The disclosure relates generally to heating, ventilation, and air conditioning (HVAC) systems, and specifically, to a louver panel system configured to shroud components of the HVAC system.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Heating, ventilation, and/or air conditioning (HVAC) systems are utilized in residential, commercial, and industrial applications to control environmental properties, such as temperature and humidity, for occupants of respective environments. The HVAC system may control the environmental properties through control of an air flow delivered to and ventilated from spaces serviced by the HVAC system. For example, an HVAC system may transfer heat between the air flow and refrigerant flowing through the system. Certain components of the HVAC system may be located in an ambient environment, where they may be subject to external elements and conditions of the ambient environment, such as precipitation. It is now recognized that such conditions may affect performance of the HVAC system.
In one embodiment, a housing system for heating, ventilation, and air conditioning (HVAC) equipment includes a housing configured to shroud the HVAC equipment and also includes a plurality of louver panels disposed on the housing. Each louver panel of the plurality of louver panels is configured to translate between a closed position and an open position. In the closed position, each louver panel of the plurality of louver panels is configured to permit airflow between an interior of the housing and an ambient environment. In the open position, each louver panel of the plurality of louver panels is configured to permit increased airflow between the interior of the housing and the ambient environment when the louver panel is in the open position.
In another embodiment, a housing for heating, ventilation, and/or air conditioning (HVAC) equipment includes a frame defining an internal volume configured to receive the HVAC equipment and also includes a plurality of louver panels coupled to the frame. Each louver panel of the plurality of louver panels is configured to translate between a closed position and an open position, where each louver panel of the plurality of louver panels is configured to shroud the internal volume in the closed position and expose the internal volume in the open position.
In another embodiment, an enclosure for heating, ventilation, and/or air conditioning (HVAC) equipment includes a housing configured to contain the HVAC equipment within an interior of the housing and also includes a louvered panel system coupled to the housing. The louvered panel system includes a plurality of louvered panels, where each louvered panel includes a plurality of louvers and a plurality of openings disposed between the plurality of louvers. Each louvered panel of the plurality of louvered panels is configured to transition between an open position and a closed position. In the closed position, each louvered panel is configured to permit airflow between the interior of the housing and an ambient environment. In the open position, each louvered panel is configured to permit increased airflow between the interior of the housing and the ambient environment.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
The present disclosure is directed to heating, ventilation, and air conditioning (HVAC) systems that include components for facilitating heat transfer between an airflow and a refrigerant. For example, the HVAC system includes heat exchangers configured to add and/or remove heat to the refrigerant, a compressor configured to pressurize the refrigerant, and tubing configured to transfer the refrigerant from one component to another.
Certain components of the HVAC system may be located in an ambient environment and are thus subjected to conditions of the ambient environment. In some instances, the conditions include encountering environmental elements, such as precipitation. An enclosure may be included with the HVAC system to block such external elements from contacting components within the enclosure, thereby protecting the components from the external elements. In some existing systems, the enclosure is fastened together to shroud the components from external elements during operation of the HVAC system, and the enclosure is only opened when access to the components is desired, such as during maintenance. However, during operation of the HVAC system, the enclosure may hinder or inhibit airflow within the HVAC system and/or airflow between the HVAC system and the ambient environment. This may result in undesired heating of the components and/or decreased heat transfer within the HVAC system, which may result in operational inefficiency of the HVAC system.
Thus, in accordance with certain embodiments of the present disclosure, it is presently recognized that an adjustable louver panel system that may be selectively and readily actuated to enable increased airflow between the ambient environment and the HVAC system and thereby enable the HVAC system to operate at an increased efficiency. Specifically, an enclosure or housing of the HVAC system that houses internal HVAC components may include the adjustable louver panel system having adjustable louver panels that may transition between a closed position and an open position. In the closed position, the louver panels may block certain external elements from entering the housing and potentially contacting the internal HVAC components. The adjustable louver panels may also include openings to permit some degree of airflow between the interior of the housing and the external environment in the closed position. In the open position, the internal components of the HVAC system may be exposed to the ambient environment to permit increased airflow into and out of the housing and/or to permit access to internal components within the housing. The adjustable louver panels may be configured to easily transition between the closed position and the open position to enable efficient operation of the adjustable louver panel system. For example, the adjustable louver panels may be actuated manually, automatically, and/or remotely, such as via a controller.
