The present disclosure relates generally to an encapsulating protective cover for a switch to prevent accidental operation of the switch.
Machines and manufacturing or production environments may include switches that control various operations. A switch may be maintained in a particular position, e.g., an unactivated position, until an event occurs that requires activation of (e.g., turning-on) the switch. However, in some cases, the switch could be inadvertently activated, thus starting an operation unintentionally, or deactivate, stopping an operation unintentionally. It is thus desirable to prevent accidental operation of such a switch.
To prevent accidental operation of a switch during manufacturing, wiring to the switch may be removed or disconnected. In this manner, even if the switch is accidently activated (e.g., turned on), an electric circuit controlled by the switch would not become operational because current would not be discharged to the circuit. Wires can be reconnected later to make the switch operational again. However, disconnecting the wires and reconnecting them later may cause problems.
Disconnecting and reconnecting wires may cause damage to connector pins in the switch. Further, when the wires are reconnected, testing (e.g., electrostatic discharge testing) may be required to ensure operational safety of the switch and comply with regulations. Functional testing may also be required for the wires. A certified electrician may be required to reconnect the wires when they are disconnected. It is thus desirable to prevent accidental operation of the switch without disconnecting and reconnecting wiring to the switch.
The present disclosure describes embodiments that relate to methods, devices, and systems associated with an encapsulating protective cover for a switch. In one aspect, the present disclosure describes a device for preventing accidental operation of a switch. The device includes a main body and a latch element rotatably connected to the main body and is configured to move relative to the main body between an unlatched position and a latched position. In the latched position, the main body and the latch element encapsulate the switch. Also, in the latched position, the main body and the latch element form a cavity configured to accommodate wiring to the switch. Further, the main body is configured with a cutout to reveal a status of the switch.
In another aspect, the present disclosure describes a method for preventing accidental operation of a switch. The method includes rotating a latch element of an encapsulation device relative to a main body of the encapsulation device to an unlatched position. The latch element is pivotally mounted to the main body and is configured to rotate relative to the main body between the unlatched position and a latched position. The method also includes positioning the main body and the latch element such that the switch is disposed between the main body and the latch element. The method further includes rotating the latch element to the latched position to encapsulate the switch. The method also includes locking the latch element in the latched position. The main body and the latch element form a cavity configured to accommodate wiring to the switch, and the main body is configured with a cutout to reveal a status of the switch.
In still another aspect, the present disclosure describes a device for preventing accidental operation of a switch. The device includes an upper element and a lower element rotatably connected to the upper element by way of a pivot bolt. The lower element is configured to pivot about the pivot bolt relative to the upper element between an open position and a closed position. In the closed position, the upper element and the lower element encapsulate the switch in an off position. Also, in the closed position, the upper element and the lower element form a cavity configured to accommodate wiring to the switch. Further, in the closed position, the upper element and the lower element form a cutout to reveal a status of the switch.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the figures and the following detailed description.
The following detailed description describes various features and functions of the disclosed systems and methods with reference to the accompanying figures. The illustrative system and method embodiments described herein are not meant to be limiting. It may be readily understood that certain aspects of the disclosed systems and methods can be arranged and combined in a wide variety of different configurations, all of which are contemplated herein.
Further, unless context suggests otherwise, the features illustrated in each of the figures may be used in combination with one another. Thus, the figures should be generally viewed as component aspects of one or more overall implementations, with the understanding that not all illustrated features are necessary for each implementation.
Additionally, any enumeration of elements, blocks, or steps in this specification or the claims is for purposes of clarity. Thus, such enumeration should not be interpreted to require or imply that these elements, blocks, or steps adhere to a particular arrangement or are carried out in a particular order.
