The described embodiments relate generally to enclosures that have the appearance of being seamless. More particularly, the present embodiments relate to plastic enclosures that appear seamless and house one or more electronics assemblies.
Currently there are a wide variety of electronic devices that have enclosures to facilitate the use of the electronic device and provide an aesthetic appearance. However, often such enclosures have one or more seams where plastic components of the enclosure meet. The seams can disrupt the exterior surface of the enclosure impairing its aesthetics and sometimes creating a relatively weak region of the enclosure that is prone to damage and breakage. This can be particularly problematic for enclosures that contain high-voltage electronic components that would be exposed if such a seam were to be broken. New enclosures are needed for electronic assemblies that are seamless, or at least have the appearance of being seamless, and/or that have improved structural integrity.
Some embodiments of the present disclosure relate to enclosures having a seamless look and feel that are used to encase an electronic assembly. Some embodiments relate to an enclosure that can be used for any electronic device while other embodiments relate to an enclosure for an AC to DC adapter.
In some embodiments an enclosure for an electronic assembly has a seamless exterior appearance and comprises a housing including a bottom wall and at least one side wall extending from the bottom wall. The at least one side wall comprises a beveled end portion having a curved tip. A cap comprising a protrusion is coupled to the beveled end portion of the housing, wherein the cap, the bottom wall, and the at least one side wall define a cavity in which the electronic assembly is disposed. At least two electrical prongs are disposed through the bottom wall and are electrically coupled to the electronic assembly.
In some embodiments the cap is coupled to the at least one side wall with a first and a second weld joint. In various embodiments the first and the second weld joints are separated by a distance and have a non-interference region between them. In some embodiments the beveled end portion and the protrusion define the non-interference region with a pair of sloped surfaces.
In some embodiments the pair of sloped surfaces are both at an angle between 30 and 40 degrees. In various embodiments the first weld joint is formed between the protrusion and the beveled end portion. In some embodiments the second weld joint is formed within an interference region disposed between the side wall and the cap. In various embodiments the first and the second weld joints are ultrasonically formed welds.
In some embodiments at least a portion of a top surface of the cap is proud with respect to the curved tip of the beveled end portion. In various embodiments a top surface of the cap is formed with a matte surface.
In some embodiments a method of forming an enclosure having a seamless exterior appearance for an electronic assembly is disclosed , the method comprises forming a housing having a bottom wall and at least one side wall extending from the bottom wall. The at least one side wall comprises a beveled end portion having a curved tip, and the bottom wall is formed around at least two electrical prongs extending through the bottom wall. An electronic assembly is disposed within the housing such that the electrical assembly is electrically coupled to the at least two electrical prongs. A cap comprising a protrusion is positioned on the housing, and the protrusion is coupled to the beveled end portion. The cap, the bottom wall, and the at least one side wall define a cavity in which the electronic assembly is disposed.
In some embodiments the protrusion is coupled to the beveled end portion with a first and a second joint. In various embodiments the first and the second joints are formed by ultrasonic welding. In some embodiments the second joint is formed by shear forces acting on an interference region disposed between the side wall and the cap. In various embodiments the second joint is formed by compression forces acting on an interference region disposed between the side wall and the cap.
In some embodiments the first joint is formed by ultrasonic welding and the second joint is formed with an adhesive. In various embodiments the first and the second joints are separated by a distance and have a non-interference region between them. In some embodiments the beveled end portion and the protrusion define the non-interference region with a pair of sloped surfaces. In various embodiments the pair of sloped surfaces are both at an angle between 30 and 40 degrees. In some embodiments at least a portion of a top surface of the cap is proud with respect to the curved tip of the beveled end portion.
To better understand the nature and advantages of the present disclosure, reference should be made to the following description and the accompanying figures. It is to be understood, however, that each of the figures is provided for the purpose of illustration only and is not intended as a definition of the limits of the scope of the present disclosure. Also, as a general rule, and unless it is evident to the contrary from the description, where elements in different figures use identical reference numbers, the elements are generally either identical or at least similar in function or purpose.
Some embodiments of the present disclosure relate to electronic devices that have a plastic enclosure that has the appearance and feel of not including any seams (e.g., having an apparently seamless enclosure). Various embodiments relate to enclosures that can also have improved structural integrity at the enclosure edges and/or resiliency to water or dust penetration. While the present disclosure can be useful for a wide variety of configurations, some embodiments of the disclosure are particularly useful for high voltage electronic assemblies encased in plastic enclosures, as described in more detail below.
For example, in some embodiments an injection molded plastic housing is formed having a cavity configured to receive an electronics assembly. A cap is secured to the housing over the cavity forming a visually continuous exterior surface at seams where the housing and cap meet. In one embodiment the housing encases and forms a liquid-tight enclosure for an underwater diving device.
