength versus cure time of an example polymerizable system.





DETAILED DESCRIPTION

As will be appreciated, polymerizable systems that can be cured on-demand without a polymerization initiator can be used in many applications where initiator-cured systems that require an external initiator are either unusable or undesirable. Such initiator-cured systems can refer to systems that require an additional component, external to the system, to initiate curing. In contrast, polymerizable systems that can be cured without a polymerization initiator can refer to systems that can undergo polymerization without the introduction, or contact, of any additional components external to the system using instead, for example, encapsulated initiators dispersed in the system.


Certain initiator-cured systems are disadvantageous because they are two-part polymerization systems. Two-part polymerization systems generally refer to polymerization systems that require the addition of at least a second component to the system to initiate polymerization.


Addition-type polymerization systems are examples of a two-part polymerization system. Generally, such systems are disadvantageous as a result of the cost and environmental hazards of the initiator components, the energy and time required to mix the initiator components into the polymerizable composition, the time-sensitive application and use of the mixed system, and the continued presence of the initiator components in the cured composition. For example, addition-type acrylate and methacrylate systems require the discrete addition of a relatively large quantity (e.g., about 2% or more) of various initiator components and catalysts into a polymerizable composition to induce polymerization. In such systems, the relatively large quantity of initiator compounds must be meticulously mixed into the system and remain in the cured composition. These disadvantages are a fundamental consequence of a two-part polymerization system and cannot be alleviated by using techniques such as substrate priming or improved initiators.


Other initiator-cured systems include moisture curing systems, such as cyanoacrylate systems, that can be cured upon contact with water or moisture. Although sometimes classified as one-part systems by industry standards, such moisture-sensitive systems suffer from several consequences as a result of using an external initiator. For example, moisture-sensitive curing systems are difficult to control due to their rapid polymerization upon contact with commonly found surface moisture, which can vary widely in concentration substrate to substrate and with seasonal atmospheric humidity. As such, they are unsuitable for use in certain applications such as those pertaining to various inorganic and/or acidic substrates. Additionally, cyanoacrylates also suffer from fairly limited physical and performance versatility. Attempts to improve cyanoacrylate systems through the addition of primers or additives have increased the complexity of use as well as the expense of such systems.


A polymerizable system that can be cured without the addition of an external polymerization initiator, such as a system that can be cured with pressure or force, can avoid these issues and can be used in a wide range of applications that are unsuitable for initiator-cured polymerization systems. For example, such systems can be readily stored as a usable composition, and can be polymerized without additional components, or the time constraints and mixing required in initiator-cured systems.


A polymerizable system with improved properties, including self-initiated polymerization without the addition of any external curing agent sources, can generally include a polymerizable composition and an encapsulated polymerization initiator dispersed within the polymerizable composition. Advantageously, such polymerizable systems can alleviate many of the problems of known polymerization systems and can be cured by rupturing encapsulated polymerization initiators.


According to certain embodiments, suitable polymerizable compositions and polymerization initiators can be selected from any pair of components that react upon contact with one another to initiate polymerization. However, particularly advantageous polymerizable compositions can be 1,1-disubstituted alkene compounds having two carbonyl groups bonded to the 1 carbon and a hydrocarbyl group bonded to each of the carbonyl groups (“hereinafter 1,1-disubstituted alkene compounds”). In such 1,1-disubstituted alkene compounds, the hydrocarbyl groups can be bonded to the carbonyl groups directly or through an oxygen atom.


According to certain embodiments, suitable hydrocarbyl groups can include at least straight or branched chain alkyl groups, straight or branched chain alkyl alkenyl groups, straight or branched chain alkynyl groups, cycloalkyl groups, alkyl substituted cycloalkyl groups, aryl groups, aralkyl groups, and alkaryl groups. Additionally, suitable hydrocarbyl groups can also contain one or more heteroatoms in the backbone of the hydrocarbyl group.


In certain embodiments, a suitable hydrocarbyl group can also, or alternatively, be substituted with a substituent group. Non-limiting examples of substituent groups can include one or more alkyl, halo, alkoxy, alkylthio, hydroxyl, nitro, cyano, azido, carboxy, acyloxy, and sulfonyl groups. In certain embodiments, substituent groups can be selected from one or more alkyl, halo, alkoxy, alkylthio, and hydroxyl groups. In certain embodiments, substituent groups can be selected from one or more halo, alkyl, and alkoxy groups.


In certain embodiments, suitable hydrocarbyl groups can be C1-20 hydrocarbyl groups. For example, the hydrocarbyl group can be an alkyl ether having one or more alkyl ether groups or alkylene oxy groups. Suitable alkyl ether groups can include, without limitation, ethoxy, propoxy, and butoxy groups. In certain embodiments, suitable hydrocarbyl groups can contain about 1 to about 100 alkylene oxy groups; in certain embodiments, about 1 to about 40 alkylene oxy groups; and in certain embodiments, about 1 to about 10 alkylene oxy groups. In certain embodiments, suitable hydrocarbyl groups can contain one or more heteroatoms in the backbone.


Suitable examples of more specific hydrocarbyl groups can include, in certain embodiments, C1-15 straight or branched chain alkyl groups, C1-15 straight or branched chain alkenyl groups, C5-18 cycloalkyl groups, C6-24 alkyl substituted cycloalkyl groups, C4-18 aryl groups, C4-20 aralkyl groups, and C4-20 alkaryl groups. In certain embodiments, the hydrocarbyl group can more preferably be C1-8 straight or branched chain alkyl groups, C5-12 cycloalkyl groups, C6-12 alkyl substituted cycloalkyl groups, C4-18 aryl groups, C4-20 aralkyl groups, or C4-20 alkaryl groups.


As used herein, alkaryl can include an alkyl group bonded to an aryl group. Aralkyl can include an aryl group bonded to an alkyl group. Aralkyl can also include alkylene bridged aryl groups such as diphenyl methyl or propyl groups. As used herein, aryl can include groups containing more than one aromatic ring. Cycloalkyl can include groups containing one or more rings including bridge rings. Alkyl substituted cycloalkyl can include a cycloalkyl group having one or more alkyl groups bonded to the cycloalkyl ring.


In certain embodiments, suitable alkyl groups can include methyl, ethyl, propyl, isopropyl, butyl, tertiary butyl, pentyl, hexyl, and ethyl hexyl. Similarly, examples of suitable cycloalkyl groups can include cyclohexyl and fenchyl groups. Examples of suitable alkyl substituted groups can include menthyl and isobornyl groups.


According to certain embodiments, suitable hydrocarbyl groups can include methyl, ethyl, propyl, isopropyl, butyl, tertiary butyl, ethyl pentyl, hexyl, ethyl hexyl, fenchyl, menthyl, and isobornyl groups.


In certain embodiments, illustrative examples of 1,1-disubstituted alkene compounds can include methylene malonates, methylene β-ketoesters, methylene β-di-ketones, di-alkyl di-substituted vinyls, di-haloalkyl di-substituted vinyls and any monofunctional, difunctional, or multifunctional monomers, oligomers, or polymers thereof. As can be appreciated, one or more of such illustrative examples can be used as a suitable polymerizable composition according to certain embodiments.


Generally, 1,1-disubstituted alkene compounds can have a variety of properties that make them particularly suitable for use in forming a polymerizable composition. For example, 1,1-disubstituted alkene compounds can exhibit water tolerance, can be optically clear in both cured and uncured states, and can have excellent adhesion properties and cure times. Additionally, 1,1-disubstituted alkene compounds can be readily polymerized upon exposure to a mild nucleophilic (or basic) agent without requiring energy-reactive conditions or mixing. For example, 1,1-disubstituted alkene compounds can polymerize at ambient conditions (e.g., at about room temperature and pressure).


In certain embodiments, 1,1-disubstituted alkene compounds can be monofunctional, difunctional, or multifunctional. Monofunctional compounds can refer to monomers that have a single addition polymerizable group. Difunctional compounds can refer to monomers, oligomers, resins, or polymers that contain two addition polymerizable groups. Multifunctional compounds can refer to any monomer, oligomer, resin, or polymer that contains three or more addition polymerizable groups. In contrast to monofunctional compounds, certain difunctional compounds and multifunctional compounds can undergo additional crosslinking, chain extension, or both when exposed to certain suitable polymerization initiators.


An illustrative example of a monofunctional 1,1-disubstituted alkene compound is depicted by general formula I:




embedded image



wherein each X can independently be O or a direct bond and R1 and R2 can be the same or different and can each represent a hydrocarbyl group.


An illustrative example of a multifunctional monomer having more than one methylene group connected by a multivalent hydrocarbyl group can be depicted by general formula II:




embedded image



wherein each X can independently be O or a direct bond; R3 and R5 can be the same or different and can each represent a hydrocarbyl group; R4 can be a hydrocarbyl group having n+1 valences; and n is an integer of 1 or greater. In certain embodiments, n can be 3 or fewer; and in certain embodiments, n can be 2 or fewer.


