A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Not Applicable
Not Applicable
The present invention relates generally to a geothermal direct exchange (“DX”) heating/cooling system, which is also commonly referred to as a “direct expansion” heating/cooling system, comprising various design improvements and various specialty applications. More specifically, the present invention pertains to novel designs for encasements used to install refrigerant tubing in a vertical well DX heating/cooling system.
Geothermal ground source/water source heat exchange systems typically utilize fluid-filled closed loops of tubing buried in the ground, or submerged in a body of water, so as to either absorb heat from, or to reject heat into, the naturally occurring geothermal mass and/or water surrounding the buried or submerged fluid transport tubing. The tubing loop is extended to the surface and is then used to circulate either the naturally warmed or the naturally cooled fluid to an interior air heat exchange means.
Geothermal water-source heating/cooling systems of a traditional design typically circulate, via a water pump, a fluid comprised of water, or water with anti-freeze, in plastic (typically polyethylene) underground geothermal tubing so as to transfer geothermal heat to or from the ground in a first heat exchange step. In a second heat exchange step, a refrigerant heat pump system is utilized to transfer heat to or from the water. In a third heat exchange step, an interior air handler (comprised of finned tubing and a fan) is utilized to transfer heat to or from the refrigerant to heat or cool interior air space.
In more contemporary geothermal DX heat exchange systems, the refrigerant fluid transport lines are placed directly in the sub-surface ground and/or water. The fluid transport lines typically circulate a refrigerant fluid, such as R-22, R-410A, or the like, in sub-surface refrigerant lines, typically comprised of copper tubing, to transfer geothermal heat to or from the sub-surface elements via a first heat exchange step. DX systems require only a second heat exchange step to transfer heat to or from the interior air space, typically by means of an interior air handler. Consequently, DX systems are generally more efficient than water-source systems because fewer heat exchange steps are required and because no water pump energy expenditure is necessary. Further, DX systems are generally more efficient than water-source systems because copper is a better heat conductor than most plastics, and because the refrigerant fluid circulating within the copper tubing of a DX system generally has a greater temperature differential with the surrounding ground than the water circulating within the plastic tubing of a water-source system. Also, less excavation and drilling are typically required, and installation costs are typically lower, with a DX system as compared to a water-source system.
While most in-ground/in-water DX heat exchange designs are feasible, various improvements have been developed intended to enhance overall system operational efficiencies. Several such design improvements, particularly in direct expansion/direct exchange geothermal heat pump systems, are taught in U.S. Pat. No. 5,623,986 to Wiggs; in U.S. Pat. No. 5,816,314 to Wiggs, et al.; in U.S. Pat. No. 5,946,928 to Wiggs; and in U.S. Pat. No. 6,615,601 B1 to Wiggs, the disclosures of which are incorporated herein by reference. Such disclosures encompass both horizontally and vertically oriented sub-surface heat geothermal heat exchange means.
The present invention primarily relates to DX systems installed with vertically oriented sub-surface geothermal heat exchange apparatus, although an embodiment to utilize the invention in a lake or similar installation is also disclosed. Historically, copper refrigerant transport tubing is inserted within vertically oriented wells/boreholes by dropping and/or pushing the copper tubing into the wells. Several problems are encountered with this procedure. First, the refrigerant transport tubing is generally comprised of one smaller sized liquid copper refrigerant transport tube and one larger sized copper vapor refrigerant transport tube, coupled by means of a U-bend, or the like, at or near the lower distal end of the refrigerant transport tubing within the well. The lower distal end of the refrigerant transport tubing is subject to bending and/or other damage as it is lowered into the well and when it comes into contact with the bottom of the well. For example, the U-bend can be scraped, dented, punctured, or crimped. Any such damage can either impede the refrigerant flow and impair system operational efficiencies or create a refrigerant leak which renders the system totally useless.
Further, those of skill in the art understand that when refrigerant tubing is installed within a well, several other problems can periodically be encountered. One such problem is that casing is sometimes required to shore up-loose soil until solid rock is encountered. In such case, a smaller drill bit is extended through the casing and is then used to drill through the rock to the desired depth. As a result, a small, rounded ledge of rock is usually left at the point within the well where the casing stops and the drilling through the rock begins. This occurs because the smaller drill bit used to drill through the rock has a smaller diameter than the larger drill bit used to open a hole large enough for the casing. Casing, for example, may be 6 inches in diameter, whereas the drill bit through the lower rock may be only 4.5 inches in diameter. This small rock ledge quite often acts as an impediment to lowering the copper refrigerant transport lines into the well.