In another example an injection molded plastic housing is formed with a cavity and a pair of AC wall adapter prongs that extend out of a face of the housing. An AC to DC converter assembly that includes high voltage circuitry is installed within the cavity and coupled to the prongs. A cap is installed over the cavity, forming a visually continuous exterior surface at the seams where the cap meets the housing. The cap has an aperture through which a DC connector can be coupled to the AC to DC converter.
In order to better appreciate the features and aspects of housings having a seamless appearance according to the present disclosure, further context for the disclosure is provided in the following section by discussing two particular implementations of electronic devices according to embodiments of the present disclosure. These embodiments are for example only and other embodiments can be employed in other electronic devices such as, but not limited to computers, watches, media players, RFID tags and other devices.
In the embodiment shown in
In various embodiments enclosure 105 can be used to enclose other electronics assemblies such as, but not limited to a wireless communication transceiver, a wireless router, an RFID device, a wirelessly activated tag for locating lost keys or an AC to DC adapter, as explained in more detail below. In some particular embodiments enclosure 105 can be part of a device that includes wireless transceiver, a rechargeable battery and a wireless charging interface to charge the battery and not include any external connectors reducing possible paths of ingress for water or other moisture. In further embodiments, enclosure 105 can be used for purposes other than enclosing an electronic device. In one example, enclosure 105 can be used to enclose an antique (e.g., a coin or a piece of ancient artwork) that needs to protected from damage and have an aesthetically appealing appearance.
As defined herein, liquid-tight shall mean a seal that conforms to one or more of the following ratings as defined by the International Protection Rating and International Electrochemical Commission (IEC) 60529 that can also be known as the I.P. 68 rating. In some embodiments the liquid-tight seal will protect the electronic assembly against the harmful ingress of water and have a “liquid ingress” rating between 1 (dripping water) and 8 (immersion beyond 1 meter). In various embodiments the liquid-tight seal shall be rated between 1 (dripping water) and 4 (splashing water) while in some embodiments the liquid-tight seal shall be rated between 2 (dripping water with device tilted at 15 degrees) and 5 (water jet). In various embodiments the liquid-tight seal shall be rated between 3 (spraying water) and 6 (powerful water jets) while in some embodiments the liquid-tight seal shall be rated between 4 (splashing water) and 7 (immersion up to 1 meter). In various embodiments the liquid-tight seal shall be rated between 5 (water jets) and 8 (immersion beyond 1 meter) while in some embodiments liquid-tight shall mean the seal will protect the electronic device against liquid ingress up to 100 feet for 30 minutes.
Now referring to
Electronic device 200 has a pair of electrical prongs 230a, 230b that are configured to be plugged into an AC wall outlet to receive AC power. A receiving opening 235 is configured to receive a connector that can couple DC energy to a separate electronic device. In some embodiments continuous exterior surface 220 can provide device 200 with a pleasing feel for a user since housing 215 is not distinguishable from cap 210 by touch. In further embodiments seams 240 formed between cap 210 and housing 215, can be configured to provide improved structural integrity such that enclosure 205 is able to withstand high mechanical forces.
Now referring to
Cap 210 can be coupled to housing 215 using any suitable process. In some embodiments, an ultrasonic welding process can be used. Ultrasonic welding involves applying high-frequency (e.g., 20,000 Hz) ultrasonic acoustic vibrations to work pieces being held together under pressure to create a solid-state weld. To install cap 210 onto housing 215 as shown in
In order for enclosure 205 to have the appearance of being continuous and seamless, weld joint 270a can be formed to be substantially imperceptible. Weld joints 270a, 270b should also be strong to prevent fracture or other mechanical failure resulting in cap 210 being decoupled from housing 215. The desired strength and continuous appearance of enclosure 205 can be accomplished by molding cap 210 and housing 215 in particular geometries. Exemplary geometries are shown in
Sidewall 245 of housing 215 can include a beveled end portion 315 having a curved tip 320. The cross-section of beveled end portion 315 shown in
As further shown in
Before ultrasonic welding, cap 210 can extend above sidewall 245 by 0.5 to 1.5 millimeters. However, after ultrasonic welding, cap 210 can extend above sidewall 245 by a protrusion distance 335. In some embodiments protrusion distance 335 is between 10 microns and 200 microns while in various embodiments it can be between 50 microns and 150 microns and in some embodiments between 50 microns and 100 microns. The radius of curvature of curved tip 320, protrusion 325 and the dimension of protrusion distance 335 can make joint 270a imperceptible both visually and to touch. For example, as a user runs their finger across top surface 340 of cap 210 and along sidewall 245 the user may not feel any discontinuities and cap and sidewall can feel as if they are a monolithic structure. In further embodiments, top surface 340 of cap 210 can be manufactured with a matte finish to further obscure joint 270a from visual or touch recognition. The matte finish can also be used to obscure a marred surface appearance that can be caused by the ultrasonic welding process.
