1. Field of the Invention
This invention relates to reflector antenna mounts. More particularly, the invention relates to a cost efficient enclosed reflector antenna mount with improved visual aesthetics, electrical performance and alignment characteristics
2. Description of Related Art
Terrestrial reflector antennas are used, for example, in communications systems to provide point to point communications links. Conventional reflector antennas apply a radome to provide environmental protection to the antenna feed and reflector dish surface, the radome extending across the reflector dish face. A conventional terrestrial reflector antenna is typically aligned with the signal source and/or desired receiver by orienting the entire reflector assembly at the antenna support connection(s) to the mounting point, for example a radio tower or mast.
A radome introduces an electrical discontinuity and thereby a signal reflection surface into the signal path. Radome configurations with surfaces that are angled with respect to the signal path direct reflected signal components away from the signal path to reduce return losses. U.S. Utility Pat. No. 7,042,407, issued May 9, 2006, titled “Dual Radius Twist Lock Radome and Reflector Antenna for Radome”, by Syed et al, hereby incorporated by reference in the entirety, discloses a radome with a large radius of curvature within the antenna signal path and a smaller radius of curvature in the central area of the radome generally within the subreflector shadow.
Terrestrial reflector antenna radomes are typically limited to the reflector front face only, to avoid the greatly increased overall volume of a radome sized to enclose the full range of movement of the entire antenna assembly, such as a spherical or hemispherical enclosure. Further, full enclosure radomes also require substantially stronger mounting and support configurations because of the vastly increased wind loads a larger radome will encounter.
In some locations, such as residential and or nature preserve areas, installation of reflector antenna equipment may be subject to significant public opinion resistance, building codes and or neighborhood regulations due to a negative perception of the visual impact that antenna(s) and associated communications equipment may introduce to previously clear vistas.
Competition within the terrestrial reflector antenna industry has focused attention on RF signal pattern optimization, structural integrity, as well as materials and manufacturing operations costs. Also, increased manufacturing efficiencies, via standardized reflector antenna components usable in configurations adaptable for multiple frequency bands, are a growing consideration in the reflector antenna market.
Therefore, it is an object of the invention to provide an apparatus that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
The inventors have recognized that a key aspect of public visual aesthetics resistance to installation of terrestrial reflector antennas is the traditional open configuration of a conventional reflector, radome, transceiver and mounting structure. Further, the inventors have recognized that the size of an aesthetically improved reflector antenna enclosure can be significantly reduced when the enclosure rotates with the antenna and antenna mount on one of the two axis of travel.
As shown in
The rotatable connection between the support arm 9 and the primary mount 7, best shown in
The pivotable connection between the primary mount 7 and the secondary mount 11 may use a similar arrangement of secondary fastener(s) 33 in at least one secondary slot(s) 35 with an arc configuration arranged about a secondary centerpoint 37. A secondary threaded rod 39 pivotably supported by the primary mount 7 may be configured to thread in and out of a secondary axis block (not shown) coupled to one of the secondary fastener(s) 33, thus driving the rotation of the secondary mount 11 through the range of motion with a high degree of precision via rotation adjustments to the secondary threaded rod 39. Once the desired orientation in the second axis is set, the secondary mount 11 may be locked in place by tightening the secondary fastener(s) 33.
One skilled in the art will appreciate that the arrangement with respect to the location of the primary and secondary slot(s) 23, 35 may be reversed in an alternative equivalent structure. That is, the primary and secondary slot(s) 23, 35 may be located on the primary mount 7 and secondary mount 11, respectively, and the respective primary and secondary fastener(s) 27, 33 instead coupled to the support arm 9 and primary mount, respectively.
An enclosure 43, best shown in
As shown in
The side surface 47 of the enclosure 43 may be configured with no overhanging edges, enabling cost effective high shape precision manufacturing via, for example, dielectric polymer injection molding or vacuum forming. To minimize introduction of phase errors or the like, the enclosure 43 front face 45 may be configured with a constant material thickness. To reduce the generation of back lobes, the inner side of the enclosure 43 side surface 47 may be configured with side surface RF absorbing material 59, for example as shown in
A back plate 61 may be added to the enclosure 43 to suppress back lobes and or provide an environmental seal of the enclosure 43 around the primary and secondary mounts 7, 11. The back plate 61 may be configured to clear the primary and secondary mounts 7, 11 and the electronics enclosure 19 as they move through the extents of the second axis, while leaving space for tool access to the secondary fastener(s) 33.
To provide a streamlined external appearance with respect to a co-mounted antenna such as a cellular base station antenna, other form of panel antenna or additional reflector antenna(s), arranged with a shared mounting associated with the support arm 9, an adapter cowling 63 may be placed to cover an interconnection gap, if any, between the reflector antenna enclosure 5 and the second antenna enclosure 65 as shown in
Similarly, the reflector antenna enclosure 5 may be configured with a plurality of other reflector antenna enclosure(s), for example, as shown in
One skilled in the art will recognize that an enclosed reflector antenna mount 5 according to the invention provides improved environmental protection and visual aesthetics without sacrificing electrical performance or unacceptably increasing manufacturing costs. Because the enclosure 43 is sized to accommodate only the internal movement of the reflector antenna 13 along a single arc path, the enclosure 43 may be made smaller and closer fitting than previous terrestrial reflector antenna enclosures. Further, installation is greatly simplified via the primary mounting via the support arm 9 attachment to the selected support structure and later fine tuning of the antenna pointing via easy adjustment of the primary and secondary mounts 7, 11.
Where in the foregoing description reference has been made to ratios, integers, components or modules having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3984837 | Tatnall | Oct 1976 | A |
4563687 | Berger | Jan 1986 | A |
4920350 | McGuire et al. | Apr 1990 | A |
5419521 | Matthews | May 1995 | A |
6198452 | Beheler et al. | Mar 2001 | B1 |
7042407 | Syed et al. | May 2006 | B2 |
7046210 | Brooker et al. | May 2006 | B1 |
7298342 | Young et al. | Nov 2007 | B2 |
7463206 | Kyhle | Dec 2008 | B1 |
20040120418 | Pasternak et al. | Jun 2004 | A1 |
20050134512 | Gottl et al. | Jun 2005 | A1 |
20080150831 | Tulloch | Jun 2008 | A1 |
20090274130 | Boch | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2006 211012 | Aug 2006 | JP |
2008 227731 | Sep 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20100079353 A1 | Apr 2010 | US |