This small rock ledge also quite often acts as an impediment to lowering the trimmie tube into the well. A trimmie tube is used to pump grout into the well from the bottom to the top, so as to remove all air gaps once the copper tubing has been installed. A trimmie tube is often a 1 to 1.25 inch diameter polyethylene tube, or the like, with a round, open, distal end. The trimmie tube must be installed together with the copper tubing all the way to, or near, the bottom of the well. Often, even if the trimmie tube is able to be worked past a rock ledge by pushing, pulling, and twisting, the distal end of the tubing is damaged to the extent that the insertion of grout through the tube is impaired or even blocked.
Because trimmie tubes are generally stored in a coiled fashion, as are most soft copper refrigerant grade tubes, the “memory” of the plastic tube coil when it is being lowered into a confined, straight, and vertically oriented walled borehole/well causes the tubing to push against the interior walls of at least one of the casing and the rock well. Such abrasion is wearing on the tubing, and results in additional force being required in an effort to push the tubing down into the well from the top. Simultaneous pushing on soft copper tubing usually results in additional tubing abrasion, occasioned by the walls of the well, and increases the danger of kinking or otherwise damaging the copper tubing.
A third problem is that naturally occurring underground water is sometimes encountered within a well/borehole. While copper tubing is generally heavier than water, when the liquid refrigerant transport tube is insulated, the added displacement of the insulation results in flotation. This can require one to forcibly push the copper tubing, including the insulated liquid line, into the well in order to get it to the design depth at the bottom. Further, so as to prevent the copper tubing with an insulated liquid line from floating out of the well, the installer must secure the copper tubing at the top of the well.
A fourth problem encountered with a DX system, when an insulated liquid line is utilized, is that the insulation surrounding the liquid line displaces enough grout (Grout 111 is over twice the weight of water) so as to cause the copper tubing to float out of the well when the grout fill material is pumped in. This is a bothersome concern requiring the installer, as in the case of a well filled with water, to block, to tie down, or to otherwise secure the top of the copper tubing extending from the top of the well, at least until the grout cures if a cementitious grout, such as Grout 111 or the like, is utilized. Grout 111 is a shrink/crack resistant cementitious grout that is highly water impermeable that was developed by Brookhaven National Laboratory in New York and is well understood by those skilled in the art.
A fifth problem periodically encountered when installing DX system geothermal refrigerant transport tubing within a vertically oriented well/borehole is that rocks, particularly if shale or the like, can slide across the borehole, thereby impeding tubing installation. Efforts to eliminate such impediments were generally limited to either re-drilling and/or cleaning out the borehole, or to dropping a heavy steel bar, secured to the surface by a rope, into the hole in an effort to break through the barrier. These conventional methods required significant extra time and labor.
Consequently, a method is needed for efficiently and safely installing copper tubing, particularly when at least one of the refrigerant transport lines is insulated. Also needed is a method for efficiently and safely installing the trimmie tube to be used for grouting, so as to avoid the problems of tubing damage, abrasion, blocking rocks/ledges/rims, and flotation.
It is an object of the present invention to enhance and improve the efficiency and safety of conventional direct expansion, geothermal heating/cooling system, sub-surface, vertically oriented, copper tubing installations, as well as more horizontally oriented lake installations. This is accomplished by providing a wide (relative to the diameter of the borehole/well), weighted, and elongated, encasement assembly comprising an encasement tube with a flat top and with at least one of a rounded and a cone shaped bottom end, within which to insert the copper tubing and the trimmie tubing as it is being lowered into the well/borehole. This configuration also allows the installer to easily pull a loosely attached trimmie tube loose from the tube without damaging the copper refrigerant transport tubing. Such an encasement assembly, because a preferred embodiment has dimensions similar to a torpedo, can sometimes be referred to as a “torpedo” design.
The encasement assembly of the present invention is comprised of an encasement tube, or the like, made of steel, PVC, copper, metal, plastic, or the like, that is longer than it is wide. The encasement tube has a main body portion with a flat upper top portion. The width of the main body portion, for use in a 4.5 inch diameter well/borehole for example, would preferably be in the 2.5 inch to 3 inch range, while the width for use in a larger diameter well/borehole could be larger, with preferably at least a 1 inch diameter clearance. The length of the encasement tube would be at least longer than the width of the well/borehole, so as to prevent the encasement tube from turning sideways in the well. The length should preferably be at least longer than the U-bend portion of the copper refrigerant transport tubing, and should be long enough, so that when combined with its contents, will achieve the desired weight. The weight of the completed encasement tube should preferably be in the 10 pound to 40 pound range. The heavier the encasement (25 to 40 pounds), the easier it is to install the copper tubing in a water-filled well. The lighter the encasement tube (10 to 20 pounds), the easier it is to pull out the copper tubing for any necessary repairs via pressure testing prior to grouting.
