A computing enclosure is a physical structure used to house computing devices and provide services such as power, cooling, and networking. The mounting of multiple servers in an enclosure can provide an organized arrangement to improve access to the servers and conserve space to mount additional computing devices. Accordingly, a computing enclosure can provide a centralized location for multiple computing devices in an effort to increase equipment integration and optimization of operating conditions.
The advantages of the present techniques are better understood by referring to the following detailed description and the attached drawings, in which:
A computing system stored in an enclosure includes various components, such as servers, modems, routers, power sources, and the like. Since system components may be gradually added over a period of time, the layout of the components may eventually hinder the availability of space for mounting new components or provide an unorganized computing space, among other issues. On the other hand, a compact and organized layout of components may provide space for adding equipment to enhance the efficiency and utilization of the computing system. For instance, heat emitted by heat-generating equipment may be removed from the enclosure by mounting additional cooling devices.
Removable shelving may expand the amount of space in the enclosure for additional components. For example, removable shelving can lift smaller-sized components into unused overhead spacing of an enclosure. This configuration may create additional spacing below the smaller components for the mounting of additional computing equipment. Additionally, shelving may provide enhanced access to maintain and service the components disposed in the enclosure, among other advantages. However, typical shelves may lack user-friendly design features. For instance, a manual lock may be used to secure a shelf into the enclosure. In the event that a user fails to manually lock the shelf in place, it may be accidently displaced and the components disposed on the shelf may be damaged or rendered unusable.
In the present examples, a removable shelf is configured to be installed using fewer steps to provide a more user-friendly experience. The sides of the removable shelf may be designed to be mounted on rails and slots located on sidewalls of an enclosure. In some instances, retaining features of the enclosure located on its sidewalls may be configured to engage with retaining features of the shelf. Further, a spring-loaded locking mechanism may automatically secure the shelf lock when fully inserted into the enclosure. Such features may hinder or prevent excessive movement of the shelf during and after its installation. Accordingly, the use of the present removable shelf may reduce or eliminate damage to a computing device located on the shelf or to a communication plane of the enclosure.
The rear shelf catch 108, the front shelf catch 122, and the reaction member shelf catch 114 may engage with components of an external device to secure the shelf 102 during placement. Additionally, the reaction member shelf catch 114 and the dual reaction member 116 may assist other component devices mounted adjacent to the shelf 102. The blade key 110 may prevent damage to an external device to house the shelf 102 and to devices to be received by the shelf 102. In some examples, the EMI gasket 124 may provide a seal between the shelf 102 and, for example, an adjacent mating surface.
In examples, the top surface 106 may include an attached top divider 126 and the bottom surface 120 may include an attached bottom divider 128. A first side 130 of the shelf 102 may include a straight edge 132 and a second side 134 of the shelf 102 may include a “C” shaped channel 136. The straight edge 132 and the “C” shaped channel 136 may guide and align the shelf 102 during its placement. The dividers 126, 128 may guide and align other component devices during their placement in a location adjacent to the shelf 102.
A number of holes may be formed in the shelf 102 to provide openings 138 for various components to be disposed in the shelf 102. The dimensions of the openings 138 may be sized based on design specifications. As shown in
The shelf lock 104 may be located along the length of the shelf 102 and at a distance from the front end 118 to allow spacing for components, such as the EMI gasket 124 and the front shelf catch 122 located on the bottom surface 120 of the shelf 102, as shown in
The shelf lock opening 210 may be sized to receive a force from a pressure component, for example, a finger, a hand, or any component that can apply pressure to actuate the shelf lock 104 when disposed in the shelf 102. The shelf lock opening 210 may include a grip cover 220, as shown in
The retractable tab 208 may extend outward from the metal body 202. In examples, a corner of the retractable tab 208 may include a slanted edge 222 to provide smooth and control movements of the shelf lock 104. Accordingly, the slanted edge 222 of the retractable tab 208 may enable the shelf lock 104 to glide against a surface, such as a sidewall of an enclosure, during its installation.