Joint 270a can be formed from an interference between side wall 245 and cap 210 in a region that is between 0.25 and 0.35 millimeters wide and between 0.6 and 0.9 millimeters tall. Shear forces are placed on the interference region during ultrasonic bonding. A gap between side wall 245 and cap 210 that is about 0.05 millimeters can be formed annularly around the cap and immediately adjacent to weld 270b.
When coupling protrusion 325 to beveled end portion 315 using ultrasonic welding, cap 210 can be attached such that it is proud (e.g., extends above) with respect to curved tip 320. Such a configuration can account for deflection that can occur when force is applied to top surface 340 of cap 210. As force is applied to cap 210 during ultrasonic welding, protrusion 325 can be configured to deflect into non-interference region 310 rather than beveled end portion 315 of housing 215 deflecting. The configuration shown in
The deflection of protrusion 325 can result in top surface 340 of cap 210 being curved. For example, as protrusion 325 deflects upwards during ultrasonic welding, the central region of cap 210 may not deflect, creating a concave top surface. However, the radius of curvature of curved tip 320 can make such a curvature of cap 210 imperceptible both visually and to touch. For example, as a user runs their finger across the top surface of cap 210 and curved tip 320, the combined surfaces can feel continuous (e.g., seamless or monolithic). Further, to avoid deformation of protrusion 325 and curved tip 320 at weld joint 270a, the force and/or vibrations can be modified during ultrasonic welding. For example, vibrations can be applied as cap 210 is pushed downward towards housing 215 but only until point 330 contacts curved tip 320. When the contact is made, the vibrations can be turned off but the downward force maintained. If the plastic at point 330 and curved tip 320 is sufficiently melted, weld joint 270a can be formed without further vibrations and without deforming the visible portions of protrusion 325 and curved tip 320.
Using the process described above, weld joint 270b can be used primarily for structural and/or sealing purposes and weld joint 270a can be designed primarily for obscuring the weld joint so entire enclosure 205 appears seamless. Non-interference region 310 can be used to separate weld joint 270a from weld joint 270b so the ultrasonic energy is concentrated only on the two weld joints and weld joint 270a can be well-controlled such that it forms a seamless exterior appearance for enclosure 205.
Sidewall 245 of housing 215 can include a beveled end portion 415 having a curved tip 420. The cross-section of beveled end portion 415 shown in
As further shown in
Before ultrasonic welding, cap 210 can extend above sidewall 245 between 1 to 2 millimeters. However, after ultrasonic welding, cap 210 can extend above sidewall 245 by a protrusion distance 435. In some embodiments protrusion distance 435 is between 10 microns and 200 microns while in various embodiments it can be between 20 microns and 50 microns and in some embodiments between 20 microns and 40 microns. The radius of curvature of curved tip 420, protrusion 425 and the dimension of protrusion distance 435 can make joint 270a imperceptible both visually and to touch. In further embodiments, top surface 440 of cap 210 can be manufactured with a matte finish to further obscure joint 270a from visual or touch recognition.
Joint 270b can be formed from an interference between side wall 245 and cap 210 in a region that is between 0.1 and 0.3 millimeters wide and between 1 and 2 millimeters tall. Shear forces are placed on the interference region during ultrasonic bonding. A gap between side wall 245 and cap 210 that is about 0.05 millimeters can be formed annularly around the cap and immediately adjacent to weld 270b.
As discussed above, weld joint 270b can be used primarily for structural and/or sealing purposes and weld joint 270a can be designed primarily for obscuring the weld joint so entire enclosure 205 appears seamless. Non-interference region 410 can be used to separate weld joint 270a from weld joint 270b so the ultrasonic energy is concentrated only on the two weld joints and weld joint 270a can be well-controlled such that it forms a seamless exterior appearance for enclosure 205.
Sidewall 245 of housing 215 can include a beveled end portion 515 having a curved tip 520. The cross-section of beveled end portion 515 shown in
As further shown in
Before ultrasonic welding, cap 210 can extend above sidewall 245 between 0.5 to 1 millimeters. However, after ultrasonic welding, cap 210 can extend above sidewall 245 by a protrusion distance 535. In some embodiments protrusion distance 435 is between 5 microns and 200 microns while in various embodiments it can be between 5 microns and 20 microns and in some embodiments about 10 microns. The radius of curvature of curved tip 520, protrusion 525 and the dimension of protrusion distance 535 can make joint 270a imperceptible both visually and to touch. In further embodiments, top surface 540 of cap 210 can be manufactured with a matte finish to further obscure joint 270a from visual or touch recognition.
