Encased implant and methods

Information

  • Patent Grant
  • 6949118
  • Patent Number
    6,949,118
  • Date Filed
    Wednesday, January 16, 2002
    23 years ago
  • Date Issued
    Tuesday, September 27, 2005
    19 years ago
Abstract
A vascular implant includes a scaffold and a tubing in covering relating to the scaffold. Preferably, the tubing completely covers or encases the scaffold interior surface and exterior surface to leave no portion of the scaffold exposed. Methods for constructing includes pulling tubing through a scaffold and folding at least a portion of the tubing over at least one of the ends of the scaffold. Methods for using an implant include performing coronary vessel bypass procedures or forming blood flow paths in a blood vessel utilizing constructions described herein.
Description
TECHNICAL FIELD

This disclosure relates to vascular implants, methods of making, and methods of using.


BACKGROUND

U.S. Pat. No. 5,944,019, issued Aug. 31, 1999, teaches an implant for defining a blood flow conduit directly from a chamber of the heart to a lumen of a coronary vessel. An embodiment disclosed in this patent teaches an L-shaped implant in the form of a rigid conduit having one leg sized to be received within a lumen of a coronary artery and a second leg sized to pass through the myocardium and extend into the left ventricle of the heart. As disclosed in the '019 patent, the conduit is rigid and remains open for blood flow to pass through the conduit during both systole and diastole. The conduit penetrates into the left ventricle in order to prevent tissue growth and occlusions over an opening of the conduit. U.S. Pat. No. 5,944,019 is incorporated by reference herein.


U.S. Pat. No. 5,984,956, issued Nov. 16, 1999, discloses an implant with an enhanced fixation structure. The enhanced fixation structure includes a fabric surrounding at least a portion of the conduit to facilitate tissue growth on the exterior of the implant. U.S. Pat. No. 5,984,956 is incorporated herein by reference. U.S. Pat. No. 6,029,672 issued Feb. 29, 2000 teaches procedures and tools for placing a conduit. U.S. Pat. No. 6,029,672 is incorporated herein by reference.


Improvements in implants continue to be desirable.


SUMMARY

In one aspect, a vascular implant is provided that includes a scaffold and a tubing in covering relation to the scaffold. Preferably, the scaffold completely embeds the scaffold.


In another aspect, a method of making a vascular implant is provided. The method includes completely covering a scaffold interior surface and exterior surface with a tubing.


In another aspect, a method for performing a coronary vessel bypass procedure is provided. The method includes forming a blood flow path from a heart chamber directly to a coronary vessel by placing a conduit in a heart wall between the chamber and the vessel. The conduit includes tubing completely lining both an interior surface of the conduit and an exterior surface of the conduit.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side sectional view of one embodiment of an implant shown in place in a human heart wall with the implant establishing a direct blood flow path from a heart chamber to a coronary vessel, constructed according to principles of this disclosure;



FIG. 2 is a cross-sectional view of the embodiment of the implant shown in FIG. 1 in one step of constructing the implant;



FIG. 3 is a cross-sectional view of the implant shown in FIG. 2 during another step of making the implant;



FIG. 4 is a cross-sectional view of the implant shown in FIGS. 2 and 3 in another step of making the implant;



FIG. 5 is a side sectional view of a second embodiment of an implant shown in place in a human blood vessel, constructed according to principles of this disclosure;



FIG. 6 is a cross-sectional view of the embodiment of the implant shown in FIG. 5 during one step of constructing the implant;



FIG. 7 is a cross-sectional view of the implant shown in FIG. 6, during another step of constructing the implant;



FIG. 8 is a cross-sectional view of the implant shown in FIGS. 6 and 7 during another step for constructing the implant;



FIG. 9 is a cross-sectional view of the implant shown in FIGS. 6-8 and including an optional cuff;



FIG. 10 is a cross-sectional view of another embodiment of an implant shown during one step for constructing the implant;



FIG. 11 is a cross-sectional view of the implant shown in FIG. 10, during another step for constructing the implant; and



FIG. 12 is a cross-sectional view of the implant shown in FIGS. 10 and 11 in a final step for constructing the implant.





DETAILED DESCRIPTION

With initial reference to FIG. 1, an implant is shown generally at 10. The implant 10 includes a composite of a hollow, rigid conduit 12. The conduit 12 includes a wall 14 defining an outer surface 16 and a hollow interior 18. In preferred embodiments, the wall 14 has a circular cross-section, forming a tube or cylinder 20. The conduit 12 includes a first portion 24, preferably corresponding to a vessel or vasculature portion, and a second portion 26, generally corresponding to a myocardial portion. The conduit 12 includes an open first end 28 that is defined by the vascular portion 24. The conduit 12 also includes an open second end 30 that is defined by the myocardial portion 26.