The shelf lock 104 may be located between the top metal sheet 224 and the bottom metal sheet 226, where it may be securely contained between the sheets 224, 226 to prevent its displacement during actuation. In examples, the shelf 102 may include a spring retention pocket 228 that may house the second end 218 of the shelf lock 104 to maintain its position when subjected to movement or a force, for example, the pressure component.
To insert the shelf 102 into the enclosure 302, the straight edge 132 of the shelf 102 may align with the slot 316 and the “C” shaped channel 136 of the shelf 102 may straddle the rail 318 of the enclosure 302. With the shelf 102 aligned using such retaining features, a user may slide the shelf 102 into the enclosure 302.
When the shelf lock 104 reaches the vertical dividing wall 304 during insertion, the wall 304 exerts a force on the shelf lock. Specifically, the slanted edge 222 (not shown) of the retractable tab 208 may slide along a side surface 328 of the vertical dividing wall 304 where the wall 304 may force the shelf lock 104 to move towards a central area of the shelf 102, as shown by inward arrows 330. When the shelf lock 104 reaches the shelf lock receptacle 324, the spring 212 may force the retractable tab 208 into the receptacle 324. In this manner, the shelf lock 104 may actuate in an outward direction, as shown by outward arrows 322. Accordingly, the shelf 102 may be locked into the enclosure 302 to inhibit or prevent its movement. In examples, the spring 212 may exert a spring-loaded action to actuate the shelf lock 104 and thus, exclude the need to manually lock the shelf 102 within the enclosure 302.
To remove the shelf 102, a pressure component, such as a hand, grip the shelf lock 104 in the shelf lock opening 210. An inward pressure, such as a squeeze by the hand, may force the shelf lock 104 towards the central area of the shelf 102, as shown by the inward arrows 330, to force the retractable tab 208 to withdraw from the shelf receptacle 324 so as to fully expose the tab 208. The removal of the retractable tab 208 from the shelf receptacle 324 may unlock and release the shelf 102 from the enclosure 302. Once released, the user may pull the shelf 102 out of the enclosure 302, as shown by an outward arrow 334.
While the present techniques may be susceptible to various modifications and alternative forms, the embodiments discussed above have been shown only by way of example. However, it should again be understood that the techniques is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/058384 | 10/30/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/074433 | 5/4/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7633760 | Wu et al. | Dec 2009 | B2 |
7930812 | Curnalia et al. | Apr 2011 | B2 |
20030030988 | Garnett et al. | Feb 2003 | A1 |
20030052581 | Dobler et al. | Mar 2003 | A1 |
20030111436 | Basinger et al. | Jun 2003 | A1 |
20040196727 | Garnett et al. | Oct 2004 | A1 |
20120212905 | Furuta et al. | Aug 2012 | A1 |
20130162131 | Zhou | Jun 2013 | A1 |
20130278124 | Hu | Oct 2013 | A1 |
20140043770 | Zhou | Feb 2014 | A1 |
20140084764 | Doglio | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
102013108217 | Oct 2014 | DE |
2378823 | Feb 2003 | GB |
WO-2012083166 | Jun 2012 | WO |
Entry |
---|
Hewlett-Packard Development Company, L.P., “HP ProLiant BL680c G7 Server Blade Installation Instructions,” Part No. 613834-001, Oct. 2010, pp. 1-4, First Edition. |
International Search Report and Written Opinion, International Application No. PCT/US2015/058384, dated Jul. 28, 2016, pp. 1-8, KIPO. |
Racksolutions, “Tool-less Rack Shelf,” 2015, pp. 1-2 (online), Retrieved from the Internet on Aug. 19, 2015 at URL: <racksolutions.com/tool-less-rack-shelf.html>. |
Number | Date | Country | |
---|---|---|---|
20180324971 A1 | Nov 2018 | US |