Turning now to the drawings,
The HVAC unit 12 is an air cooled device that implements a refrigeration cycle to provide conditioned air to the building 10. Specifically, the HVAC unit 12 may include one or more heat exchangers across which an air flow is passed to condition the air flow before the air flow is supplied to the building. In the illustrated embodiment, the HVAC unit 12 is a rooftop unit (RTU) that conditions a supply air stream, such as environmental air and/or a return air flow from the building 10. After the HVAC unit 12 conditions the air, the air is supplied to the building 10 via ductwork 14 extending throughout the building 10 from the HVAC unit 12. For example, the ductwork 14 may extend to various individual floors or other sections of the building 10. In certain embodiments, the HVAC unit 12 may be a heat pump that provides both heating and cooling to the building with one refrigeration circuit configured to operate in different modes. In other embodiments, the HVAC unit 12 may include one or more refrigeration circuits for cooling an air stream and a furnace for heating the air stream.
A control device 16, one type of which may be a thermostat, may be used to designate the temperature of the conditioned air. The control device 16 also may be used to control the flow of air through the ductwork 14. For example, the control device 16 may be used to regulate operation of one or more components of the HVAC unit 12 or other components, such as dampers and fans, within the building 10 that may control flow of air through and/or from the ductwork 14. In some embodiments, other devices may be included in the system, such as pressure and/or temperature transducers or switches that sense the temperatures and pressures of the supply air, return air, and so forth. Moreover, the control device 16 may include computer systems that are integrated with or separate from other building control or monitoring systems, and even systems that are remote from the building 10.
As shown in the illustrated embodiment of
The HVAC unit 12 includes heat exchangers 28 and 30 in fluid communication with one or more refrigeration circuits. Tubes within the heat exchangers 28 and 30 may circulate refrigerant, such as R-410A, through the heat exchangers 28 and 30. The tubes may be of various types, such as multichannel tubes, conventional copper or aluminum tubing, and so forth. Together, the heat exchangers 28 and 30 may implement a thermal cycle in which the refrigerant undergoes phase changes and/or temperature changes as it flows through the heat exchangers 28 and 30 to produce heated and/or cooled air. For example, the heat exchanger 28 may function as a condenser where heat is released from the refrigerant to ambient air, and the heat exchanger 30 may function as an evaporator where the refrigerant absorbs heat to cool an air stream. In other embodiments, the HVAC unit 12 may operate in a heat pump mode where the roles of the heat exchangers 28 and 30 may be reversed. That is, the heat exchanger 28 may function as an evaporator and the heat exchanger 30 may function as a condenser. In further embodiments, the HVAC unit 12 may include a furnace for heating the air stream that is supplied to the building 10. While the illustrated embodiment of
The heat exchanger 30 is located within a compartment 31 that separates the heat exchanger 30 from the heat exchanger 28. Fans 32 draw air from the environment through the heat exchanger 28. Air may be heated and/or cooled as the air flows through the heat exchanger 28 before being released back to the environment surrounding the rooftop unit 12. A blower assembly 34, powered by a motor 36, draws air through the heat exchanger 30 to heat or cool the air. The heated or cooled air may be directed to the building 10 by the ductwork 14, which may be connected to the HVAC unit 12. Before flowing through the heat exchanger 30, the conditioned air flows through one or more filters 38 that may remove particulates and contaminants from the air. In certain embodiments, the filters 38 may be disposed on the air intake side of the heat exchanger 30 to prevent contaminants from contacting the heat exchanger 30.
The HVAC unit 12 also may include other equipment for implementing the thermal cycle. Compressors 42 increase the pressure and temperature of the refrigerant before the refrigerant enters the heat exchanger 28. The compressors 42 may be any suitable type of compressors, such as scroll compressors, rotary compressors, screw compressors, or reciprocating compressors. In some embodiments, the compressors 42 may include a pair of hermetic direct drive compressors arranged in a dual stage configuration 44. However, in other embodiments, any number of the compressors 42 may be provided to achieve various stages of heating and/or cooling. As may be appreciated, additional equipment and devices may be included in the HVAC unit 12, such as a solid-core filter drier, a drain pan, a disconnect switch, an economizer, pressure switches, phase monitors, and humidity sensors, among other things.