In FIG. 1, a cross-section of the myocardium 32 of a human heart is shown. As can be seen in FIG. 1, in preferred embodiments, the first portion 24 is dimensioned to be received within a lumen 34 of a coronary vasculature 36. As used herein, the term “vasculature” refers to veins or arteries. Note that the vasculature 36 resides exterior of the myocardium 32. The second portion 26 is dimensioned to extend from the vasculature 36 through the myocardium 32 and into a heart chamber 38. In preferred implementations, the heart chamber 38 will be the left ventricle 40. As can be seen in FIG. 1, the conduit 12 defines a blood flow pathway 42 within the interior 18 between the open first end 28 and the open second end 30. This allows for the flow of oxygenated blood directly from the left ventricle 40 through the pathway 42 and into the vasculature 36.


Turning now to FIG. 4, the implant 10 is illustrated enlarged and in cross-section. The implant 10 is shown as it would appear before being operably inserted in the environment shown in FIG. 1. In reference now to FIG. 2, in preferred embodiments, the implant 10 includes a scaffold 50 to provide framework or support overall to the implant 10. The scaffold 50 is generally made from a material that will provide strength and integrity to the overall implant 10 and with which will be able to withstand the muscular pressure exerted by systolic and diastolic contractions of the myocardium 32. The scaffold 50 may either be impermeable or permeable. Suitable materials for the scaffold 50 include titanium or stainless steel. If the scaffold 50 is designed to be permeable, the scaffold 50 is formed into a matrix such as a permeable mesh.


In the embodiment shown in FIG. 2, the scaffold 50 defines an interior volume 52, a first end 54 and an opposite, second end 56. The scaffold 50 also defines an exterior surface 58 and an opposite, interior surface 60. As can be seen in FIG. 2, the interior surface 60 is immediately adjacent to and lines the interior volume 52. In the particular embodiment shown in FIG. 2, the scaffold 50 is non-straight. In particular, the scaffold 50 defines an interior angle between a first portion 62 and a second portion 64. In the embodiment shown, the angle between the first portion 62 and the second portion 64 is between 80°-100°, inclusive, preferably 90°. As such, the scaffold 50 is L-shaped.


In reference now to FIG. 3, the scaffold 50 is shown with a tubing 70 in covering relation to the scaffold 50. As can be seen in FIG. 3, the scaffold interior surface 60 is completely covered by the tubing 70 from the scaffold first end 54 all the way to the scaffold second end 56. Together, the scaffold interior surface 60 and the tubing 70 define a lumen 72. The lumen 72 corresponds to the interior 18 of the finished implant 10. The lumen 72 also forms at least a part of the blood pathway 42 (FIG. 1).


Still in reference to FIG. 3, the scaffold exterior surface 58 is also completely covered by the tubing 70 from the scaffold first end 54 to the scaffold second end 56. In this context, by “completely covered”, it is meant that the tubing 70 is continuous and without apertures, openings, passages, slits, slots, or other voids such that it forms a complete blanket over the scaffold 50 protecting the scaffold 50 from any exposures. From a review of FIG. 3, it can be seen that the tubing 70 completely encases the scaffold 50 to provide protection, durability, strength, and vascular compatibility to the scaffold 50. In preferred embodiments, the tubing 70 is made from expanded polytetrafluoroethylene (ePTFE).



FIGS. 2-4 illustrate example steps that may be followed to construct the implant 10. In FIG. 2, the tubing 70 is shown extended through the interior volume 52 of the scaffold 50. One way of accomplishing this step is by providing the scaffold 50 and inserting the tubing 70 through the interior volume 52 of the scaffold 50.


In general, the tubing 70 includes a wall 74 having a circular cross-section, such that the tubing 70 is generally cylindrical in shape. The tubing 70 includes an open first end 76, and an opposite, open second end 78. As can be seen in FIG. 2, the tubing 70 can be divided into three sections: a first section 80, a second section 82, and a third section 84. The first section 80 is a portion of the tubing that, during this step of the construction process in FIG. 2, extends from the first end 54 of the scaffold 50 exterior of the scaffold 50 in this step (but it is in subsequent steps, FIG. 3). That is, the first section 80 is not in contact with the scaffold 50. The second section 82 extends between the first section 80 and the third section 84. The second section 82 is the portion of the tubing 70 that is adjacent to and in contact with the scaffold 50 between the first end 54 and the second end 56. In the construction step shown in FIG. 2, the second section 82 extends along the interior surface 60 of the scaffold 50. The third section 84 projects from the second end 56 of the scaffold 50. The third section 84 is not in contact with the scaffold 50. The third section 84 defines the open second end 78, while the first section 80 defines the first open end 76.