According to certain embodiments, specific examples of suitable polymerizable compositions can include methylene malonate compounds having general formula III:




embedded image



wherein R6 and R7 can be the same or different and can each represent a hydrocarbyl group. For example, in certain more specific embodiments, suitable methylene malonate compounds can include one or more of diethyl methylene malonate (“DEMM”), dimethyl methylene malonate (“DMMM” or “D3M”), hexyl methyl methylene malonate (“HMMM”), ethylethoxy ethyl methylene malonate (“EEOEMM”), fenchyl methyl methylene malonate (“FMMM”), dibutyl methylene malonate (“DBMM”), di-n-propyl methylene malonate, di-isopropyl methylene malonate, and dibenzyl methylene malonate. Additionally, in certain embodiments, certain transesterification reaction products formed from the reaction of methylene malonate compounds with acetates, diacetates, alcohols, diols, and polyols can also be used to form a suitable polymerizable composition.


According to certain embodiments, examples of suitable methylene beta ketoesters can be represented by general formula IV:




embedded image



wherein R8 and R9 can be the same or different and can each represent a hydrocarbyl group.


According to certain embodiments, examples of suitable methylene beta diketones can be represented by general formula V:




embedded image



wherein R10 and R11 can be the same or different and can each represent a hydrocarbyl group.


Additional details and methods of making suitable 1,1-disubstituted alkene compounds as well as other suitable polymerizable compositions are disclosed in U.S. Pat. No. 8,609,885; U.S. Pat. No. 8,884,051; and WO 2014/110388 each of which are hereby incorporated by reference.


According to certain embodiments, a suitable polymerization initiator can generally be selected from any agent that can initiate polymerization substantially upon contact with a selected polymerizable composition. In certain embodiments, it can be advantageous to select polymerization initiators that can induce polymerization under ambient conditions and without requiring external energy from heat or radiation.


In embodiments wherein the polymerizable composition is a 1,1-disubstituted alkene compound, a wide variety of polymerization initiators can be suitable including most nucleophilic initiators capable of initiating anionic polymerization. For example, suitable initiators include alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, halides (halogen containing salts), metal oxides, and mixtures containing such salts or oxides. Exemplary anions for such salts include anions based on halogens, acetates, benzoates, sulfur, carbonates, silicates and the like. The mixtures containing such salts can be naturally occurring or synthetic. Specific examples of suitable polymerization initiators for 1,1-disubstituted alkene compounds can include glass beads (being an amalgam of various oxides including silicon dioxide, sodium oxide, and calcium oxide), ceramic beads (comprised of various metals, nonmetals, and metalloid materials), clay minerals (including hectorite clay and bentonite clay), and ionic compounds such as sodium silicate, sodium benzoate, and calcium carbonate. Other polymerization initiators can also be suitable including certain plastics (e.g., ABS, acrylic, and polycarbonate plastics) and glass-fiber impregnated plastics. Additional suitable polymerization initiators for such polymerizable compositions are also disclosed in U.S. Patent App. Publication No. 2015/0073110, which is hereby incorporated by reference.


As can be additionally appreciated, in embodiments wherein the polymerizable composition is a 1,1-disubstituted alkene compound, neither water nor atmosphere appreciably initiates polymerization of the 1,1-disubstituted alkene compounds. Such environmental tolerances limit undesirable reactivity of composition prior to curing by deliberate exposure to a polymerization initiator.


According to certain embodiments, a polymerizable initiator can be encapsulated before inclusion in a polymerizable system. Encapsulation of the polymerizable initiator inhibits reactivity of the initiator and can allow for the creation of a polymerizable system that acts as a “one-part” system. As used herein, a “one-part” system can mean that a system can be cured without the addition of any external curing agents. A one-part polymerizable system including encapsulated polymerization initiators can instead cure by rupturing the encapsulated initiator particles to expose the polymerization initiators inside of the encapsulated initiator particles. As used herein, rupturing can mean damage to the encapsulated particle or microcapsule housing the polymerization initiators, thus exposing the polymerization initiator to the surrounding environment. As can be appreciated, rupturing can occur, or can be achieved, in a variety of ways including through mechanical or thermal means such as applied force or thermal shock. However, other methods of rupturing can be further contemplated including the use of ultrasonic vibrations and laser heating.


Generally, any type of encapsulation technique can be used including, for example, encapsulation of a suitable polymerization initiator to produce a mononuclear, polynuclear, or matrix encapsulated polymerization initiators. Each of these three types of encapsulated articles are generally depicted in FIG. 1. A mononuclear polymerization initiator can include a single polymerization initiator encapsulated by a non-reactive shell. A polynuclear polymerization initiator can include several polymerization initiators, each encapsulated by a surrounding shell. An initiator matrix can be formed of polymerization initiators substantially encapsulated into a cured composition (e.g., a binder).


According to certain embodiments, a suitable matrix encapsulated initiator particle can be prepared using a two-phase synthetic scheme. In such embodiments, the synthetic scheme can include a step of forming an initiator matrix of polymerization initiators and a step of encapsulating the initiator matrix with a shell layer.


In certain embodiments, the first step of producing an initiator matrix of polymerization initiators can be performed using a matrix encapsulation process. In an illustrative matrix encapsulation process, an initiator matrix containing polymerization initiators can be formed by dispersing suitable polymerization initiators into a medium and subsequently reacting the polymerization initiators with a desired quantity of a reactive composition as depicted in FIG. 2. The reactive composition can polymerize upon contact with the polymerization initiator and can encapsulate the polymerization initiator to form an initiator matrix including polymerized monomers and polymerization initiators. Any remaining residual polymerization can then be terminated by the addition of an appropriate termination compound or agent. In certain embodiments, polymerization can occur with constant agitation of the medium.


According to certain embodiments, the step of terminating residual polymerization can improve the production and yield of initiator matrices. For example, in certain matrix polymerization processes not including a termination step, only about 50% to about 80% of the polymerization initiators can be encapsulated by the addition of a reactive composition. The addition of a termination step to the same matrix polymerization process, however, can encapsulate about 100% of the polymerization initiators. Additionally, the step of terminating residual polymerization can also prevent agglomeration of multiple matrices together by lowering the reactivity of each of the individual matrices.


In certain embodiments encapsulating a polymerization initiator, the reactive composition can be a 1,1-disubstituted alkene compound such as a methylene malonate compound. As can be appreciated, such 1,1-disubstituted alkene compounds can react upon contact with a polymerization initiator and can polymerize to form initiator matrices. In such embodiments, a suitable termination compound can be any suitable anionic polymerization terminator including, for example, mineral acids such as methanesulfonic acid, sulfuric acid, and phosphoric acid and carboxylic acids such as acetic acid and trifluoroacetic acid. In certain embodiments, a suitable anionic polymerization terminator can be trifluoroacetic acid and can be added until the medium containing the encapsulated matrices is slightly acidic (e.g., at about 6 pH).


According to certain embodiments, the reactive composition can be the same or similar to the polymerizable composition of a polymerizable system. This similarity can confer certain benefits to the system. For example, a polymerizable system can have improved stability after the step of curing the system because the cured composition will be formed only of similarly-classed polymers with good compatibility. Further, the use of 1,1-disubstituted alkene compounds can also be individually advantageous because such compounds can produce encapsulated initiators that can rupture with forces that are particularly amenable to use. For example, encapsulated initiator particles formed with methylene malonate compounds as the matrix binder can rupture when a force of about 0.1 psi or more is applied to the particle in certain embodiments, when about 0.5 psi or more is applied to the particle in certain embodiments, or when about 1 psi or more of force is applied to the particle in certain embodiments. Encapsulated initiator particles that rupture with such amenable forces can also rupture in a polymerizable composition with particularly advantageous forces. For example, such encapsulated initiator particles, when further including a shell layer and when dispersed in a polymerizable composition, can rupture and initiate curing when about 50 psi or less of force is applied to the composition in certain embodiments, when about 30 psi or less of force is applied to the composition in certain embodiments, when about 10 psi or less of force is applied to the composition in certain embodiments, or when about 5 psi or more of force is applied to the composition in certain embodiments.


According to certain embodiments, a reactive composition can also be formed of 1,1-disubstituted alkene compounds that form polymers having different glass transition temperatures (“Tg”). For example, a reactive composition can be formed of 1,1-disubstituted alkene compounds that polymerize to a low temperature Tg polymer or polymerize to an elevated temperature Tg polymer (hereinafter “low Tg 1,1-disubstituted alkene compounds” and “elevated Tg 1,1-disubstituted alkene compounds” respectively). In certain embodiments, it can also be advantageous to form a reactive composition formed of a blend of both low Tg 1,1-disubstituted alkene compounds and elevated Tg 1,1-disubstituted alkene compounds. Reactive compositions including blends of mixed glass transition temperature 1,1-disubstituted alkene compounds can prevent coalescence of the initiator matrices and/or improve the rigidity of the matrix encapsulation.