The HVAC unit 12 may receive power through a terminal block 46. For example, a high voltage power source may be connected to the terminal block 46 to power the equipment. The operation of the HVAC unit 12 may be governed or regulated by a control board 48. The control board 48 may include control circuitry connected to a thermostat, sensors, and alarms. One or more of these components may be referred to herein separately or collectively as the control device 16. The control circuitry may be configured to control operation of the equipment, provide alarms, and monitor safety switches. Wiring 49 may connect the control board 48 and the terminal block 46 to the equipment of the HVAC unit 12.
When the system shown in
The outdoor unit 58 draws environmental air through the heat exchanger 60 using a fan 64 and expels the air above the outdoor unit 58. When operating as an air conditioner, the air is heated by the heat exchanger 60 within the outdoor unit 58 and exits the unit at a temperature higher than it entered. The indoor unit 56 includes a blower or fan 66 that directs air through or across the indoor heat exchanger 62, where the air is cooled when the system is operating in air conditioning mode. Thereafter, the air is passed through ductwork 68 that directs the air to the residence 52. The overall system operates to maintain a desired temperature as set by a system controller. When the temperature sensed inside the residence 52 is higher than the set point on the thermostat, or the set point plus a small amount, the residential heating and cooling system 50 may become operative to refrigerate additional air for circulation through the residence 52. When the temperature reaches the set point, or the set point minus a small amount, the residential heating and cooling system 50 may stop the refrigeration cycle temporarily.
The residential heating and cooling system 50 may also operate as a heat pump. When operating as a heat pump, the roles of heat exchangers 60 and 62 are reversed. That is, the heat exchanger 60 of the outdoor unit 58 will serve as an evaporator to evaporate refrigerant and thereby cool air entering the outdoor unit 58 as the air passes over the outdoor heat exchanger 60. The indoor heat exchanger 62 will receive a stream of air blown over it and will heat the air by condensing the refrigerant.
In some embodiments, the indoor unit 56 may include a furnace system 70. For example, the indoor unit 56 may include the furnace system 70 when the residential heating and cooling system 50 is not configured to operate as a heat pump. The furnace system 70 may include a burner assembly and heat exchanger, among other components, inside the indoor unit 56. Fuel is provided to the burner assembly of the furnace 70 where it is mixed with air and combusted to form combustion products. The combustion products may pass through tubes or piping in a heat exchanger, separate from heat exchanger 62, such that air directed by the blower 66 passes over the tubes or pipes and extracts heat from the combustion products. The heated air may then be routed from the furnace system 70 to the ductwork 68 for heating the residence 52.
In some embodiments, the vapor compression system 72 may use one or more of a variable speed drive (VSDs) 92, a motor 94, the compressor 74, the condenser 76, the expansion valve or device 78, and/or the evaporator 80. The motor 94 may drive the compressor 74 and may be powered by the variable speed drive (VSD) 92. The VSD 92 receives alternating current (AC) power having a particular fixed line voltage and fixed line frequency from an AC power source, and provides power having a variable voltage and frequency to the motor 94. In other embodiments, the motor 94 may be powered directly from an AC or direct current (DC) power source. The motor 94 may include any type of electric motor that can be powered by a VSD or directly from an AC or DC power source, such as a switched reluctance motor, an induction motor, an electronically commutated permanent magnet motor, or another suitable motor.
The compressor 74 compresses a refrigerant vapor and delivers the vapor to the condenser 76 through a discharge passage. In some embodiments, the compressor 74 may be a centrifugal compressor. The refrigerant vapor delivered by the compressor 74 to the condenser 76 may transfer heat to a fluid passing across the condenser 76, such as ambient or environmental air 96. The refrigerant vapor may condense to a refrigerant liquid in the condenser 76 as a result of thermal heat transfer with the environmental air 96. The liquid refrigerant from the condenser 76 may flow through the expansion device 78 to the evaporator 80.
The liquid refrigerant delivered to the evaporator 80 may absorb heat from another air stream, such as a supply air stream 98 provided to the building 10 or the residence 52. For example, the supply air stream 98 may include ambient or environmental air, return air from a building, or a combination of the two. The liquid refrigerant in the evaporator 80 may undergo a phase change from the liquid refrigerant to a refrigerant vapor. In this manner, the evaporator 38 may reduce the temperature of the supply air stream 98 via thermal heat transfer with the refrigerant. Thereafter, the vapor refrigerant exits the evaporator 80 and returns to the compressor 74 by a suction line to complete the cycle.