Joint 270b can be formed from an interference between side wall 245 and cap 210 in a region that extends up from the side wall between 1 to 2 millimeters and is between 0.2 and 0.5 millimeters wide. In one embodiment the interference has a radius of about 0.32 millimeters. Compression forces are placed on the interference region during ultrasonic bonding. A gap between side wall 245 and cap 210 that is about 0.05 millimeters can be formed annularly around the cap and immediately adjacent to weld 270b.
As discussed above, weld joint 270b can be used primarily for structural and/or sealing purposes and weld joint 270a can be designed primarily for obscuring the weld joint so entire enclosure 205 appears seamless. Non-interference region 510 can be used to separate weld joint 270a from weld joint 270b so the ultrasonic energy is concentrated only on the two weld joints and weld joint 270a can be well-controlled such that it forms a seamless exterior appearance for enclosure 205.
As discussed above, weld joint 270b can be used primarily for structural and/or sealing purposes and weld joint 270a can be designed primarily for obscuring the weld joint so entire enclosure 205 appears seamless. In some embodiments a non-interference region can be used to separate weld joint 270a from weld joint 270b, however in other embodiments a non-interference region may not be used.
More specifically, in some embodiments injection mold tool 705 can involve the use of a cavity 715, a core 720, a core insert 723 and one or more metal slides 725 that meet at tooling interfaces 730 that can leave “parting lines” 735, 736 remaining on housing 710. In one example, cavity 715, a core 720 and one or more metal slides 725 are arranged so parting line 735 is formed on housing 710 just below curved tip 745 in a region that is covered by a cap (such as cap 210 illustrated in more detail in
In step 910 an electronics assembly is placed within the housing. The electronics assembly is electrically coupled to the at least two electrical prongs. In step 915 a cap is positioned on the housing such that it encases the electronics assembly. The cap has a protrusion disposed around a peripheral edge. In step 920 the protrusion of the cap is coupled to the beveled end portion of the housing such that the cap, the bottom wall, and the at least one side wall define a cavity in which the electronic assembly is disposed. In some embodiments the cap is ultrasonically welded to the housing.
Although electronic devices 100 and 200 (see
In some instances, embodiments of the disclosure are particularly well suited for use with portable electronic devices because of the importance of their aesthetic appearance. As used herein, an electronic media device includes any device with at least one electronic component. Such devices can include, for example, portable music players (e.g., MP3 devices and Apple's iPod devices), portable video players (e.g., portable DVD players), cellular telephones (e.g., smart telephones such as Apple's iPhone devices), wireless routers, video cameras, digital still cameras, projection systems (e.g., holographic projection systems), gaming systems, PDAs, as well as tablet (e.g., Apple's iPad devices), laptop or other mobile computers. Some of these devices can be configured to provide audio, video or other data or sensory output.
For simplicity, various internal components, such as the AC to DC power conversion circuitry, bus, memory, storage device and other components of electronic devices 100 and 200 (see
In the foregoing specification, embodiments of the disclosure have been described with reference to numerous specific details that can vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the disclosure, and what is intended by the applicants to be the scope of the disclosure, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. The specific details of particular embodiments can be combined in any suitable manner without departing from the spirit and scope of embodiments of the disclosure.
Additionally, spatially relative terms, such as “bottom or “top” and the like can be used to describe an element and/or feature's relationship to another element(s) and/or feature(s) as, for example, illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and/or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as a “bottom” surface can then be oriented “above” other elements or features. The device can be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims priority to U.S. Provisional Application 62/235,430 filed on Sep. 30, 2015, entitled “Corner-Angled Reveal for Electronic Enclosure”, which is incorporated by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3753211 | Pauza | Aug 1973 | A |
5100346 | McCardell | Mar 1992 | A |
5681409 | Lin et al. | Oct 1997 | A |
5863364 | Lin et al. | Jan 1999 | A |
6649838 | Lopez, Sr. | Nov 2003 | B1 |
6848946 | Vicenza | Feb 2005 | B2 |
6926540 | Juntwait | Aug 2005 | B1 |
7445509 | Korczynski | Nov 2008 | B2 |
7947901 | Leopold | May 2011 | B2 |
8708722 | Walliser | Apr 2014 | B1 |
8944857 | Mariano et al. | Feb 2015 | B2 |
9362765 | Blaszczak | Jun 2016 | B1 |
20030186564 | Rhude | Oct 2003 | A1 |
20090029603 | Tokairin | Jan 2009 | A1 |
20100173532 | Czyz | Jul 2010 | A1 |
20110223806 | You | Sep 2011 | A1 |
20120231657 | Bouse | Sep 2012 | A1 |
20130078853 | Dinh | Mar 2013 | A1 |
20140162480 | Schutte | Jun 2014 | A1 |
20140263869 | Clark-Mantle | Sep 2014 | A1 |
20140308853 | Colahan et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
517985 | Sep 1981 | AU |
2017059311 | Apr 2017 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2016/054908 in 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170093077 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62235430 | Sep 2015 | US |