In embodiments where a reactive composition includes a blend of both low Tg and elevated Tg 1,1-disubstituted alkene compounds, the reactive composition can include various quantities of low Tg and elevated Tg 1,1-disubstituted alkene compounds. For example, in certain embodiments, about 85% to about 99%, by weight, of a reactive composition can be formed of low Tg 1,1-disubstituted alkene compounds such as hexyl methyl methylene malonate. In certain embodiments, about 90% to about 97.5%, by weight, of a reactive composition can be formed of low Tg 1,1-disubstituted alkene compounds. A low Tg 1,1-disubstituted alkene compound can have a Tg of about 0° C. or less according to certain embodiments, or a Tg of about −10° C. or less according to certain embodiments. Examples of suitable low Tg 1,1-disubstituted alkene compounds can include methylmethoxy ethyl methylene malonate (0° C.), ethylethoxy ethyl methylene malonate (−18° C.), hexyl methyl methylene malonate (−34° C.), and dibutyl methylene malonate (−44° C.).


In such reactive composition blends of low Tg and elevated Tg 1,1-disubstituted alkene compounds, at least a portion of the remaining reactive composition can be elevated Tg 1,1-disubstituted alkene compounds. For example, in certain embodiments about 1% to about 15%, by weight, of the reactive composition can be an elevated Tg 1,1-disubstituted alkene compound. In certain embodiments, about 2.5% to about 5%, by weight, of the reactive composition can be an elevated Tg 1,1-disubstituted alkene compound. Elevated Tg 1,1-disubstituted alkene compounds can have a Tg of about room temperature (e.g., about 23° C.) or greater in certain embodiments, a Tg of about 30° C. or greater in certain embodiments, or a Tg of about 50° C. or greater in certain embodiments. Non-limiting examples of suitable elevated Tg 1,1-disubstituted alkene compounds can include diethyl methylene malonate (35° C.), dimethyl methylene malonate (55° C.), phenylpropyl methyl methylene malonate (50-70° C.), menthyl methyl methylene malonate (125-135° C.), and fenchyl methyl methylene malonate (140-190° C.). Certain elevated Tg 1,1-disubstituted compounds can be suitable due to crosslinking with difunctional or multifunctional 1,1-disubstituted alkene compounds. For example, the substitution of a diethyl methylene malonate composition (Tg of 35° C.) with about 10% difunctional pentane or hexane linked ethyl methylene malonate can increase the Tg of the diethyl methylene malonate composition by about 10° C. to reach an elevated Tg of about 45-55° C. and can be used as an elevated Tg 1,1-disubstituted alkene compound.


Matrix encapsulation can occur in a medium by dispersing both a polymerization initiator and a reactive composition into the medium. Appropriate mediums for the matrix encapsulation can be selected based on the reactivity and solubility of both the polymerization initiator and the reactive composition. For example, matrix encapsulation of glass beads or clay with diethyl methylene malonate can occur in a distilled or deionized aqueous medium as neither component is reactive with water. Conversely, matrix encapsulation of a salt such as sodium silicate can necessitate the use of an organic medium such as heptane.


In certain embodiments, the properties of an encapsulated initiator particle or microcapsule can be influenced through various modifications to the initiator, the reactive monomer, or through the addition of other components.


For example, in certain embodiments, the size and shape of a polymerization initiator can be selected based upon the intended use of the polymerizable system. Larger particle sizes can be selected, for example, when the polymerizable system is intended to be used as an adhesive to bond a relatively porous substrate, such as wood or ceramics, because the larger particles can fill in gaps in the porous substrate. Conversely, a relatively small particle size can be selected when the polymerizable system is intended to be used as an adhesive to bond non-porous surfaces such as a smooth metal substrate. These changes reflect that the size and shape of the polymerization initiator can affect the rheological and mechanical properties of the system. Additionally, initiators can also act as reinforcement material in the cured polymerizable systems and thus, the size, shape, and material selected can influence the strength and rigidity of the cured systems. Examples of such reinforcing initiators can include material-based initiators such as glass beads and fibers, ceramic beads, clays, polymeric additives (i.e., thermoplastic elastomers and tougheners), woven materials, and nucleophilic silica. Generally, initiators can be in any suitable shape or form and can be, for example, spherical, non-spherical, irregular, angular, textured, or layered. Suitable polymerization initiators can generally be about 0.1 microns to about 1,000 microns in average granulometry according to certain embodiments; about 50 microns to about 750 microns in average granulometry according to certain embodiments; and about 100 microns to about 500 microns in average granulometry according to certain embodiments. Granulometry can refer to the particle size as determined through any known technique including dynamic light scatting, imaging particle analysis, calibrated sieves or filters, and optical inspection or microscopy.


Alternatively or additionally, the reactive composition can be selected, or modified, to influence several properties including the adhesion strength of the polymerizable system, the elasticity of the system, and the propensity of the encapsulated initiator particles or microcapsules to agglomerate, or coalesce, in a polymerizable system. For example, the rheological properties of a system including encapsulated initiator particles or microcapsules can be influenced by selecting a reactive composition which polymerizes to form polymers with an appropriate glass transition temperature. In certain embodiments, the reactive composition can also be modified by using more than one reactive compound. For example, a blend of an elevated Tg 1,1-disubstituted alkene compound such as, for example, diethyl methylene malonate, with a low Tg 1,1-disubstituted alkene compound such as, for example, hexyl methyl methylene malonate, can be used to prevent undesirable agglomeration, or coalescence, of the encapsulated polymerization initiators in certain polymerizable systems. The glass transition temperature of an encapsulated polymerization initiator can also be influenced by the respective glass transition temperatures of the individual reactive compounds.


According to certain embodiments, the matrix encapsulation step can include further components. For example, in certain embodiments, a suitable plasticizer can be included with a reactive composition. Generally, suitable plasticizers can include plasticizers used to modify the rheological properties of adhesive systems including, for example, straight and branched chain alkyl-phthalates such as diisononyl phthalate, dioctyl phthalate, and dibutyl phthalate, as well as partially hydrogenated terpene, trioctyl phosphate, epoxy plasticizers, toluene-sulfamide, chloroparaffins, adipic acid esters, sebacates such as dimethyl sebacate, castor oil, xylene, 1-methyl-2-pyrrolidione and toluene. Commercial plasticizers such as HB-40 manufactured by Solutia Inc. (St. Louis, Mo.) can also be suitable. The inclusion of a plasticizer can generally influence the robustness and elasticity of the particle or microcapsule. In certain embodiments, about 5% or less of a reactive monomer can be substituted with a plasticizer.


In certain embodiments, the encapsulated initiator particle can still be reactive after the step of matrix encapsulation and/or be relatively tacky. Such issues can be alleviated by a second, shell encapsulation, step. In a shell encapsulation step, a shell can be polymerized around an initiator matrix by adding an additional reactive composition. Initiation of the resulting shell can occur from contact to exposed polymerization initiators on the surface of the initiator particle and, when a termination step is not performed after matrix encapsulation, by contact with active propagating polymers chains from the encapsulated initiator particles. In certain embodiments, the shell encapsulation step can occur in a medium and can occur with agitation. An example shell encapsulation step is generally depicted in FIG. 3.


As can be appreciated, the additional reactive composition can include the same reactive compound used in the matrix encapsulation step or can include a different reactive compound depending on the desired properties of the system. For example, in certain embodiments, diethyl methylene malonate can be used as the reactive compound in both the matrix encapsulation of the one or more initiators and the shell encapsulation of the initiator matrix. However, in other suitable examples, the shell layer reactive compositions can include one or more other 1,1-disubstituted alkene compounds or other compounds. For example, a suitable shell layer can be formed from a blend of diethyl methylene malonate with pentane or hexane linked difunctional monomers. Similarly to certain matrix encapsulation reactive compositions, the additional reactive composition can also, or alternatively, include a blend of 1,1-disubstituted alkene compounds that form polymers having different glass transition temperatures to improve rigidity of the shell layer and to reduce agglomeration or coalescence. In such embodiments, an elevated Tg 1,1-disubstituted alkene compound having, for example, a Tg of about room temperature or greater, or a Tg of about 50° C. or greater can be included in the additional reactive composition.


In certain embodiments, it can also be advantageous for the additional reactive composition to include difunctional or multifunctional compounds. The inclusion of difunctional and/or multifunctional compounds into the shell layer can allow for crosslinking of the cured oligomers or polymers to occur. In certain embodiments including difunctional or multifunctional compounds in the additional reactive composition, about 5% to about 15%, by weight, of the shell can be formed of the difunctional or multifunctional compounds. The resulting crosslinked shells can be stronger, with decreased permeability to the surrounding environment, and less reactive than shells formed from only monofunctional compounds. Additional modifications to the shell encapsulation step can also be performed, including, for example, the inclusion of a plasticizer.


Generally, after formation of a shell layer around the initial matrix, residual polymerization can be terminated by addition of an appropriate anionic polymerization terminator such as a weak acid (e.g., trifluoroacetic acid). The encapsulated initiator particles can then be rinsed and cleaned with deionized water. In certain embodiments, a subsequent rinsing process can be performed with a slightly acidic deionized water wash (e.g., about 6 pH) to passivate the encapsulated initiator particles.


Other techniques can also be used to prepare encapsulated polymerization initiators. For example, in certain embodiments, a matrix encapsulation step can be replaced by an alternative step that encapsulates a polymerization initiator with a non-reactive compound such as a wax compound (e.g., molten polyethylene wax). In certain embodiments, an initiator matrix formed through such alternative methods can subsequently be exposed to a reactive monomer to polymerize a shell layer.