In some embodiments, the vapor compression system 72 may further include a reheat coil in addition to the evaporator 80. For example, the reheat coil may be positioned downstream of the evaporator relative to the supply air stream 98 and may reheat the supply air stream 98 when the supply air stream 98 is overcooled to remove humidity from the supply air stream 98 before the supply air stream 98 is directed to the building 10 or the residence 52.
It should be appreciated that any of the features described herein may be incorporated with the HVAC unit 12, the residential heating and cooling system 50, or other HVAC systems. Additionally, while the features disclosed herein are described in the context of embodiments that directly heat and cool a supply air stream provided to a building or other load, embodiments of the present disclosure may be applicable to other HVAC systems as well. For example, the features described herein may be applied to mechanical cooling systems, free cooling systems, chiller systems, or other heat pump or refrigeration applications.
As noted above, certain components of HVAC systems may be positioned in an ambient environment. For example, as discussed above, the rooftop unit 12 discussed with reference to
As will be appreciated, a housing enclosing the HVAC components may reduce or inhibit a flow of air between the HVAC components within the housing and the ambient environment, which may reduce operational efficiency of the HVAC system. Accordingly, the louver panels are configured to transition from the closed position to an open position to enable increased flow of air when the desire to shroud the HVAC components is reduced. For example, during weather seasons when hail is typical or anticipated, the louver panels may be in the closed position to protect the HVAC components within the housing. The louver panels may include openings that enable a flow of air across the louver panels and into the housing when the louver panels are in the closed position. However, during other weather seasons when hail is not anticipated, the louver panels may be opened to enable increased airflow into and out of the housing. By enabling increased airflow in the open position, the adjustable louver panel system may reduce heating of the internal HVAC components that may affect performance of the components and/or the adjustable louver panel system may increase volumetric airflow through the internal HVAC components to increase heat transfer between the refrigerant and the airflow. As discussed herein, embodiments of the present disclosure may be utilized in any of the aforementioned HVAC systems. For example, the adjustable louver panel system may be implemented for outdoor packaged units, such as the HVAC unit 12 of
As illustrated in
In the open position, as shown by a second set 170 of louver panels 160, the louver panels 160 are each rotated in a direction 172 to expose the internal components 158 to the ambient environment. With the rotation of the louver panels 160, the space 168 between adjacent louver panels 160 increases to permit greater airflow between the interior of the housing 156 and the ambient environment. In other words, in the open position, the louver panels 160 are each positioned crosswise or substantially perpendicular to the side 156 of the HVAC system 150.
To enable rotation, the louver panels 160 may couple to the housing 156 or the frame 153 via hinges, pins, rods, or other mechanical features at coupling points 174 that may be located at opposite ends of each louver panel 160. While the second set 170 of louver panels 160 is configured to rotate between the open and closed positions, the first set 164 of louver panels 160 is configured to linearly translate in a direction 176 and/or a direction 178 along the housing 156 or frame 153. That is, the louver panels 160 of the first set 164 are configured to linearly translate between the open position and/or the closed position. To enable the louver panels 160 to linearly translate, the coupling points 174 of each louver panel 160 may be configured to linearly translate along the length 162 of the side 154. For example, opposite ends of each louver panel 160 may be engaged with slots or rails formed in the housing 156 or frame 153, and the louver panels 160 may slide along the slots or rails to linearly translate to a desired position. In an embodiment where the louver panels 160 are configured to linearly translate, the louver panels 160 may be adjacent to one another in the closed position, thereby creating a shroud or barrier for the HVAC system 150, and the louver panels 160 may slide to overlap with one another at an end 175 of the side 154 of the housing 156 to expose the interior of the HVAC system 150 to the surrounding environment.
In some embodiments, the louver panels 160 may be configured to rotationally and linearly translate between open and closed positions. For example, each louver panel 160 may have a pin disposed at each end of the louver panel 160 that is engaged with a slot or rail of the frame 153 or housing 156. Each louver panel 160 may rotate about the pins to transition between open and closed positions. Additionally, each louver panel 160 may be linearly translated along the slot or rail via the pins to enable abutment or stacking of the louver panels 160 against one another in the opened position, such as at the end 175 of the side 154 of the housing 156.