In examples, a machine, apparatus, vehicle, or a production environment may be equipped with a switch that is maintained in a particular state (e.g., off position) until an event occurs that requires changing the state of the switch (e.g., turning the switch on). As a particular example for illustration, an aircraft may be equipped with an escape ramp or evacuation slide used to evacuate the aircraft in emergencies. Such an evacuation slide may, for example, may be controlled by a switch. Such a switch may be installed in the aircraft in an unactivated state (e.g., in an off position). In the case of an emergency, the switch may be activated to deploy the evacuation slide.
As mentioned herein, the switch is installed in the aircraft in an unactivated state and should be maintained in such a state until an emergency situation occurs. Further, during the manufacturing of the aircraft or a door assembly of the aircraft, this switch should be maintained in an inactive or undeployed state. Accidentally activating such a switch during manufacturing may cause unintended deployment of the evacuation slide.
In another example related to an aircraft environment, some aircraft seats are equipped with airbags for protection during emergency situations. The airbags may be activated or made operational by activating a switch. Similar to the evacuation slide switch, the switch that makes the airbag operational should also be maintained in an undeployed state during manufacturing of the aircraft. Inadvertent activation of the switch may cause the airbag to be accidently deployed.
In still another example, many machines and production environments are equipped with switches that control safety operations. The switches are maintained in a particular position, e.g., an inactivated position, until an event occurs that requires activation of (e.g., turning-on) the switches. However, during, for example, manufacturing the machines including these switches, the switches could be inadvertently deployed.
These examples are for illustration only, and are not intended to be limiting. There are other examples of machinery and environments that include switches that should be maintained in an inactivated state until an event occurs. It is thus desirable to prevent accidental operation of such switches.
The switch 100 is configured to be maintained in an unactivated position until a particular event occurs (e.g., an emergency). However, left unprotected, the switch 100 may be accidently activated prior to occurrence of such an event. As an example, an operator working near the switch 100 in a manufacturing environment may inadvertently bump into the switch 100, thus causing the switch 100 to turn on. Such accidental activation may cause undesired circumstances. To prevent such unintentional activation, the switch 100 is protected by an encapsulating protective cover as described next.
The main body 202 has a hole 206, and a corresponding hole on the other side of the main body 202 (not shown in
A pivot bolt 210 is disposed and retained through the holes 206 and 208 such that the latch element 204 is rotatably connected to the main body 202 by way of the pivot bolt 210. In this manner, the latch element 204 is configured to pivot about the pivot bolt 210 relative to the main body 202 between an unlatched position (open position) and a latched position (closed position). The protective cover 200 is shown in
The main body 202 has a cutout 212 to reveal or indicate a status of the switch 100. An operator may look through the cutout 212 to determine whether the switch 100 is in an “off” state or an “on” state. The cutout 212 has a size that is sufficiently small to preclude entry of an object that could cause accidental operation of the switch 100. For example, the cutout 212 is sufficiently small that it would prevent an operator from accidently inserting a finger or a tool that would activate the switch 100. Further, the main body 202 has a slanted portion 214 shown in
Further, when the latch element 204 rotates to the latched/closed position shown in
Several techniques could be implemented to secure the latch element 204 in the latched or closed position shown in
Other techniques could be used to retain the latch element 204 in the latched position. Referring back to
Further, in an example, the locking pin 222 may be connected to a first end of a cable 224. A second end of the cable 224 may be affixed to the main body 202 or the latch element 204. For instance, as shown in
To remove the protective cover 200, the locking pin 222 may be removed, allowing the latch element 204 to rotate to the unlatched/open position, and the protective cover 200 may thus be pulled away from the switch 100. Access to the switch 100 is thus restored and the switch 100 can be activated.
The main body 202 and the latch element 204 could be made of different types of material based on an environment in which the protective cover 202 would be used. For instance, if the protective cover 202 is used in an aircraft-related environment, components of the protective cover 202 may be made of a fire retardant polymeric material that precludes scratching any other components of an aircraft. Material types could also be determined based on manufacturing techniques used to make the components. For instance, a material of a specific type may be used if the components are made using three-dimensional (3D) printing as opposed to machining or other manufacturing techniques.