Alternatively, in certain embodiments, the step of shell encapsulation can be replaced by other known encapsulation techniques. For example, shells could be formed around initiator matrices using one or more of a urea formaldehyde resin, a polyvinyl alcohol, a gelatin, an acrylate, or an oligomeric reactive monomer such as oligomeric isocyanate or epoxy functional resins. Other encapsulation techniques are disclosed in U.S. Patent App. Publication No. 2005/0067726, which is hereby incorporated by reference.


Encapsulated polymerization initiators can be non-reactive after encapsulation steps and can be added directly to a polymerizable composition to form a polymerizable system. However, as can be further appreciated, encapsulated polymerization initiators can also be stored separately from any polymerization composition and can then be added to the polymerizable composition at a later point prior to use. Depending upon the properties of the encapsulated polymerization initiators and the polymerizable composition, agglomeration of the encapsulated polymerization initiators can occur. In such situations, the addition of a thixotropic agent or anti-caking agent, such as fumed silica, can allow for proper dispersion of the encapsulated polymerization initiators within the polymerizable composition.


According to certain embodiments, certain polymerizable systems can also include other additional components. For example, one or more dyes, pigments, toughening agents, impact modifiers, rheology modifiers, plasticizing agents, natural or synthetic rubbers, filler agents, reinforcing agents, thickening agents, opacifiers, inhibitors, fluorescence markers, thermal degradation reducers, thermal resistance conferring agents, surfactants, wetting agents, or stabilizers can be included in a polymerizable system. For example, thickening agents and plasticizers such as vinyl chloride terpolymer (comprising vinyl chloride, vinyl acetate, and dicarboxylic acid at various weight percentages) and dimethyl sebacate respectively, can be used to modify the viscosity, elasticity, and robustness of a system. In certain embodiments, such thickening agents and other compounds can be used to increase the viscosity of a polymerizable system from about 1 to 3 cPs to about 30,000 cPs, or more.


According to certain embodiments, stabilizers can be included in a polymerizable system to increase and improve the shelf life and to prevent spontaneous polymerization. Generally, one or more anionic polymerization inhibitors such as liquid phase stabilizers (e.g., methanesulfonic acid (“MSA”)), vapor phase stabilizers (e.g., trifluoroacetic acid (“TFA”)), or free-radical stabilizers (e.g., 4-methoxyphenol or mono methyl ether of hydroquinone (“MeHQ”)) can be used as a stabilizer package as disclosed in U.S. Pat. No. 8,609,885 and U.S. Pat. No. 8,884,051, each incorporated by reference. Additional free radical polymerization inhibitors are disclosed in U.S. Pat. No. 6,458,956 and are hereby incorporated by reference. Anionic polymerization stabilizers are generally electrophilic compounds that scavenge electrons from the composition or growing polymer chain. The use of anionic polymerization stabilizers can terminate additional polymer chain propagation. Generally, only minimal quantities of a stabilizer are needed and, in certain embodiments only about 150 parts-per-million (“ppm”) or less can be included. In certain embodiments, a blend of multiple stabilizers can be included such as, for example, a blend of about 10 ppm MSA and 100 ppm MeHQ.


One-part polymerizable systems including encapsulated polymerization initiators can be used for a variety of applications. For example, in certain embodiments, the polymerizable systems can be used as an adhesive. When used as an adhesive, the polymerizable systems can have excellent properties including a viscosity of about 3,000 cPs to about 5,000 cPs, a set time of about 5 minutes to about 10 minutes on non-porous substrates, and a cure time of about 4 hours. Advantageously, such application times are amenable to both easy positioning and cleanup. Set time, as used herein, is defined as the ability of an adhesive composition to withstand a shear force of 0.2 N/mm2 for 10 seconds or more. Cure time, as used herein, can mean that 75% or more of the composition has been polymerized. Once the cure time has been reached, the polymerized composition can exhibit maximum mechanical strength properties.


The one-part polymerizable systems can also have excellent shelf life. For example, such systems can have a shelf life of at least 12 days at 50° C., and/or a shelf life of 20 weeks or more at ambient temperatures. A shelf life of 12 days at 50° C. can indicate a life span under ambient conditions of about six months or more in certain embodiments, and a life span of about one year or more in certain embodiments.


The tensile shear strengths of such polymerizable systems can vary and can be, for example, 1,000 psi or more on steel, 1,100 psi or more on hard maple wood, and 900 psi or more on polycarbonate. Additionally, the polymerizable composition does not bond skin.


In certain embodiments, the polymerizable systems can also be advantageously used as a threadlocking composition. In such embodiments, a polymerizable composition can be applied to a bolt or nut. Tightening of the nut can rupture the encapsulated initiator particles via mechanical shear and expose the polymerization initiators to the polymerizable composition. Such threadlocking compositions can be advantageous because it allows for a one-part application that can be activated when the nut or bolt is tightened, irrespective of substrate composition. In contrast, known two-part polymerizable systems require application of two components to the nut or bolt and must be used immediately after application of the second component. In certain embodiments, the present threadlocking compositions can additionally exhibit stronger break-loose torques than similar, conventionally cured systems. Additionally, certain systems can also exhibit stronger resistance to heat, cold, or dissolution in various liquids and solvents. For example, a steel bolt and zinc-plated nut system treated with a threadlocking composition can have a set time of about 15 minutes to about 30 minutes and can require torque of about 12 Nm to break loose. In a second example, a threadlocking composition can have a set time of about 5 minutes and can require torque of about 29 Nm to break loose after curing of about 24 hours. Additionally, the second example can exhibit resistance to 120° C. heat, −20° C. cold, as well as resistance to gasoline, acetone, and boiling water.


EXAMPLES

A variety of encapsulated initiator particles/microcapsules and polymerizable systems are depicted in Table 1. Table 1 includes Examples 1 to 8 and depicts the components of a matrix encapsulation step.

















TABLE 1





Components
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8







Glass Beads
  5 g


  5 g
  5 g
  5 g
  5 g
  5 g


Sodium

  5 g








Silicate


Clay


  5 g







(Bentone


SD-2)


H2O
 200 g

 200 g
 200 g
 200 g
 200 g
 200 g
 200 g


Heptane

 200 g








DEMM
 2.5 g
 2.5 g
 2.5 g
1.875 g 
2.25 g


0.25 g


DMMM






1.875 g 



EEOEMM



0.625 g 






HMMM





2.44 g
0.625 g 



DBMM







2.25 g


TFA
0.02 g
0.02 g
0.02 g
0.02 g
0.02 g
0.02 g
0.02 g
0.02 g


Dimethyl




0.25 g
0.06 g




Sebacate









The matrix encapsulation depicted in each of Examples 1 to 8 proceeds similarly. Initially, polymeric initiators (glass beads, sodium silicate, or clay) are uniformly dispersed in a medium (H2O or heptane) by mixing at 1,000 rpm. Subsequently, a reactive composition (DEMM, EEOEMM, or HMMM) is added dropwise to the medium and allowed to polymerize for one hour under continued agitation. Trifluoroacetic acid is then added to terminate any residual polymerization. The initiator matrices are then filtered and rinsed with deionized water. In Examples 5 and 6, a plasticizer (dimethyl sebacate) is added dropwise with the reactive monomer and included as part of the resulting matrix.


Each of Examples 1 to 8 demonstrate good encapsulation qualities. Examples 1 to 3, for example, produce high strength initiator matrices that do not crush (i.e., rupture) under applied pressure of 10 psi to 30 psi. Copolymerization with DEMM and EEOEMM in Example 4 produce elastic initiator matrices that can restore their shapes after deformations. The elastic initiator matrices of Example 4 rupture after application of minimal pressure such as hand pressure. Examples 5 and 6 incorporate a plasticizer. The incorporation of the plasticizer in Examples 5 and 6 reduce robustness and produce initiator matrices that rupture with hand pressure. However, the low glass transition temperature of HMMM in Example 6 allow for initiator matrices that are sufficiently robust for processing despite the plasticizer. Examples 7 and 8 are also suitable.


Table 2 depicts Examples 9 and 10 and illustrates the percentage of glass bead initiator particles that are encapsulated when the relative quantities of the reactive composition to the glass beads are varied. Additionally, Table 2 evaluates the effect of polymerization quenching through the addition of a weak acid. Example 9 is conducted without quenching and Example 10 includes acid quenching after polymerization. In each Example, polymerization occurs substantially similarly to Examples 1 to 8.











TABLE 2





Ratio of Glass Beads




to Reactive Monomer
Example 9
Example 10


(grams)
(No Quenching)
(Quenching)







0.5:1
79%
100%


0.75:1  
71%
100%


1:1
63%
100%


2:1
49%
98.9% 









As depicted in Table 2, Example 9 achieves encapsulation rates of between 49% and 79% depending on the relative quantity, by weight, between the reactive monomer composition and the glass beads. Example 10, which includes acid quenching but identical ratios, has encapsulation rates between 98.9% and 100%. As such, Example 10 demonstrates that improved encapsulation efficiency results when a polymerization quenching step is performed.