FIG. 3 shows another step for constructing the implant 10. In FIG. 3, the tubing 70 can be seen to include at least a first fold 86 covering the scaffold first end 54. This may be accomplished by folding the first section 80 of the tubing 70 back against itself around the first end 54 and to cover the exterior surface 58 of the scaffold 50. In the particular embodiment shown, the first end 76 of the tubing 70 is adjacent to and against the scaffold second end 56. As can be seen in FIG. 3, the third section 84 remains in the same form that it was in FIG. 2, that is, extending from the scaffold second end 56, with the tubing second end 78 being remote from the scaffold 50.


Next, the tubing 70 and the scaffold 50 are bonded together to form a composite 90. The bonding may be done in a variety of methods including mechanical bonding, chemical bonding, and thermal bonding. FIG. 4 illustrates the resulting implant 10 after the tubing 70 and the scaffold 50 have been bonded together. The resulting implant 10 in FIG. 4 is the same implant shown in FIG. 1.


Reference is now made to FIGS. 5-9. FIG. 5 illustrates another embodiment of an implant 100. The implant 100 is shown within a blood vessel 102. The blood vessel 102 can be a coronary vessel or any of the vessels in the lumen body. The implant 100 can be used to extend through the myocardium of a human heart, as described above in connection with the embodiment of FIG. 1. The implant 100 functions as a stent 103 to help insure the passage of blood through a pathway 104. In the one shown in FIG. 5, the implant 100 is cylindrical in shape having a wall 106, opposite first and second ends 108, 110, and an interior volume 112. The interior volume 112 forms a portion of the blood pathway 104.



FIGS. 6-8 show steps in constructing the implant 100. As with the embodiment of FIGS. 1-4, the implant 100 includes a scaffold 114 and tubing 116. The scaffold 114, in this embodiment, is straight and unbent. The scaffold 114 defines first and second opposite ends 118, 120, an exterior surface 122, and an opposite interior surface 124.


Still in reference to FIG. 6, the tubing 116 has an open first end 126 and an opposite second end 128. The tubing 116 can be divided into first, second, and third sections 131, 132, and 133, respectively. The first section 131 extends from the first end 118 of the scaffold 114 and is not in immediate contact with the scaffold 114 in FIG. 6. The second section 132 is the portion of the tubing 116 that is in contact with the scaffold 114. The second section 132 extends between the first and second ends 118, 120 and lines the interior surface 124 of the scaffold 114. The third section 133 extends from the scaffold 114 from the second end 120 and does not immediately contact the scaffold 114 in the FIG. 6 illustration.



FIG. 7 illustrates a second step in forming the implant 100. In FIG. 7, the implant 100 is shown after the first section 131 has been folded around the first end 118 of the scaffold 114 to form a first fold 136 in the tubing 116. Also shown in FIG. 7, the third section 133 has been folded around the second end 120 of the scaffold 114 to form a second fold 138 in the tubing 116. As can be appreciated by reviewing FIG. 7, the tubing 116 is folded back around each of the ends 118, 120 such that the tubing 116 completely encases the scaffold 114. That is, the first section 131 is folded around the first end 118 to cover the exterior surface 122, as the third section 133 is folded around the second end 120 to also cover the exterior surface 122. The first end 126 of the tubing 116 meets up with the second end 128 of the tubing 116 in a manner in which the ends 126, 128 either abut each other or overlap to form a seam or joint 140. The joint 140 can be along any portion of the scaffold 114. In the particular embodiment shown in FIG. 7, the joint 140 is at about the mid point between the first and second ends 118, 120 of the scaffold 114.



FIG. 8 illustrates the implant 100 after the tubing 116 and scaffold 114 are bonded to form bonded structure 142. As with the implant 10, the implant 100 may be formed by one or combinations of mechanical bonding, chemical bonding, and thermal bonding.


The implant 100 can include an optional sleeve or cuff 144 around the joint 140 containing a tissue integration material, such as tissue growth inducing substances. This is described in commonly assigned U.S. Pat. No. 5,984,956, which is incorporated by reference herein.