The encasement tube of the present invention should preferably have a main body portion of relatively constant diameter and at least one of a rounded and a cone-shaped nose, or the like, extending from the base of the main body portion of the tube. A cone-shaped nose end is preferable because it helps to guide the encasement tube past any rock ledges. It also allows the weight of the encasement assembly, and its accompanying/attached refrigerant transport tubing, to more easily break through any sub-surface materials that may have worked their way partially or totally across the well or borehole. The U-bend of the copper tubing within the encasement tube should be positioned at least 1 inch, and preferably 2 inches, above the base of the main body portion of the encasement tube, so that if the rounded or cone-shaped nose breaks off, the refrigerant transport tubing will not be damaged.
The distal end of the refrigerant transport tubing is placed within the encasement tube and may optionally include a heating mode pin restrictor assembly, as would be well understood by those skilled in the art. At least one, and preferably two, eye bolts, or the like, are placed near the top of the encasement tube in a manner so that the rounded eye bolt end of each respective bolt extends slightly above the top rim of the tube, but extending only enough for a wire, a line, or other fastening means, to extend across the top of the encasement tube rim and through the rounded top of the eye bolt. The eye bolt(s) will be used for securing the trimmie tube to the encasement tube so as to retain the distal lower end of the trimmie tube within the interior shell of the main body portion of the encasement tube while allowing the trimmie tube to be easily pulled loose without damaging the refrigerant transport tubing when grouting commences. This requires enough room to be left within the top interior of the encasement tube to fit the refrigerant transport tubing and the trimmie tube. For example, 1 to 2 inches may be left open (not filled with a flat topped grout) within the top interior portion of the encasement tube.
The optional second eyebolt, or the like, is situated near the top of the encasement tube in a position so as not to impair the insertion of the trimmie tube around the first eyebolt. The second eyebolt, which, for example, may be a 1.25 inch long eyebolt, or the like, is optionally used to secure a rope, line, wire, chain, or the like to the encasement to control the descent of the encasement and its attached refrigerant transport tubing and trimmie tube into the well and/or to be used in raising the assembly up within, or out of, the well for servicing prior to grouting. For example, if a leak is detected during the pressure test prior to grouting, the rope can be used to help raise the entire encasement assembly to the point where the leak is located and repaired. Thereafter, the rope can be used to re-lower the assembly back down into the well.
After the refrigerant transport tubing and its U-bend have been inserted into the encasement tube, and eye bolt(s) have been secured in place (via a stiff wire, or the like, through each eye bolt running across the top of the containment tube), concrete, cement, Grout 111, or the like, is used to fill the rest of the interior of the encasement tube up to a point about 1 to 2 inches from the top. The encasement tube is filled to a point that is at least high enough to generously cover the lower portion of the eye bolt, including the nut or bent lower distal end of the eyebolt, in a manner so that the threaded end of the eyebolt is firmly secured in the cementitious grout or other fill material. The fill material fills the entire remaining volume of the containment tube, including the rounded or cone-shaped nose, except for the approximate one to two-inch segment near the top of the encasement tube, so as to leave adequate room for the trimmie tube lower distal end to be fully protected within the encasement tube as the assembly is lowered into the well.
The cementitious fill material near the top of the encasement tube is left level and flat within the tube. This provides a flat plate for water, if any water naturally occurs within the well, and for the heavy grout well/borehole fill material to push against as the grout is added within the empty annular space of the well/borehole over the top of the encasement tube, from the bottom to the top of the well/borehole. This design utilizes the weight of the grout against the flat surface of the top of the encasement, near the bottom of the well, as well as the additional weight of the grout filled encasement tube, to prevent the refrigerant transport tubing, in conjunction with any insulation around the liquid line portion of the refrigerant transport tubing, from floating out of a water-filled well, and from floating out of a well as the grout/fill material is added and cures.