Example 11 is an additional matrix encapsulation made by coating glass beads with molten brittle polyethylene wax. By volume, the wax encapsulation consisted of about 75% glass beads and 25% polyethylene wax.


Examples of shell encapsulation are made on various initiator matrices. Shell layers are formed by dispersing the matrices in water at about 700 rpm and then forming a shell layer. In each shell encapsulation, about 0.5 g of DEMM is added dropwise to the medium containing the matrices for every 5 g of polymerization initiator. Polymerization is then allowed to occur by contacting exposed polymerization initiators on the surface of the initiator matrices for about 1 hour under continued mixing. The polymerization is then terminated with the addition of 0.02 g of trifluoroacetic acid. Shell encapsulated particles are then filtered and rinsed with deionized water.


Example 12 is a polymerizable system that includes encapsulated initiator particles and a polymerizable composition. Example 12 is produced from the components depicted in Table 3; its physical properties are depicted in Table 4. The encapsulated initiator particles included in Table 3 are formed by undergoing a two-phase synthesis consisting of a matrix encapsulation step similar to the process used in Examples 1 to 8 and a shell encapsulation step similar to the previously described shell encapsulation. The encapsulated initiator particles are then incorporated into a thickened methylene malonate formulation formed from the components described in Table 3. The encapsulated initiator particles of Example 12 also demonstrate the effect of using a blend of reactive monomers having different glass transition temperatures. The encapsulated initiator particles have a glass transition temperature of −21° C. which is between the glass transition temperatures of polymerized HMMM (−34° C.) and polymerized DEMM (35° C.).









TABLE 3







(Example 12)









Percent














Encapsulated Initiator Particle




Glass Beads
47.50%  



DEMM
 5%



HMMM
45%



Dimethyl Sebacate
2.50%



Polymerizable System



Microcapsules
10%



DEMM/DMMM Blend
66%



HMMM
11%



Polymeric Thickener
13%



Stabilizers
Trace










Table 4 depicts the physical properties of Example 12. As illustrated by Table 4, Example 12 exhibits excellent adhesive qualities.










TABLE 4





Property Measured
Measurements







Viscosity (Cone and Plate at 25° C.,
3,000 to 5,000 cPs


15-20 rpm, and 40-70% torque)


Accelerated Shelf Life Testing
12 days at 50° C.


Color (Uncured/Cured)
Transparent/Transparent


Odor
Sharp, sweet


Set Time
About 5-10 minutes on non-porous



substrates


Open Time
1+ hours (cure only begins after



rupturing of the microcapsules)


Cure Time
About 4 hours









Table 5 depicts two additional examples of polymerizable systems: Examples 13 and 14. Each of Examples 13 and 14 additionally include trace quantities of MSA (10 ppm) and MeHQ (100 ppm) which act as stabilizers for the polymerizable composition.











TABLE 5





Components
Example 13
Example 14

















Dimethyl methylene malonate

65.2%


Diethyl methylene malonate
65.2%



Hexyl methyl methylene malonate
12.3%
12.3%


Vinyl chloride terpolymer
10.5%
10.5%


(thickener)


Hydrophobic fumed silica
2.0%
2.0%


(thixotropic agent)


Micro-encapsulated glass beads
10.0%
10.0%










FIGS. 4 and 5 depict the tensile shear strength and cure profile of Examples 13 and 14. The tensile shear strength is measured on hard maple, steel, stainless steel, aluminum, acrylic, polycarbonate, ABS, and PVC.


Table 6 depicts the set time of Example 14 on various substrates.













TABLE 6








Lower Limit
Upper Limit



Substrate
(min)
(min)




















Hard Maple
45
60



Steel
2.75
7



Stainless Steel
4.75
9.5



Aluminum
4.5
9



Acrylic
4
8.75



Polycarbonate
4.5
7.5



ABS
4
7



PVC
3.5
6.5










The polymerizable compositions are also useful as threadlocking compositions. Table 7 depicts the performance properties of two threadlocking compositions: a comparative two-part system and a one-part system incorporating microencapsulated polymerization initiators. Comparative Example 15 is a two-part diethyl methylene malonate composition that cures, by the application of a secondary sodium benzoate initiator, in 30 seconds. Inventive Example 16 includes microencapsulated polymerization initiators and cures in about 5 minutes after the microencapsulated polymerization initiators are ruptured through mechanical shear. Strength and chemical resistance of each system were measured using Grade 2 steel bolts and nuts. Results of each Example are reported as the break-loose torque (Nm) required to break the bond.













TABLE 7







Break-Loose Torque
Comparative
Inventive



(Nm)
Example 15
Example 16




















After 1 Hour
16
15



After 24 Hours
28
29



After exposure to 120° C.
16
24



After exposure to −20° C.
17.5
25



After exposure to gasoline
11.5
18.5



After exposure to acetone
14
23



After exposure to boiling water
18
27










The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value.


It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


Every document cited herein, including any cross-referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in the document shall govern.


The foregoing description of embodiments and examples has been presented for purposes of description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed and others will be understood by those skilled in the art. The embodiments were chosen and described for illustration of various embodiments. The scope is, of course, not limited to the examples or embodiments set forth herein, but can be employed in any number of applications and equivalent articles by those of ordinary skill in the art. Rather it is hereby intended the scope be defined by the claims appended hereto.


It should be understood that certain aspects, features, structures, or characteristics of the various embodiments can be interchanged in whole or in part. Reference to certain embodiments means that a particular aspect, feature, structure, or characteristic described in connection with certain embodiments can be included in at least one embodiment and may be interchanged with certain other embodiments. The appearances of the phrase “in certain embodiments” in various places in specification are not necessarily all referring to the same embodiment, nor are certain embodiments necessarily mutually exclusive of other certain embodiments. It should also be understood that the steps of the methods set forth herein are not necessarily required to be performed in the orders described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps can be included in such methods, and certain steps may be omitted or combined, in methods consistent with certain embodiments.

Claims
  • 1. A polymerizable system comprising: a curable composition comprising one or more 1,1-disubstituted alkene compounds; andone or more encapsulated initiator particles, each of the one or more encapsulated initiator particles comprising: one or more polymerization initiators substantially encapsulated by a cured composition comprising one or more 1,1-disubstituted alkene compounds;wherein each polymerization initiator is capable of initiating polymerization of the curable composition, and wherein the one or more polymerization initiators comprise spherical, non-spherical, irregular, angular, textured or layered particles having an average granulometry of about 0.1 microns to about 1,000 microns.
  • 2. The polymerizable system of claim 1, wherein the one or more encapsulated initiator particles are dispersed in the curable composition.
  • 3. The polymerizable system of claim 1, wherein the one or more 1,1-disubstituted alkene compounds of the curable composition and the one or more 1,1-disubstituted alkene compounds of the cured composition are each selected from the group consisting of methylene malonates, methylene β-ketoesters, methylene β-diketones, dialkyl disubstituted vinyls, dihaloalkyl disubstituted vinyls, monofunctional, difunctional or multifunctional monomers, oligomers, or polymers thereof, and combinations thereof.
  • 4. The polymerizable system of claim 1, wherein the one or more 1,1-disubstituted alkene compounds of the curable composition and the one or more 1,1-disubstituted alkene compounds of the cured composition are different.
  • 5. The polymerizable system of claim 1 further comprises one or more of a plasticizer, a stabilizer, a thickening agent, and a thixotropic agent.
  • 6. The polymerizable system of claim 1 has a viscosity of about 1 cPs to about 30,000 cPs.
  • 7. The polymerizable system of claim 1 can be applied to a substrate and initiate polymerization of the curable composition when one or more of said encapsulated initiator particles is ruptured.
  • 8. The polymerization system of claim 7, wherein said encapsulated initiator particles can be ruptured through about 5 psi of mechanical force applied to the polymerizable system.
  • 9. The polymerizable system of claim 1 is an adhesive composition or a threadlocking composition and wherein the system has a set time of about 1 hour or less and a cure time of about 4 hours or less.
  • 10. The polymerizable system of claim 1 has a shelf life of about 20 weeks or more at ambient conditions.
  • 11. The polymerizable system of claim 1, wherein the ratio of the cured composition to the one or more polymerization initiators is a ratio of about 1:1 to about 2:1, by weight.
  • 12. The polymerizable system of claim 1, wherein the one or more polymerization initiators comprise one or more alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, halides, or metal oxides.
  • 13. The polymerizable system of claim 1, wherein the encapsulated initiator particles are mononuclear or polynuclear encapsulated initiator particles.
  • 14. The polymerizable system of claim 1, wherein the encapsulated initiator particles further comprise a shell layer surrounding and encapsulating the encapsulated initiator particles.
  • 15. A polymerizable system comprising: a curable composition comprising one or more 1,1-disubstituted alkene compounds; andone or more encapsulated initiator particles comprising: an initiator matrix comprising: a first cured composition comprising one or more 1,1-disubstituted alkene compounds; andone or more polymerization initiators substantially encapsulated by the first cured composition;wherein the one or more polymerization initiators are capable of initiating polymerization of the curable composition, and wherein the ratio of the cured composition to the one or more polymerization initiators is a ratio of about 1:1 to about 2:1 by weight.
  • 16. The polymerizable system of claim 15, wherein the encapsulated initiator particle further comprises a shell layer, wherein the shell layer surrounds and encapsulates the initiator matrix.
  • 17. The polymerizable system of claim 16, wherein the shell layer is formed of one or more of a second cured composition formed of one or more 1,1-disubstituted alkene compounds; a urea formaldehyde resin; a polyvinyl alcohol; a gelatin; an acrylate; and a cured oligomeric reactive monomer.
  • 18. The polymerizable system of claim 15, wherein the one or more polymerization initiators comprise spherical, non-spherical, irregular, angular, textured, or layered particles having an average granulometry of about 0.1 microns to about 1,000 microns.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/725,532 entitled ENCAPSULATED POLYMERIZATION INITIATORS, POLYMERIZATION SYSTEMS AND METHODS USING THE SAME, filed May 29, 2015, and hereby incorporates the same application herein by reference in its entirety.