Attention is next directed to the embodiment of FIGS. 10-12. An implant 150 is shown in FIG. 12, with steps in constructing the implant 150 shown in FIGS. 10 and 11. The implant 150 is analogous to the implant 10 of FIGS. 1-4 with the exception that the implant 150 is straight and unbent. The implant 150 is not L-shaped as the implant 10.


Other than the lack of an angle, the implant 150 is the same as the implant 10. As such, the implant 150 includes a scaffold 152 and tubing 154. The tubing 154 is bent around a first end 156 of the scaffold 152 to form a fold 158 adjacent to and against the first end 156. The tubing 154 is folded over the scaffold 152 such that the first end 160 of the tubing 154 is adjacent to and against the second end 162 of the scaffold 152. In this manner, the tubing 154 completely encases the scaffold 152 by completely lining the interior surface 164 of the scaffold 152 and covering the exterior surface 166 of the scaffold 152. A second section 168 of the tubing 154 remains extending from the second end 162 and is out of immediate and adjacent contact with the scaffold 152. FIG. 12 shows the implant 150 after the scaffold 152 and tubing 154 are bonded to form a bonded implant structure 170. Again, the bonding can be done by one of, or combinations of, mechanical, chemical, and thermal bonding.


From a review of each of the embodiments in FIGS. 1-12, it should be appreciated that the implants formed have scaffolds that are completely encased and covered by tubing. In preferred embodiments, there is no portion of the scaffold wall (including interior surface, exterior surface, and end rims) that is left exposed—all of these portions are covered by the tubing.


The implants 10, 100, and 150 can be used to treat human patients. In one application, the implant can be used in a method for performing a coronary vessel bypass procedure. This method includes forming a blood flow path, such as pathway 42 from heart chamber 38 directly to the coronary vessel 36 at a site in the vessel positioned between an obstruction in the vessel and tissue of the heart to be supplied with blood by the vessel. This step includes placing the implant 10, 100, 150 in the heart wall 32 between the chamber 38 and the vessel 36 with one end of the implant 10, 100, 150 protruding into the chamber 38 beyond an interior surface of the heart wall 32. The method includes the implant having tubing completely lining an interior surface and completely lining an exterior surface between opposite ends of the implant.


Methods for treating human patients also may include forming a blood path in a blood vessel by positioning an implant in the vessel. The implant would include implants of the type described herein.


The above description represents a complete description of example embodiments incorporating principles of the inventions. Many embodiments can be made.