Periodically, it will be advantageous to install the sub-surface geothermal heat exchange refrigerant transport tubing at the bottom of, or within, a lake, a river, a bay, a creek, a stream, a sea, or the like. In such a situation, it is unnecessary to drill a well/borehole, as any body of water of sufficient size not to freeze to the bottom when heat is withdrawn, via a DX heating/cooling system, and of sufficient size not to evaporate when heat is rejected into same during the cooling mode of operation, will typically provide excellent geothermal heat exchange properties. In such an application, the eye bolt for a rope attachment would preferably be placed at the lower distal end of the nose of the encasement tube. In the alternative, a small hole could be drilled through the cone-shaped nose of the encasement tube of sufficient size to insert a rope, such as a wire rope, a nylon rope, a plastic rope, or the like. The rope would be used to pull the encasement tube and its attached refrigerant transport lines into position. In such an installation, the encasement tube is useful to pull the refrigerant transport tubing into position, as well as to help anchor the distal end of the refrigerant transport tubing into position, via the weight of the encasement.
Additionally and optionally, a rope/line, or the like, may be attached to the eye-bolt or through the small hole at the end of the cone-shaped nose of the encasement tube, which rope/line is attached to a flotation device, such as a buoy, or the like, to mark the sub-surface location of the encasement assembly and to assist in accessing same for moving or for servicing if ever desired.
Referring now to the drawings in detail, where like numerals refer to like parts or elements, there is shown in
The cone-shaped nose 3 of the tube 2 is preferably approximately six inches long, coming to a point at the bottom end 4. The nose 3 can be attached to the main body portion of the encasement tube in a manner to allow the nose 3 to separate from the main body portion during installation. A liquid refrigerant transport line 5 is shown, a distal end of which is shown in the form of a U-bend 8 at a point about two inches 27 above the flat base 10 of the main body portion of tube 2. The liquid line 5 is attached by a coupling 29 to the vapor refrigerant transport line 6, all within the encasement tube 2. The top end 7 of the tube 2 is flat. The distal end or bottom 9 of transport lines (at U-bend 8) should preferably be situated about two inches 27 (not drawn to scale here) from the base 10 of the tube 2, so that if the cone-shaped nose 3 breaks off during insertion into a well/borehole 21, the U-bend 8 will not be damaged. The encasement 1 is shown here as being positioned at the lower end 22 of a well/borehole 21. The well/borehole 21 is drilled/dug into the ground 41, with such drilling/digging processes being well understood by those skilled in the art.
In the embodiment of
An optional second eyebolt 23 is shown positioned within the encasement tube 2 in a manner similar to the first eyebolt 11, but at a position 31 where it does not interfere with either the trimmie tube 14 or the liquid and vapor refrigerant transport lines, 5 and 6. An optional rope 24, such as a nylon rope, a wire rope, or the like, is attached to the rounded head 12 of the second eyebolt 23 and extends up through the well 21 to a point above the ground surface 25, where it can be attached to a winch (not shown herein as winches are well understood by those skilled in the art), or the like, for assistance in either lowering or raising the encasement assembly 1 and its additionally attached trimmie tube 14 and refrigerant transport lines, 5 and 6, within the well/borehole 21.
The remainder of the interior of the encasement tube 2 is shown as being filled with a grout/fill material 15 (which is preferably a cementitious grout such as Grout 111 or the like) to a point about two inches 27 (not drawn to scale) below the top 7 of the tube 2, so as to leave room for the lower distal end 13 of a trimmie tube 14 to totally fit with the interior upper portion 18 of the trimmie tube 14. This protects the lower distal end 13 of the trimmie tube 14 from becoming damaged or disfigured as it is lowered into the well 21. The grout/fill material 15, which is preferably a cementitious grout such as Grout 111 or the like, is left with a flat surface 26 at a point about two inches 27 below the top 7 of the tube 2. The flat surface 26 will provide resistance helping to prevent the encasement assembly 1 and its attached refrigerant transport tubing, 5 and 6, together with any insulation 33 surrounding the liquid line 5, from floating out of the well 21 if the well contains natural water fill (natural water fill is not shown herein as such is well understood by those skilled in the art), and to help prevent the encasement assembly 1 from floating out of the well 21 during the grouting process (the grouting process is well understood by those skilled in the art). A cementitious grout, such as Grout 111, is preferred as a fill material for the tube 2 because it is shrink resistant, crack resistant, water resistant, and highly heat conductive when compared to other conventional grouts. Also, Grout 111 is relatively heavy, weighing about 18.5 pounds per gallon (over twice the weight of water) and will therefore displace any water naturally occurring within the well/borehole 21 (not shown).
An optional line 38 is also shown as being attached to the ring 34 in the embodiment of
An optional line 38 is also shown as being attached to the hole 17 in
Thus, although there have been described particular embodiments of the present invention of a new and useful Encasement Assembly for Installation of Sub-surface Refrigerant Tubing in a Direct Exchange Heating/Cooling System, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.