US Referenced Citations (249)
Number Name Date Kind
2212506 Bachman et al. Aug 1940 A
2245567 Brant et al. Jun 1941 A
2277479 D'Alelio Mar 1942 A
2313501 Bachman et al. Mar 1943 A
2330033 D'Alelio Sep 1943 A
2403791 D'Alelio Jul 1946 A
2726204 Kilbourne et al. Dec 1955 A
2730457 Green et al. Jan 1956 A
3042710 Dickstein et al. Jul 1962 A
3140276 Forster Jul 1964 A
3197318 Halpern et al. Jul 1965 A
3203915 D'Alelio Aug 1965 A
3221745 Coover, Jr. et al. Dec 1965 A
3385777 Haycock et al. May 1968 A
3427250 Haas Feb 1969 A
3489663 Bayer et al. Jan 1970 A
3523097 Coover, Jr. et al. Aug 1970 A
3557185 Ito et al. Jan 1971 A
3591676 Hawkins et al. Jul 1971 A
3595869 Shuman Jul 1971 A
3677989 Jenkinson Jul 1972 A
3728373 Imohel et al. Apr 1973 A
3758550 Eck et al. Sep 1973 A
3759797 Masunaga et al. Sep 1973 A
3923836 Bender et al. Dec 1975 A
3936486 Egger et al. Feb 1976 A
3940362 Overhults Feb 1976 A
3945891 Aal et al. Mar 1976 A
3966562 Mukushi et al. Jun 1976 A
3975422 Buck Aug 1976 A
3978422 Rheinfelder Aug 1976 A
3995489 Smith et al. Dec 1976 A
4001345 Gorton et al. Jan 1977 A
4004984 Margen Jan 1977 A
4018656 Rogers et al. Apr 1977 A
4035243 Katz et al. Jul 1977 A
4036985 Amato et al. Jul 1977 A
4046943 Smith et al. Sep 1977 A
4049698 Hawkins et al. Sep 1977 A
4056543 Ponticello Nov 1977 A
4079058 Ackermann et al. Mar 1978 A
4080238 Wolinski et al. Mar 1978 A
4083751 Choi et al. Apr 1978 A
4102809 Smith et al. Jul 1978 A
4105688 Arni et al. Aug 1978 A
4118422 Klein Oct 1978 A
4140584 Margen Feb 1979 A
4148693 Williamson Apr 1979 A
4154914 Kuraya May 1979 A
4160864 Ponticello et al. Jul 1979 A
4176012 Bryant Nov 1979 A
4186058 Katz et al. Jan 1980 A
4186060 Katz et al. Jan 1980 A
4198334 Rasberger Apr 1980 A
4224112 Childs Sep 1980 A
4229263 Childs Oct 1980 A
4236975 Childs Dec 1980 A
4237297 Rody et al. Dec 1980 A
4243493 Gruber et al. Jan 1981 A
4256908 Nishimura et al. Mar 1981 A
4282067 Katz et al. Aug 1981 A
4282071 Sherrod Aug 1981 A
4291171 Baum et al. Sep 1981 A
4313865 Teramoto et al. Feb 1982 A
4319964 Katz et al. Mar 1982 A
4329479 Yabutani et al. May 1982 A
4396039 Klenk et al. Aug 1983 A
4399300 Prange et al. Aug 1983 A
4411740 Flaningam et al. Oct 1983 A
4440601 Katz et al. Apr 1984 A
4440910 O'Connor Apr 1984 A
4443624 Prange et al. Apr 1984 A
4444928 Karrer Apr 1984 A
4450067 Angevine et al. May 1984 A
4504658 Narisada et al. Mar 1985 A
4510273 Miura et al. Apr 1985 A
4517105 Laemmle et al. May 1985 A
4539423 Itatani et al. Sep 1985 A
4556649 Salzburg et al. Dec 1985 A
4560723 Millet et al. Dec 1985 A
4578503 Ishikawa et al. Mar 1986 A
4584064 Ciais et al. Apr 1986 A
4613658 Mathias et al. Sep 1986 A
4698333 Fauss et al. Oct 1987 A
4720543 McPherson et al. Jan 1988 A
4724053 Jasne Feb 1988 A
4727801 Yokoi et al. Mar 1988 A
4728701 Jarvis et al. Mar 1988 A
4736056 Smith et al. Apr 1988 A
4767503 Crescentini et al. Aug 1988 A
4769464 Sajtos Sep 1988 A
4783242 Robbins Nov 1988 A
4828882 Tsezos et al. May 1989 A
4835153 Kabota et al. May 1989 A
4840949 Korbonits et al. Jun 1989 A
4897473 Dombek Jan 1990 A
4914226 Di Trapani et al. Apr 1990 A
4931584 Bru-Magniez et al. Jun 1990 A
4932584 Yamazaki et al. Jun 1990 A
5021486 Galbo Jun 1991 A
5039720 Saatweber et al. Aug 1991 A
5064507 O'Donnell et al. Nov 1991 A
5142098 Bru-Magniez et al. Aug 1992 A
5162545 Etzbach et al. Nov 1992 A
5210222 O'Murchu May 1993 A
5227027 Topper Jul 1993 A
5259835 Clark et al. Nov 1993 A
5284987 Sikkenga et al. Feb 1994 A
5292937 Manning et al. Mar 1994 A
5312864 Wenz et al. May 1994 A
5328687 Leung et al. Jul 1994 A
5334747 Steffen Aug 1994 A
5397812 Usami et al. Mar 1995 A
5426203 Sohn et al. Jun 1995 A
5446195 Pacifici Aug 1995 A
5514371 Leung et al. May 1996 A
5514372 Leung et al. May 1996 A
5550172 Regula et al. Aug 1996 A
5565525 Morimoto et al. Oct 1996 A
5567761 Song Oct 1996 A
5575997 Leung et al. Nov 1996 A
5582834 Leung et al. Dec 1996 A
5624669 Leung et al. Apr 1997 A
5693621 Toepfer et al. Dec 1997 A
5817742 Toepfer et al. Oct 1998 A
5817870 Haas et al. Oct 1998 A
5886219 Steffen Mar 1999 A
5902896 Bauer May 1999 A
5952407 Rasoul et al. Sep 1999 A
6057402 Zhou et al. May 2000 A
6069261 Hoffmann et al. May 2000 A
6106807 Albayrak et al. Aug 2000 A
6143352 Clark et al. Nov 2000 A
6183593 Narang et al. Feb 2001 B1
6210474 Romano, Jr. et al. Apr 2001 B1
6211273 Bru-Magniez et al. Apr 2001 B1
6225038 Smith et al. May 2001 B1
6238896 Ozaki et al. May 2001 B1
6245933 Malofsky et al. Jun 2001 B1
6284915 Hirase et al. Sep 2001 B2
6291703 Schaerfl, Jr. et al. Sep 2001 B1
6376019 Leung Apr 2002 B1
6395737 Defossa et al. May 2002 B1
6395931 Carvalho et al. May 2002 B1
6413415 Weiss et al. Jul 2002 B1
6420468 Bru-Magniez et al. Jul 2002 B2
6440461 Bru-Magniez et al. Aug 2002 B1
6512023 Malofsky et al. Jan 2003 B1
6518677 Capote et al. Feb 2003 B1
6545097 Pinchuk et al. Apr 2003 B2
6559264 Konig et al. May 2003 B1
6610078 Bru-Magniez et al. Aug 2003 B1
6613934 Jegelka et al. Sep 2003 B1
6673957 Bartek et al. Jan 2004 B2
6699928 Cobbley et al. Mar 2004 B2
6716355 Hanemaaijer et al. Apr 2004 B1
6750298 Bru-Magniez et al. Jun 2004 B1
6794365 Al-Obeidi et al. Sep 2004 B2
6841064 Weiss et al. Jan 2005 B1
6936140 Paxton et al. Aug 2005 B2
7070675 Schmidt et al. Jul 2006 B2
7109369 Nose et al. Sep 2006 B2
7169727 Thorman Jan 2007 B2
7208621 Nose et al. Apr 2007 B2
7226957 Scranton et al. Jun 2007 B1
7305850 Tonkovich et al. Dec 2007 B2
7450290 Xu et al. Nov 2008 B2
7553989 Sawabe et al. Jun 2009 B2
7603889 Cypes et al. Oct 2009 B2
7610775 Tonkovich et al. Nov 2009 B2
7649108 Schal et al. Jan 2010 B2
7659423 McArdle Feb 2010 B1
7663000 Dekkers et al. Feb 2010 B2
7678847 Yan et al. Mar 2010 B2
7771567 Rives et al. Aug 2010 B2
7900558 Yokoi Mar 2011 B2
8119214 Schwantes et al. Feb 2012 B2
8206570 Deniau Jun 2012 B2
8318060 Sundberg et al. Nov 2012 B2
8425999 McArdle et al. Apr 2013 B2
8609885 Malofsky et al. Dec 2013 B2
8884051 Malofsky et al. Nov 2014 B2
9108914 Malofsky et al. Aug 2015 B1
9181365 Malofsky et al. Nov 2015 B2
9217098 Stevenson et al. Dec 2015 B1
9221739 Malofsky et al. Dec 2015 B2
9234107 Malofsky et al. Jan 2016 B2
9334430 Stevenson et al. May 2016 B1
9481640 McArdle et al. Nov 2016 B2
20010005572 Lobo et al. Jun 2001 A1
20010034300 Yurugi et al. Oct 2001 A1
20020143128 Cabioch et al. Oct 2002 A1
20020151629 Buffkin et al. Oct 2002 A1
20030096069 D'Alessio May 2003 A1
20030199655 Yurugi et al. Oct 2003 A1
20040057914 Bonda et al. Mar 2004 A1
20040076601 Bru-Magniez et al. Apr 2004 A1
20040082043 Yadav et al. Apr 2004 A1