As an example for illustration, the main body 202 and the latch element 204 could be made from a fire retardant nylon 11 laser sintering material, FR 106. In another example, ABS-M30, which is a production-grade thermoplastic material suitable for 3D printing, could be used. In still another example, ULTEM 9085, which is another thermoplastic material suitable for aerospace and automotive applications, could be used. These materials are examples for illustration only, and other materials are contemplated herein.
In the configuration shown in
At block 302, the method 300 includes rotating a latch element of an encapsulation device relative to a main body of the encapsulation device to an unlatched position, where the latch element is pivotally mounted to the main body and is configured to rotate relative to the main body between the unlatched position and a latched position.
In line with the discussion related to
The encapsulation device may be configured to protect a switch against accidental operation. The latch element may be pivotally mounted by way of a pivot bolt, such as the pivot bolt 210, to the main body to enable rotation of the latch element relative to the main body. The latch element can thus pivot between an unlatched/open position and a latched/close position.
At block 304, the method 300 includes positioning the main body and the latch element such that the switch is disposed between the main body and the latch element. To encapsulate the switch, the latch element may be rotated to an unlatched/open position and the main body may be positioned or placed on top of the switch and pressed down to cover the switch from the top. At this position, the switch is disposed at least partially between the main body and the latch element. Positioning the encapsulation device in this manner would preclude activating the switch (e.g., flipping the switch) as described above with respect to the slanted portion 214 illustrated in
At block 306 of the method 300, the method includes rotating the latch element to the latched position to encapsulate the switch. The latch element may be rotated to a latched/closed position to encompass or encapsulate the switch. At his position, the switch is encapsulated by the encapsulation device and is precluded from being inadvertently activated.
At block 308 of the method 300 includes locking the latch element in the latched position, where the main body and the latch element form a cavity configured to accommodate wiring to the switch, and the main body is configured with a cutout to indicate a status of the switch. To retain the latch element in the latched/closed position, the latch element may be locked in place. As an example, a locking pin, such as the locking pin 222, may be inserted in an aperture formed by holes in the main body and corresponding hole(s) in the latch element. In this example, the locking pin may be configured to prevent rotation of the latch element and may thus lock the latch element in the latched position.
As mentioned herein, the main body and/or the latch element may have a cutout that have a size that precludes access to the switch so as to prevent accidental activation of the switch. However, the cutout is sufficiently large to indicate or reveal the status of the switch to an observer.
It should be understood that arrangements described herein are for purposes of example only. As such, those skilled in the art will appreciate that other arrangements and other elements (e.g., machines, interfaces, orders, and groupings of operations, etc.) can be used instead, and some elements may be omitted altogether according to the desired results.
While various aspects and implementations have been disclosed herein, other aspects and implementations will be apparent to those skilled in the art. The various aspects and implementations disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope being indicated by the following claims, along with the full scope of equivalents to which such claims are entitled. It is also to be understood that the terminology used herein is for the purpose of describing particular implementations only, and is not intended to be limiting.
The present application is a continuation of U.S. patent application Ser. No. 14/849,133, filed on Sep. 9, 2015, the entire contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3246103 | Bellek | Apr 1966 | A |
5779083 | Bordwell | Jul 1998 | A |
6028268 | Stark et al. | Feb 2000 | A |
6462278 | Vrame | Oct 2002 | B1 |
6519208 | DeVries | Feb 2003 | B2 |
6649838 | Lopez, Sr. | Nov 2003 | B1 |
7262376 | Brojanac et al. | Aug 2007 | B2 |
7410372 | Johnson | Aug 2008 | B2 |
9222285 | Ilislamloo et al. | Dec 2015 | B1 |
20130200046 | Demandt et al. | Aug 2013 | A1 |
20150299988 | Abe et al. | Oct 2015 | A1 |
20170069440 | Terry et al. | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 14849133 | Sep 2015 | US |
Child | 15672867 | US |