The position of the louver panels 160, such as the open or closed position, may also be set, fixed, or secured in place until a transition to another position is desired. For example, the adjustable louver panel system 152 may include clamps, fasteners, locks, latches, straps, another suitable component, or any combination thereof, disposed at the coupling points 174 that are configured to secure the position of each louver panel 160 that has rotationally translated in the direction 174 and/or linearly translated in the direction 176 and/or the direction 178.
In certain embodiments, each louver panel 160 is configured to move independently of one another. That is, the louver panels 160 may rotationally translate and/or linearly translate separately from other louver panels 160. As such, when the louver panels 160 are in the open position, the gap or space 168 between two louver panels 160 may vary in size amongst different adjacent louver panels 160. Moreover, the louver panels 160 may be configured to transition between positions such that a number of the louver panels 160 are in the open position and a remainder of the louver panels 160 are in the closed position. Such configurations may shroud certain sections or components of the HVAC system 150 while exposing other sections or components to the ambient environment, such as for maintenance of particular internal components 158.
As mentioned, the closed position of the louver panels 160 enables the louver panels 160 to shroud the internal components 158, but the closed position of the louver panels 160 may also reduce an amount of airflow between the interior of the housing 156 and the ambient environment. Reduced airflow into and out of the housing 156 may decrease operational efficiency of the HVAC system 150. As such, it may be advantageous for the louver panels 160 to remain in the open position for a duration of time when shrouding the internal components 158 is not desired. To control the positioning of the louver panels 160, the HVAC system 150 may include and/or be in communication with a controller 180. The controller 180, which may be similar to the control panel 82, may include a memory 182 and a processor 184. The memory 182 may be a mass storage device, a flash memory device, removable memory, or any other non-transitory computer-readable medium that includes instructions regarding control of the HVAC system 150. The memory 182 may also include volatile memory such as randomly accessible memory (RAM) and/or non-volatile memory such as hard disc memory, flash memory, and/or other suitable memory formats. The processor 184 may execute the instructions stored in the memory 182, such as instructions to adjust the position of the louver panels 160.
In some embodiments, the position of the louver panels 160 is remotely adjustable. That is, a user may input when to position the louver panels 160 and/or how to position the louver panels 160. For example, the user may input which louver panels 160 to rotate, a certain angle at which to rotate the louver panels 160, which louver panels 160 to linearly translate, a length to linearly translate the louver panels 160, another parameter of the louver panels 160, or any combination thereof. In additional or alternative embodiments, the controller 180 may be configured to automatically adjust the positions of the louver panels 160. For example, the controller 180 may be programmed to automatically adjust the louver panels 160 at certain conditions, such as at certain times of the day or year, during certain weather conditions, and so forth. That is, the controller 180 may monitor certain identified conditions or parameters and adjust the louver panels 160 accordingly. By way of example, the HVAC system 150 may be located in a geographic location that includes many diurnal animals and very few nocturnal animals. Thus, the controller 180 may maintain the louver panels 160 in the closed position during the day to block the wildlife from interfering with the internal components 158 and then adjust the louver panels 160 to be in the open position during the night to increase efficiency of the HVAC system 150 via increased airflow into the housing 156.
In a further example, the controller 180 may be configured to monitor weather conditions and adjust the positions of the louver panels 160 based on the weather conditions. As such, the controller 180 may be configured to receive information, such as via sensors, indicative of precipitation, temperature, atmospheric pressure, another weather condition, or any combination thereof. Based on the received information, the controller 180 may determine if adjustments to the position of the louver panels 160 are desirable. To this end, the HVAC system 150 may include sensors 186 configured to detect or measure one or more of the aforementioned conditions and/or other parameters associated with operating conditions for the HVAC system 150. For example, the illustrated embodiment includes sensors 186 disposed outside of the housing 156 to detect conditions of the ambient environment. In additional or alternative embodiments, the controller 180 may be configured to receive user input in order to program the controller 180 to adjust positions of the louver panels 160 in response to certain conditions. In this manner, the controller 180 may adjust positions of the louver panels 160 as determined by a user.