20040086243 DiGiovanni et al. May 2004 A1
20040220060 Bartley et al. Nov 2004 A1
20050106781 Ogata May 2005 A1
20060001158 Matayabas, Jr. et al. Jan 2006 A1
20060073334 Schwantes et al. Apr 2006 A1
20060167267 Chorghade et al. Jul 2006 A1
20060197236 Basheer et al. Sep 2006 A1
20060211809 Kodemura et al. Sep 2006 A1
20070043145 Beck et al. Feb 2007 A1
20070049655 Yoshimune et al. Mar 2007 A1
20070092483 Pollock Apr 2007 A1
20070222051 Yoshimura et al. Sep 2007 A1
20080131618 Nakamura et al. Jun 2008 A1
20080160305 Warren et al. Jul 2008 A1
20080187655 Markle et al. Aug 2008 A1
20080227919 Li et al. Sep 2008 A9
20080241485 Shimohara et al. Oct 2008 A1
20080286333 Kangas et al. Nov 2008 A1
20090087151 Benjamin et al. Apr 2009 A1
20090200652 Oh et al. Aug 2009 A1
20090203861 Lee et al. Aug 2009 A1
20090263604 Arai et al. Oct 2009 A1
20090286433 Watanabe Nov 2009 A1
20100016508 Sasagawa et al. Jan 2010 A1
20100059179 Tribelhorn et al. Mar 2010 A1
20100124649 Rukavina et al. May 2010 A1
20100256720 Overstreet et al. Oct 2010 A1
20100286438 Malofsky et al. Nov 2010 A1
20110015406 Umetani et al. Jan 2011 A1
20110024392 Sato et al. Feb 2011 A1
20110164322 Morozumi et al. Jul 2011 A1
20110244010 Doshi Oct 2011 A1
20110255156 Jethmalani et al. Oct 2011 A1
20120083523 Richard et al. Apr 2012 A1
20120136130 Takashima et al. May 2012 A1
20120261807 Itoh et al. Oct 2012 A1
20120315388 Burckhardt et al. Dec 2012 A1
20130281580 Malofsky et al. Oct 2013 A1
20130303719 Malofsky et al. Nov 2013 A1
20140058031 Overbeek et al. Feb 2014 A1
20140173889 Johnson et al. Jun 2014 A1
20140248485 Malofsky et al. Sep 2014 A1
20140275400 Chen et al. Sep 2014 A1
20140288230 Malofsky et al. Sep 2014 A1
20140329980 Malofsky et al. Nov 2014 A1
20150056879 Malofsky et al. Feb 2015 A1
20150104660 Malofsky et al. Apr 2015 A1
20150148480 Ellison et al. May 2015 A1
20150210894 Malofsky et al. Jul 2015 A1
20150303122 Malofsky et al. Oct 2015 A1
20150361283 Malofsky et al. Dec 2015 A1
Foreign Referenced Citations (30)
Number Date Country
102901754 Jan 2013 CN
19508049 Sep 1996 DE
2788516 Jul 2000 FR
432628 Jul 1935 GB
965676 Aug 1964 GB
965767 Aug 1964 GB
975733 Nov 1964 GB
S5681537 Jul 1981 JP
02-281013 Nov 1990 JP
H08231564 Sep 1996 JP
09258448 Oct 1997 JP
200019936 Jul 2000 JP
2004-304125 Oct 2004 JP
2008174494 Jan 2007 JP
2011-025247 Feb 2011 JP
9946619 Sep 1999 WO
9955394 Nov 1999 WO
2006-098514 Sep 2006 WO
2007120630 Oct 2007 WO
2010129068 Nov 2010 WO
2011059104 Dec 2011 WO
2011161045 Dec 2011 WO
2012054616 Apr 2012 WO
2012054633 Apr 2012 WO
2013059473 Apr 2013 WO
2013066629 May 2013 WO
2013149173 Oct 2013 WO
2013149165 Oct 2013 WO
2013149168 Oct 2013 WO
WO 2013149165 Oct 2013 WO
Non-Patent Literature Citations (67)
Entry
M. Ware et al.: “DBU: An Efficient Catalyst for Knoeveganel Condensation under Solvent-free Condition,” Bulletin of the Catalysis Society of India, (2007), vol. 6, pp. 104-106.
V. G. Nenajdenko et al.: “Reaction of 2-Methylene-1 ,3-Dicarbonyl Compounds Containing a CF3-Group with 1 ,3-Dienes,” Tetrahedron, (2000), vol. 56, pp. 6549-6556.
J. S. Yadav et al.: “Phosphane-Catalyzed Knoevenagel Condensation: a Facile Synthesis of a-Cyanoacrylates and a-Cyanoacrylonitriles,” Eur. J. Orq. Chem. (2004), pp. 546-551.
B. C. Ranu et al.: “Ionic Liquid as Catalyst and Reaction Medium—a Simple, Efficient and Green Procedure for Knoevenagel Condensation of Aliphatic and Aromatic Carbonyl Compounds Using a Task-Specific Basic Ionic Liquid,” Euro. J. Org. Chem., (2006), pp. 3767-3770.
H. A. Oskooie et al.: “On Water: an Efficient Knoevenagel Condensation using 12-Tungstophosphoric Acid as a Reusable Green Catalyst,” Synthetic Communications, (2006), vol. 36, pp. 2819-2823.
H. Jiang et al.: “Inorganic Zinc Salts Catalyzed Knoevenagel Condensation at Room Temperature without Solvent,” Preparative Biochemistry & Biotechnology, (2009), vol. 39, pp. 194-200.
B. M. Reddy et al.: “An Easy-to-use Heterogeneous Promoted Zirconia Catalyst for Knoevenagel Condensation in liquid Phase under Solvent-Free conditions,” Journal of Molecular Catalysis A: Chemical, (2006), vol. 258, pp. 302-307.
D. H. Jung et al.: “New and General Methods for the Synthesis of Arylmethylene Bis(3-Hydroxy-2-Cyclohexene-1-0nes) and Xanthenediones by EDDA and In(OTf)3-Catalyzed One-Pot Domino Knoevenagel/Michael or Koevenagel/Michael/Cyclodehydration Reactions,” Bull. Korean Chem. Soc. (2009) vol. 30, No. 9, pp. 1989-1995.
P. Klemarczyk: “Adhesion Studies of Mixtures of Ethyl Cyanoacrylate with a Difunctional Cyanoacrylate Monomer and with other Electron-deficient Olefins,” J. Adhesion, (1999), vol. 69, pp. 293-306.
P. Klemarwczyk: “A General Synthesis of 1,1 Disubstituted Electron Deficient Olefins and their Polymer Properties,” Polymer, (1998), vol. 39, No. 1, pp. 173-181.
Gill, Charansingh, et al. “Knoevenagel condensation in neutral media: A simple and efficient protocol for the synthesis of electrophillic alkenes catalyzed by anhydrous ferric sulphate with remarkable reusability.” Bulletin of the Catalysis Society of India 7 (2008): 153-157.
P. Ballesteros et al.: “DI-tert-Butyl Methylenemalonate [Propanedioic Acid, Methylene-, bis(1, 1-dimethylethyl)ester],” Organic Syntheses. Coil. (1990), vol. 7, p. 142 ; (1986) vol. 64, p. 63.
A. M. Vetrova et al.: “Improvement of the Thermal Stability of Cyanoacrylate Adhesives,” Polymer Science, Series D, (2009), vol. 2, No. 1, pp. 27-30.
A. C. Cope: “Condensation Reactions. I. The Condensation of Ketones with Cyanoacetic Esters and the Mechanism of the Knoevenagel Reaction,” Condensation of Ketones with Cyanoacetic Esters, (1937), vol. 59, pp. 2327-2330.
G. Lai et al.: “Ionic Liquid Functionalized Silica Gel: Novel Catalyst and Fixed Solvent,”Tetrahedron Letters (2006), vol. 47, pp. 6951-6953.
J. R. Harjani et al.: “Lewis Acidic Ionic Liquids for the Synthesis of Electrophilic Alkenes via the Knoevenagel Condensation,” Tetrahedron Letters, (2002), vol. 43, pp. 1127-1130.
P. Ballesteros et al.: “Synthesis of DI-tert-Butyl Methylenemalonate, a Sterically Hindered 1,1-Dicarbonyl Alkene,” J. Org. Chem, (1983), vol. 48, pp. 3603-3605.
T. Doi et al.: “Synthesis of Dimethyl gloiosiphne A by Way of Palladium-Catalyzed Domino Cyclization,” J. Org. Chem., (2007), vol. 72, pp. 3667-3671.
Takagi et al.: Kogyo Kagaku Zasshi, Reaction of Active Methylene Radicals with Formaldehyde. L. Synthesis of Diethyl Methylenemalonate, 1953, 56, pp. 901-903, English abstract.
McNab, Kirk-Othmer Encyclopedia of chemical Technology, Pyrolysis, Flash Vacuum, 2009, John Wiley & Sons, Inc., pp. 1-26.