Claims
  • 1. A vascular implant comprising: (a) a scaffold defining an interior volume, a first end, and an opposite second end; said scaffold having an exterior surface and an interior surface, said scaffold interior surface defining a lumen, said lumen including a longitudinal axis, said longitudinal axis including a bend between said first end and said second end; (i) said interior surface lining said interior volume; and (b) a tubing in covering relation to said scaffold; (i) said scaffold interior surface being completely covered by said tubing from said first end to said second end; (ii) said scaffold exterior surface being completely covered by said tubing from said first end to said second end, wherein said tubing includes a portion in extension away from and/or remote from said scaffold, wherein said tubing is folded over one of said first and second ends of the scaffold.
  • 2. A vascular implant according to claim 1 wherein: (a) said tubing comprises first and second ends and at least a first fold; (i) said first fold covering said scaffold first end.
  • 3. A vascular implant according to claim 2 wherein: (a) said tubing first end is adjacent to and against said scaffold second end.
  • 4. A vascular implant according to claim 1 wherein: (a) said tubing includes a first end and a second end; (i) said tubing second end forming an end of said extension remote from said scaffold.
  • 5. A vascular implant according to claim 4 wherein: (a) said scaffold is L-shaped.
  • 6. A vascular implant according to claim 1 wherein: (a) said tubing comprises expanded polytetrafluoroethylene.
  • 7. A vascular implant according to claim 1 wherein: (a) said scaffold comprises titanium or stainless steel.
  • 8. A vascular implant according to claim 1 wherein: (a) said scaffold comprises an impermeable tube.
  • 9. A vascular implant according to claim 1 wherein: (a) said scaffold comprises an impermeable mesh.
  • 10. A method of making a vascular implant; the method comprising: (a) providing a tubing having first and second ends; (b) providing a scaffold having an exterior surface; an interior surface; an interior volume; a scaffold first end; and an opposite scaffold second end, said scaffold interior surface defining a lumen, said lumen including a longitudinal axis, said longitudinal axis including a bend between said scaffold first end and said scaffold second end; (c) completely covering the scaffold interior surface from the scaffold first end to the scaffold second end with the tubing; and (d) completely covering the scaffold exterior surface from the scaffold first end to the scaffold second end with the tubing; wherein the vascular implant includes a portion of the tubing in extension away from and/or remote from said scaffold; wherein said tubing is folded over one of said first and second ends of the scaffold.
  • 11. A method according to claim 10 further including: (a) after said step of providing a scaffold, inserting the tubing through the interior volume of the scaffold; and (b) folding the tubing over at least the first end of the scaffold from the interior surface of the scaffold to the exterior surface of the scaffold.
  • 12. A method according to claim 11 further including: (a) after said step of folding, securing the tubing to the scaffold.
  • 13. A method according to 12 wherein: (a) said step of securing includes securing the tubing first end adjacent to and against the scaffold second end on the exterior surface of the scaffold.
  • 14. A method according to claim 10 wherein: (a) said tubing includes a first end and a second end; (b) said step of inserting the tubing includes inserting only a portion of the tubing into the scaffold interior volume and leaving a remaining portion of the tubing in extension from the scaffold; (i) the tubing second end forming an end of the remaining portion remote from the scaffold.
  • 15. A method according to claim 14 wherein: (a) said step of providing a scaffold includes providing an L-shaped scaffold.
  • 16. A method according to claim 10 further including: (a) securing the tubing to the scaffold by bonding; the bonding including at least one of mechanical bond, chemical bond, and thermal bond.