In certain embodiments, the sensors 186 may also be configured to determine positions of the louver panels 160. As an example, the sensors 186 may determine an amount that the louver panels 160 are rotationally translated and/or linearly translated. The controller 180 may determine, based on readings by the sensors 186, an amount of airflow flowing between the interior of the housing 156 and the ambient environment based at least in part on the position readings by the sensors 186. The controller 180 may use such measurements to determine if further positional adjustments of the louver panels 160 are desired based on the determinations of the sensors 186. For example, the louver panels 160 may be adjusted to permit a lower airflow between the HVAC system 150 and the ambient environment at a first time of day, a higher airflow at a second time of day, and an intermediate airflow at a third time of day. Thus, the controller 180 may use the detections of the sensors 186 to determine if the louver panels 160 are positioned as desired at the different times of day.
Additionally, the HVAC system 150 may include actuators 188 configured to facilitate movement of the louver panels 160. For example, the actuators 188 may be positioned on the rails and/or at the coupling points 174 to rotationally translate and/or linearly translate the louver panels 160. The actuators 188 may be electromechanical actuators, hydraulic actuators, pneumatic actuators, thermal actuators, another type of actuator, or any combination thereof. Further, the actuators 188 may be communicatively coupled to the controller 180 such that, when activated, the actuators 188 impart a force and/or torque to linearly translate the louver panels 160 and/or rotationally translate the louver panels 160. It should be appreciated that the detections of the sensors 186 may be used to determine when to activate the actuators 188, such as based on the aforementioned conditions, the position of the louver panels 160, force/torque feedback, another parameter, or any combination thereof.
To enable some degree of airflow between the interior of the HVAC system 150 and the ambient environment while the louver panels 160 are in the closed position, each louver panel 160 includes openings 190. A size of the openings 190 enables airflow while the louver panels 160 still shroud the internal components 158 from the ambient environment. As mentioned, the openings 190 may be created between louver blades, but it should also be appreciated that grilles, perforations, other feature, or any combination thereof may additionally or alternatively be disposed on each louver panel 160 to create the openings 190. In certain embodiments, the size of the openings 190 may be adjustable, such as via adjusting angles or positions of the individual louver blades of the louver panel 160, and the controller 180 may be configured to adjust the size of the openings 190 in a manner similar to adjusting the position of the louver panels 160. However, in other embodiments, the size of the openings 190 may be fixed, such as via fixed positions of the louver blades.
Although
Another embodiment of the louver panel system 152 is illustrated in
The louver panel system 152 of
The first louver panel 250 and/or the second louver panel 252 may be rotated to expose the internal components 158 to the ambient environment. The first louver panel 250 and/or the second louver panel 252 may be rotated to a position that opens the side 154 without the louver panel system 152 blocking condenser coils 262 of the HVAC system 150. For example, the second louver panel 252 may be rotated about the first louver panel 250 in the direction 258 to abut and/or stack against the first louver panel 250 such that the louver panel system 152 is in an intermediate position. In this manner, a portion of the internal volume and the internal components 158 of the HVAC system 150 may be exposed. Further, the first louver panel 250 may be rotated about the frame 153 in the direction 258. Rotation of the first louver panel 250 in the direction 258 while the second louver panel 252 rests atop the first louver panel 250 may configure the louver panel system 152 to be an open position, where a greater portion of the internal volume and the internal components 258 of the HVAC system 150 is exposed relative to when the louver panel system 152 is in the intermediate position. The positions of the first louver panel 250 and/or the second louver panel 252 may also be set, such as with any of the aforementioned methods, via components disposed at the hinges on the top 254 and/or the end 256. Additionally, in certain embodiments, the HVAC system 150 may include a brace 260 coupled to the frame 153, where the brace 260 is configured to maintain a position, such as the open position described above, of the first louver panel 250 and/or the second louver panel 252. The brace 260 may be coupled to the frame 153 and may be configured to abut the first louver panel 250 to maintain the open position of the louver panel system 152. It should be appreciated that multiple braces 260 may be used to maintain a desired position of the louver panel system 152.