Block, “Diethyl bis (hydroxymethyl) malonate” Organic Syntheses, 1973, Coll. vol. 5, p. 381 [vol. 40, p. 27 (1960); Retrieved on Apr. 4, 2014 from internet: http://www.Orgsyn.org/content/pdfs/procedures/cv5p0381.pdf] p. 381, para 1. 1781-026 WO.
Magdalini Matziari et al. “Active methylene phosphinic peptides: a new diversification approach”, Organic Letters., vol. 8, No. 11, 2006, pp. 2317-2319, USACS, Washington DC, ISSN: 1523-7060.
Zaragoza Dorwald, Side Reactions in Organic Synthesis, 2005, Wiley-VCH Verlag GmbH & Co., KgaA, Weinheim, Preface. p. IX.
K. Okamura and T. Date, A Facile Conversion of Ethoxydihydropyrans to 4-Cyanoethylisoxazoles, J. Heterocyclic Chem. 33, 383 (1996).
Valentine G. Nenajdenko et al, Reaction of 2-Methylene-1,3-dicarbonyl Compounds Containing a CF3-Group with 1,3-Dienes Tetrahedron 56 (2000) 6549-6556.
Yamauchi et al. “Reactivity of 2-methyene-1,3-dicarbonyl compounds: catalytic enantioselective Diels-Alder reaction”, Tetrahedron Asymetry 12, (2001), 3113-3118.
Cristoph Schotes et al. “Cu(I)- and C(II)-Catalyzed Cyclo- and Michael Addition Reactions of Unsaturated [beta]-Ketoesters” The Journal of Organic Chemistry, vol. 76, No. 14 dated Jul. 15, 2011 p. 5862-5866.
Alejandro Bugarin et al. “Efficient direct [alpha]-methylenation of carbonyls mediated by dissopropylammonium trifluoroacetate”, Chemical Communications, vol. 46, No. 10 dated Jan. 1, 2010.
H. Hoffman et al. “Preparation and Selected Reaction of tery-Butyl 2-Methylene-3-oxoalkanoates” Chem. Ber., vol. 124 dated Jan. 1, 1991, pp. 2475-2480.
M. Yamauchi et al. “Reactivity of 2-Methylene-1, 3-dicarbonyl Compounds. 1,3-Dipolar Cycloaddition Reaction with Ethyl Diazoacetate”, Chem. Pham. Bull., vol. 49, No. 12, dated Jan. 1, 2001, pp. 1638-1639.
Lawrence N J et al. “Reaction of Baylis-Hillman products with Swern and Dess-Martin oxidants”, Tetrahedron Letters, Pergamon, GB, vol. 42 No. 23 dated Jun. 4, 2001, pp. 3939-3941.
Juliana Vale et al. “Efficient [alpha]-Methylenation of Carbonyl Compounds in Ionic Liquids at Room Temperature”, SYNLETT, vol. 2009, No. 01, Jan. 1, 2009 (Jan. 1, 2009), pp. 75-78, XP055170349, ISSN: 0936-5214, DOI: 10.1055/s-0028-1087389 *table 2; compound 3 *.
Weiss et al. Miniemulsion Polymerization as a Means to Encapsulate Organic and Inorganic Materials, Adv. Polymer Science, 2010, pp. 1-52, DOI:10.1007/12—2010—61.
Bhatia, Encapsulation of Particles Using Brittle Subterranean Applications, Thesis submitted to College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering, 1999.
McFarland et al, Free Radical Frontal Polymerization with a Microencapsulated Initiator, Macromolecules 2004, vol. 37, pp. 6670-6672.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2014/011068 dated as mailed May 12, 2014.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2011/056903 dated as mailed Jun. 7, 2012.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2011/056926 dated as mailed Feb. 28, 2012.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2012/060830 dated as mailed Feb. 1, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2012/060840 dated as mailed Mar. 12, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2012/060837 dated as mailed Jan. 9, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/034636 dated as mailed Jun. 20, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/034641 dated as mailed Jun. 25, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/034649 dated as mailed Aug. 27, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/043711 dated as mailed Nov. 22, 2013.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/070355 dated as mailed Mar. 19, 2014.
International Search Report (ISR) and Written Opinion of the Searching Authority in App. No. PCT/US2013/072203 dated as mailed Apr. 18, 2014.
International Preliminary Report on Patentability in App No. PCT/US2013/070355 dated as report issued May 19, 2015, 6 pages in its entirety.
M. McCoy, “A New Way to Stick” Chemical & Engineering News, vol. 26, Issue 26 (Jun. 30, 2014), pp. 17-18.
International Search Report (ISR) and Written Opinion of the Searching Authority in App No. PCT/US2015/047445 dated as mailed Nov. 30, 2015.
International Search Report (ISR) and Written Opinion of the Searching Authority in App No. PCT/US2015/047466 dated as mailed Dec. 1, 2015.
International Search Report (ISR) and Written Opinion of the Searching Authority in App No. PCT/US2015/048846 dated as mailed Dec. 4, 2015.
European Search Report of the European Patent Office, Issued in European Application No. 13770173.6-1301 / 2831124; dated as mailed on Oct. 9, 2015; 7 pages.
European Search Report of the European Patent Office, Issued in European Application No. 13767993.2-1302 / 2831185; dated as mailed on Jan. 7, 2016; 14 pages.
U.S. Appl. No. 14/948,734, filed Nov. 23, 2015.
U.S. Appl. No. 15/094,705, filed Apr. 8, 2016.
Bachman et al.: “Diethyl methylenemalonate”, May 17, 1939, Eastman Kodak Company, pp. 493-501.
P. Breton et al., “New Poly(Methylidene Malonate 2.1.2) Nanoparticles: Recent Developments”, Targeting of Drugs 4, NATO ASI Series, vol. 273, pp. 161-172, 1994.
Limouzin et al., “Anionic Polymerization of n-Butyl Cyanoacrylate in Emulsion and Miniemulsion” Macromolecules, vol. 36, 2003, pp. 667-674.
“Knoevenagel reaction on a molecular sieve”, Li Qifang et al., Chinese Science Bulletin, vol. 12, pp. 914-917.
“Knoevenagel Condensation Over Acidic Zeolite”, Zuo Bojun et al., Chinese Journal of Catalysis, vol. 23 (6), pp. 555-558.
“Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation”, Maksym Opanasenko, et al., Catalysis Science & Technology, vol. 3 p. 500-507.
Corey et al. “Total Synthesis of Gibberellic Acid. A Simple Synthesiss of a Key Intermediate”, J. Am. Chem. Soc. 1982, 104, 6129-6130.
Krishna et al. “Stereodefined Access to 3-Deoxy Sugars Through a Tandem Baylis-Hillman and Lewis Acid Catalyzed Reaction Sequence”, European Journal of Organic Chemistry, 2010, 813-817.
International Preliminary Report on Patentability in App No. PCT/US2013/070355 dated as issued May 19, 2015.
International Search Report (ISR) and Written Opinion of the Searching Authority in App No. PCT/US2016/027134 dated as mailed Jul. 15, 2016, 7 pages in its entirety.
International Search Report (ISR) and Written Opinion of the Searching Authority in App No. PCT/US2016/027099 dated as mailed Jul. 15, 2016, 8 pages in its entirety.
Related Publications (1)
Number Date Country
20160347976 A1 Dec 2016 US
Continuations (1)
Number Date Country
Parent 14725532 May 2015 US
Child 15094705 US