  • 17. A method for performing a coronary vessel bypass procedure for supplementing a flow of blood to a coronary vessel; the method comprising: (a) forming a blood flow path from a heart chamber directly to the coronary vessel at a site in the vessel positioned between an obstruction in the vessel and tissue of the heart to be supplied with blood by the vessel; (i) the step of forming including placing a conduit in a heart wall between the chamber and the vessel with a first end of the conduit protruding into the chamber and protruding beyond an interior surface of the heart wall; the conduit having a second end; (A) the conduit including a tubing completely lining an interior surface of the conduit between the first and second ends, and completely lining an exterior surface of the conduit between the first and second ends, said interior surface of the conduit defining a lumen, said lumen including a longitudinal axis, said longitudinal axis including a bend between said first end and said second end, wherein said tubing includes a portion in extension away from and/or remote from said conduit wherein said tubing is folded over one of said first and second ends of the conduit.
US Referenced Citations (281)
Number Name Date Kind
4953553 Tremulis Sep 1990 A
5193546 Shaknovich Mar 1993 A
5258008 Wilk Nov 1993 A
5287861 Wilk Feb 1994 A
5330486 Wilk Jul 1994 A
5344426 Lau et al. Sep 1994 A
5389096 Aita et al. Feb 1995 A
5409019 Wilk Apr 1995 A
5429144 Wilk Jul 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5554119 Harrison et al. Sep 1996 A
5593434 Williams Jan 1997 A
5618299 Khosravi et al. Apr 1997 A
5662124 Wilk Sep 1997 A
5733267 Del Toro Mar 1998 A
5755682 Knudson et al. May 1998 A
5758663 Wilk et al. Jun 1998 A
5807384 Mueller Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830222 Makower Nov 1998 A
5876373 Giba et al. Mar 1999 A
5878751 Hussein et al. Mar 1999 A
5885259 Berg Mar 1999 A
5908028 Wilk Jun 1999 A
5908029 Knudson et al. Jun 1999 A
5922022 Nash et al. Jul 1999 A
5925012 Murphy-Chutorian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938632 Ellis Aug 1999 A
5944019 Knudson et al. Aug 1999 A
5968064 Selmon et al. Oct 1999 A
5971993 Hussein et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5980533 Holman Nov 1999 A
5980548 Evans et al. Nov 1999 A
5984956 Tweden et al. Nov 1999 A
5990379 Gregory Nov 1999 A
5997525 March et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004261 Sinofsky et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6026814 LaFontaine et al. Feb 2000 A
6029672 Vanney et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6036677 Javier, Jr. et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6045565 Ellis et al. Apr 2000 A
6053924 Hussein Apr 2000 A
6053942 Eno et al. Apr 2000 A
6056743 Ellis et al. May 2000 A
6067988 Mueller May 2000 A
6068638 Makower May 2000 A
6071292 Makower et al. Jun 2000 A
6076529 Vanney et al. Jun 2000 A
6080163 Hussein et al. Jun 2000 A
6080170 Nash et al. Jun 2000 A
6092526 LaFontaine et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6093177 Javier, Jr. et al. Jul 2000 A
6093185 Ellis et al. Jul 2000 A
6102941 Tweden et al. Aug 2000 A
6113630 Vanney et al. Sep 2000 A
6113823 Eno Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6126654 Giba et al. Oct 2000 A
6132451 Payne et al. Oct 2000 A
6139541 Vanney et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6171251 Mueller et al. Jan 2001 B1
6182668 Tweden et al. Feb 2001 B1
6186972 Nelson et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6193726 Vanney Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6196230 Hall et al. Mar 2001 B1
6197050 Eno et al. Mar 2001 B1
6197324 Crittenden Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6203556 Evans et al. Mar 2001 B1
6213126 LaFontaine et al. Apr 2001 B1
6214041 Tweden et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6223752 Vanney et al. May 2001 B1
6224584 March et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231551 Barbut May 2001 B1
6231587 Makower May 2001 B1
6235000 Milo et al. May 2001 B1
6237607 Vanney et al. May 2001 B1
6238406 Ellis et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6248112 Gambale et al. Jun 2001 B1
6250305 Tweden Jun 2001 B1
6251079 Gambale et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6251116 Shennib et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6253768 Wilk Jul 2001 B1
6253769 LaFontaine et al. Jul 2001 B1
6254564 Wilk et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6258119 Hussein et al. Jul 2001 B1
6261304 Hall et al. Jul 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6290709 Ellis et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6302892 Wilk Oct 2001 B1