As with the louver panel system 152 of
To illustrate the adjustable louver panel system 152 in the closed position,
To illustrate the adjustable louver assembly 152 in the open position,
The embodiment of the HVAC system 150 of
It should be appreciated that the first louver panel 250 and/or the second louver panel 252 may be of a different shape than illustrated in
A further embodiment of the louver panel system 152 is show in
As with the louver panel system 152 of
To set the position of the louver panels 160, the louver panels 160 may use the aforementioned components of the coupling points 174 and/or the mounts 352. For example, the coupling points 174 and/or the mounts 352 may have brackets, pins, latches, or other features to block rotation of the louver panels 160 relative to the connector 350 and/or the housing 156 and fix the position of the louver panels 160. Additionally, the connector 350 may include a handle 356 disposed at an end of the connector 350. The handle 356 may enable improved actuation of the connector 350 to transition the louver panel system 152 between the open and closed positions. For example, a user may grip the handle 356 and manually move the connector 350 in the direction 354 to rotate the louver panels 160 in the direction 172, thereby opening the louver panels 160 to expose the internal components 158. The user may also grip the handle 356 to move the connector 350 in a direction opposite the direction 354 to rotate the louver panels 160 in a direction opposite the direction 172, thereby closing the louver panels 160 and shrouding the internal components 158. Although
Although
In certain embodiments, the controller 180 is configured to translate the louver panel system 152 between the open position and the closed position. For example, the louver panel system 152 may include actuators 188 coupled to the mounts 352, the coupling points 174, or any combination thereof. The controller 180 may be configured to actuate rotation the components in similar methods described in
To further illustrate the coupling of the connector 350 with the louver panels 160,
The locking portion 408 may also include other components to set the position of the louver panel system 152, such as a clamp, a fastener, a latch, another component, or any combination thereof. The locking portion 408 may be disposed at any of the mounts 352 to lock the position of the louver panel system 152, and each locking portion 408 may be separate from one another. It should be appreciated that in certain embodiments, the locking portion 408 may be additionally or alternatively disposed at the first end 402 and may be configured to block rotational movement between the link 400 and the louver panels 160 to set the position of the louver panel system 152. Furthermore, the position of the locking portion 408 may be adjusted manually or via the controller 180 such that the position of the louver panel system 152 may be adjusted and/or set in different manners. To this end, the sensors 186 may be configured to determine the position of the panel 160, the connector 350, and/or the link 400 to determine when to actuate the locking portion 408.
Although
As set forth above, embodiments of the present disclosure may provide one or more technical effects useful in the operation of HVAC systems. For example, an HVAC system includes a louver panel system configured to shroud internal components of the HVAC system from an ambient environment. The louver panel system may be configured to translate between a closed position and an open position. When in the closed position, louver panels of the louver panel system shroud the internal components and protect the internal components of the HVAC system from external elements of the ambient environment. The louver panels may include openings to enable airflow between the interior volume of the HVAC system 150 and the ambient environment. In the open position, the louver panels are actuated to expose the internal components of the HVAC system 150 to the ambient environment, thereby permitting a greater flow of air between the interior volume of the HVAC system 150 and the ambient environment, which may increase efficiency of the HVAC system in operation. The louver panels may be translated between the closed position and the open position via rotational translation and/or linear translation, which may be performed manually and/or via a controller. The controller may be configured to determine conditions of the ambient environment to determine whether the louver panels should be in the closed position to shroud the internal components or in the open position to permit greater airflow to the internal components. The controller may also be configured to adjust an amount that the louver panels are open and set or fix the position of each louver panel. The technical effects and technical problems in the specification are examples and are not limiting. It should be noted that the embodiments described in the specification may have other technical effects and can solve other technical problems.
While only certain features and embodiments of the disclosure have been illustrated and described, many modifications and changes may occur to those skilled in the art, such as variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, and the like, without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described, such as those unrelated to the presently contemplated best mode of carrying out the disclosed embodiments, or those unrelated to enabling the claimed embodiments. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.
This application claims priority from and the benefit of U.S. Provisional Application Ser. No. 62/720,824, entitled “ENCLOSURE WITH ADJUSTABLE LOUVER PANELS,” filed Aug. 21, 2018, which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3379481 | Fisher | Apr 1968 | A |
4615181 | Greenwood | Oct 1986 | A |
4953328 | Sewell | Sep 1990 | A |
5129239 | Thurman | Jul 1992 | A |
6401477 | Dubé | Jun 2002 | B1 |
6430954 | Smith | Aug 2002 | B1 |
8357031 | Dinicolas | Jan 2013 | B2 |
9291356 | Demster | Mar 2016 | B2 |
20080083239 | Meyer | Apr 2008 | A1 |
20080178624 | Zedney | Jul 2008 | A1 |
20130005238 | Brandt | Jan 2013 | A1 |
20170223874 | Roy | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200064016 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62720824 | Aug 2018 | US |