This application is a Non-Provisional Utility application which claims benefit of co-pending U.S. Patent Application Ser. No. 60/722,353 filed Sep. 30, 2005, entitled “Mighty Missile DX Heating/Cooling System Vertical Well Copper Tubing Insertion Means” which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2503456 | Smith | Apr 1950 | A |
4158291 | Jones | Jun 1979 | A |
4169554 | Camp | Oct 1979 | A |
4205718 | Balch | Jun 1980 | A |
4224805 | Rothwell | Sep 1980 | A |
4257239 | Partin et al. | Mar 1981 | A |
4286651 | Steiger et al. | Sep 1981 | A |
4290266 | Twite et al. | Sep 1981 | A |
4325228 | Wolf | Apr 1982 | A |
4375831 | Downing, Jr. | Mar 1983 | A |
4378787 | Fleischmann | Apr 1983 | A |
4383419 | Bottum | May 1983 | A |
4392532 | Raggio | Jul 1983 | A |
4448238 | Singleton, Jr. et al. | May 1984 | A |
4536765 | Kaminski | Aug 1985 | A |
4538673 | Partin et al. | Sep 1985 | A |
4544021 | Barrett | Oct 1985 | A |
4566532 | Basmajian | Jan 1986 | A |
4715429 | Mogensen | Dec 1987 | A |
4741388 | Kuroiwa | May 1988 | A |
D303099 | Rolofson | Aug 1989 | S |
4858679 | Sakaya et al. | Aug 1989 | A |
4867229 | Mogensen | Sep 1989 | A |
4993483 | Harris | Feb 1991 | A |
5025634 | Dressler | Jun 1991 | A |
5025641 | Broadhurst | Jun 1991 | A |
5029633 | Mann | Jul 1991 | A |
5038580 | Hart | Aug 1991 | A |
5054297 | Furuhama | Oct 1991 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5199486 | Balmer et al. | Apr 1993 | A |
5224357 | Galiyano et al. | Jul 1993 | A |
5277032 | See et al. | Jan 1994 | A |
5313804 | Kaye | May 1994 | A |
5383337 | Baker | Jan 1995 | A |
5388419 | Kaye | Feb 1995 | A |
5419135 | Wiggs | May 1995 | A |
5461876 | Dressler | Oct 1995 | A |
5477703 | Hanchar et al. | Dec 1995 | A |
5477914 | Rawlings | Dec 1995 | A |
5533355 | Rawlings | Jul 1996 | A |
5560220 | Cochran | Oct 1996 | A |
5561985 | Cochran | Oct 1996 | A |
5564282 | Kaye | Oct 1996 | A |
5590715 | Amerman | Jan 1997 | A |
5623986 | Wiggs | Apr 1997 | A |
5651265 | Grenier | Jul 1997 | A |
5671608 | Wiggs et al. | Sep 1997 | A |
5706888 | Ambs et al. | Jan 1998 | A |
5725047 | Lopez | Mar 1998 | A |
5738164 | Hildebrand | Apr 1998 | A |
5758514 | Genung | Jun 1998 | A |
5771700 | Cochran | Jun 1998 | A |
5816314 | Wiggs et al. | Oct 1998 | A |
5875644 | Ambs et al. | Mar 1999 | A |
5937665 | Kiessel et al. | Aug 1999 | A |
5937934 | Hildebrand | Aug 1999 | A |
5941238 | Tracy | Aug 1999 | A |
5946928 | Wiggs | Sep 1999 | A |
6041862 | Amerman | Mar 2000 | A |
6138744 | Coffee | Oct 2000 | A |
6212896 | Genung | Apr 2001 | B1 |
6227003 | Smolinsky | May 2001 | B1 |
6251179 | Allan | Jun 2001 | B1 |
6276438 | Amerman et al. | Aug 2001 | B1 |
6354097 | Schuster | Mar 2002 | B1 |
6390183 | Aoyagi et al. | May 2002 | B2 |
6431931 | Johnson | Aug 2002 | B2 |
6450247 | Raff | Sep 2002 | B1 |
6521459 | Schooley et al. | Feb 2003 | B1 |
6581404 | Komatsubara et al. | Jun 2003 | B2 |
6615601 | Wiggs | Sep 2003 | B1 |
6751974 | Wiggs | Jun 2004 | B1 |
6789608 | Wiggs | Sep 2004 | B1 |
6892522 | Brasz et al. | May 2005 | B2 |
6932149 | Wiggs | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070074847 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60722353 | Sep 2005 | US |