6322548 Payne et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6344027 Goll Feb 2002 B1
6350248 Knudson et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6363939 Wilk Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6379319 Garibotto et al. Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6390098 LaFontaine et al. May 2002 B1
6395208 Herweck et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6406488 Tweden et al. Jun 2002 B1
6406491 Vanney Jun 2002 B1
6409697 Eno et al. Jun 2002 B2
6409751 Hall et al. Jun 2002 B1
6416490 Ellis et al. Jul 2002 B1
6423089 Gingras et al. Jul 2002 B1
6432119 Saadat Aug 2002 B1
6432126 Gambale et al. Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6432132 Cottone et al. Aug 2002 B1
6443158 LaFontaine et al. Sep 2002 B1
6447522 Gambale et al. Sep 2002 B2
6447539 Nelson et al. Sep 2002 B1
6451050 Rudakov et al. Sep 2002 B1
6454760 Vanney Sep 2002 B2
6454794 Knudson et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6458140 Akin et al. Oct 2002 B2
6458323 Boekstegers Oct 2002 B1
6464709 Shennib et al. Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6475244 Herweck et al. Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491689 Ellis et al. Dec 2002 B1
6491707 Makower et al. Dec 2002 B2
6506408 Shioya Jan 2003 B1
6508783 DeVore Jan 2003 B2
6508824 Flaherty et al. Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6514271 Evans et al. Feb 2003 B2
6517527 Gambale et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524323 Nash et al. Feb 2003 B1
6524324 Mueller et al. Feb 2003 B1
6530914 Mickley Mar 2003 B1
6533779 Kinsella et al. Mar 2003 B2
6537310 Palmaz et al. Mar 2003 B1
6544220 Shuman et al. Apr 2003 B2
6544230 Flaherty Apr 2003 B1
6559132 Holmer May 2003 B1
6561998 Roth et al. May 2003 B1
6562066 Martin May 2003 B1
6565528 Mueller May 2003 B1
6565594 Herweck et al. May 2003 B1
6569145 Shmulewitz et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6573311 Martakos et al. Jun 2003 B1
6575168 LaFontaine et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6582444 Wilk Jun 2003 B2
6582463 Mowry et al. Jun 2003 B1
6585650 Solem Jul 2003 B1
6587718 Talpade Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6599304 Selmon et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6605053 Kamm et al. Aug 2003 B1
6605113 Wilk Aug 2003 B2
6610100 Phelps et al. Aug 2003 B2
6613026 Palasis et al. Sep 2003 B1
6613081 Kim et al. Sep 2003 B2
6616626 Crank et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6632470 Morra et al. Oct 2003 B2
6635214 Rapacki et al. Oct 2003 B2
6638237 Guiles et al. Oct 2003 B1
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6641610 Wolf et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652546 Nash et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6660003 DeVore et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6666863 Wentzel et al. Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6676695 Solem Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685716 Flaherty et al. Feb 2004 B1
6694983 Wolf et al. Feb 2004 B2
6709425 Gambale et al. Mar 2004 B2
6709427 Nash et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6719770 Laufer et al. Apr 2004 B2
6726677 Flaherty et al. Apr 2004 B1
6764518 Godin Jul 2004 B2
20010000041 Selmon et al. Mar 2001 A1
20010018596 Selmon et al. Aug 2001 A1
20010020172 Selmon et al. Sep 2001 A1
20010025643 Foley Oct 2001 A1
20010027287 Shmuelwitz et al. Oct 2001 A1
20010034547 Hall et al. Oct 2001 A1
20010037149 Wilk Nov 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010053932 Phelps et al. Dec 2001 A1
20020004662 Wilk Jan 2002 A1
20020007138 Wilk et al. Jan 2002 A1
20020032478 Boekstegers et al. Mar 2002 A1
20020045928 Boekstegers Apr 2002 A1
20020058897 Renati May 2002 A1
20020092535 Wilk Jul 2002 A1
20020095206 Addonizio et al. Jul 2002 A1
20020100484 Hall et al. Aug 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020193782 Ellis et al. Dec 2002 A1
20030044315 Boekstegers Mar 2003 A1
20030045828 Wilk Mar 2003 A1
20030055371 Wolf et al. Mar 2003 A1
20030078561 Gambale et al. Apr 2003 A1
20030105514 Phelps et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030149474 Becker Aug 2003 A1
20030158573 Gittings et al. Aug 2003 A1
20030163198 Morra et al. Aug 2003 A1
20030181938 Roth et al. Sep 2003 A1
20030191449 Nash et al. Oct 2003 A1
20030195457 LaFontaine et al. Oct 2003 A1
20030195458 Phelps et al. Oct 2003 A1
20030204160 Kamm et al. Oct 2003 A1
20030212413 Wilk Nov 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030229366 Reggie et al. Dec 2003 A1
20030236542 Makower Dec 2003 A1
20040006298 Wilk Jan 2004 A1
20040015225 Kim et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040037946 Morra et al. Feb 2004 A1
20040044392 Von Oepen Mar 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040073157 Knudson et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040077987 Rapacki et al. Apr 2004 A1
20040077988 Tweden et al. Apr 2004 A1
20040077990 Knudson et al. Apr 2004 A1
20040088042 Kim et al. May 2004 A1
20040106931 Guiles et al. Jun 2004 A1
Foreign Referenced Citations (154)
Number Date Country
757647 Feb 2003 AU
WO 9632972 Oct 1996 WO
WO 9635469 Nov 1996 WO
WO 9639962 Dec 1996 WO
WO 9639964 Dec 1996 WO
WO 9639965 Dec 1996 WO
WO 9713463 Apr 1997 WO
WO 9713471 Apr 1997 WO
WO 9727893 Aug 1997 WO
WO 9727897 Aug 1997 WO
WO 9727898 Aug 1997 WO
WO 9732551 Sep 1997 WO
WO 9743961 Nov 1997 WO
WO 9803118 Jan 1998 WO
WO 9806356 Feb 1998 WO
WO 9810714 Mar 1998 WO
WO 9816161 Apr 1998 WO
WO 9824373 Jun 1998 WO
WO 9825533 Jun 1998 WO
WO 9838916 Sep 1998 WO
WO 9838925 Sep 1998 WO
WO 9838939 Sep 1998 WO
WO 9838941 Sep 1998 WO
WO 9839038 Sep 1998 WO
WO 9846115 Oct 1998 WO
WO 9846119 Nov 1998 WO
WO 9849964 Nov 1998 WO
WO 9857590 Dec 1998 WO
WO 9857591 Dec 1998 WO
WO 9857592 Dec 1998 WO
WO 9907296 Feb 1999 WO
WO 9908624 Feb 1999 WO
WO 9915220 Apr 1999 WO
WO 9917671 Apr 1999 WO
WO 9917683 Apr 1999 WO
WO 9921490 May 1999 WO
WO 9921510 May 1999 WO
WO 9922655 May 1999 WO
WO 9922658 May 1999 WO
WO 9925273 May 1999 WO
WO 9927985 Jun 1999 WO
WO 9935977 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9935980 Jul 1999 WO
WO 9936000 Jul 1999 WO
WO 9936001 Jul 1999 WO
WO 9938459 Aug 1999 WO
WO 9940853 Aug 1999 WO
WO 9940868 Aug 1999 WO
WO 9940963 Aug 1999 WO
WO 9944524 Sep 1999 WO
WO 9948545 Sep 1999 WO
WO 9948549 Sep 1999 WO
WO 9949793 Oct 1999 WO
WO 9949910 Oct 1999 WO
WO 9951162 Oct 1999 WO
WO 9953863 Oct 1999 WO
WO 9955406 Nov 1999 WO
WO 9960941 Dec 1999 WO
WO 9962430 Dec 1999 WO
WO 0009195 Feb 2000 WO
WO 0012029 Mar 2000 WO
WO 0013722 Mar 2000 WO
WO 0015146 Mar 2000 WO
WO 0015147 Mar 2000 WO
WO 0015148 Mar 2000 WO
WO 0015149 Mar 2000 WO
WO 0015275 Mar 2000 WO
WO 0018302 Apr 2000 WO
WO 0018323 Apr 2000 WO
WO 0018325 Apr 2000 WO
WO 0018326 Apr 2000 WO
WO 0018331 Apr 2000 WO
WO 0018462 Apr 2000 WO
WO 0021436 Apr 2000 WO
WO 0021461 Apr 2000 WO
WO 0021463 Apr 2000 WO
WO 0024449 May 2000 WO
WO 0033725 Jun 2000 WO
WO 0035376 Jun 2000 WO
WO 0036997 Jun 2000 WO
WO 0041632 Jul 2000 WO
WO 0041633 Jul 2000 WO
WO 0043051 Jul 2000 WO
WO 0045711 Aug 2000 WO
WO 0045886 Aug 2000 WO
WO 0049952 Aug 2000 WO
WO 0049954 Aug 2000 WO
WO 0049956 Aug 2000 WO
WO 0054660 Sep 2000 WO
WO 0054661 Sep 2000 WO
WO 0056224 Sep 2000 WO
WO 0056225 Sep 2000 WO
WO 0056387 Sep 2000 WO
WO 0066007 Nov 2000 WO
WO 0066009 Nov 2000 WO
WO 0066035 Nov 2000 WO
WO 0069346 Nov 2000 WO
WO 0069504 Nov 2000 WO
WO 0071195 Nov 2000 WO
WO 0108566 Feb 2001 WO
WO 0108602 Feb 2001 WO
WO 0110340 Feb 2001 WO
WO 0110341 Feb 2001 WO
WO 0110347 Feb 2001 WO
WO 0110348 Feb 2001 WO
WO 0110349 Feb 2001 WO
WO 0110350 Feb 2001 WO
WO 0117440 Mar 2001 WO
WO 0117456 Mar 2001 WO
WO 0123016 Apr 2001 WO
WO 0141657 Jun 2001 WO
WO 0149187 Jul 2001 WO
WO 0168158 Sep 2001 WO
WO 0170133 Sep 2001 WO
WO 0172239 Oct 2001 WO
WO 0178801 Oct 2001 WO
WO 0182803 Nov 2001 WO
WO 0182837 Nov 2001 WO
WO 02011647 Feb 2002 WO
WO 02011807 Feb 2002 WO
WO 02013698 Feb 2002 WO
WO 02013699 Feb 2002 WO
WO 02013703 Feb 2002 WO
WO 02013704 Feb 2002 WO
WO 02024108 Mar 2002 WO
WO 02024247 Mar 2002 WO
WO 02024248 Mar 2002 WO
WO 02026310 Apr 2002 WO
WO 02026462 Apr 2002 WO
WO 02030325 Apr 2002 WO
WO 02030326 Apr 2002 WO
WO 02030330 Apr 2002 WO
WO 02032330 Apr 2002 WO
WO 02034323 May 2002 WO
WO 02045598 Jun 2002 WO
WO 02049465 Jun 2002 WO
WO 02056937 Jul 2002 WO
WO 02058567 Aug 2002 WO
WO 02058591 Aug 2002 WO
WO 02060509 Aug 2002 WO
WO 02062265 Aug 2002 WO
WO 02064020 Aug 2002 WO
WO 02071974 Sep 2002 WO
WO 02074175 Sep 2002 WO
WO 02091958 Nov 2002 WO
WO 03008005 Jan 2003 WO
WO 03015638 Feb 2003 WO
WO 03017870 Mar 2003 WO
WO 03024307 Mar 2003 WO
WO 03028522 Apr 2003 WO
WO 03030744 Apr 2003 WO
WO 03030784 Apr 2003 WO
WO 03041469 Jun 2003 WO
Related Publications (1)
Number Date Country
20030135260 A1 Jul 2003 US