Encoderless vector control for VFD in hydraulic fracturing applications

Information

  • Patent Grant
  • 11728709
  • Patent Number
    11,728,709
  • Date Filed
    Tuesday, May 12, 2020
    4 years ago
  • Date Issued
    Tuesday, August 15, 2023
    a year ago
Abstract
A system and a method for use of electric motors in fracturing operations are disclosed. The system includes an electric motor, a turbine generator, an encoderless vector control subsystem, and at least one pump. The turbine generator is adapted to generate electric power for the system. The encoderless vector control subsystem is coupled between the turbine generator and the electric motor to control the electric motor using determined parameters that are based in part on vibration induced in a feature associated with the turbine generator. The at least one pump is adapted to receive torque input from the electric motor.
Description
REFERENCE TO MATERIAL IN COMPACT DISC

The application incorporates by reference the material on the concurrently submitted compact disc (CD) as allowed under 37 C.F.R. §§ 1.52 and 1.77(b)(5)), which is identified as file named “Appendix A Table 1,” which is 82.8 KB, created May 8, 2020, in CDs labeled Copies 1 and 2 (the names of the files contained on each of the compact discs, their date of creation and their sizes in bytes), which may be referenced throughout this disclosure as Appendix A.


FIELD

At least one embodiment pertains to improvements in electric motors in fracturing operations. In at least one embodiment, the present disclosure describes fracturing pumps that are coupled to an electric motor, which in turn is controlled via an encoderless vector control subsystem.


BACKGROUND

Hydraulic Fracturing is a process used to stimulate production from some hydrocarbon producing wells. The process involves injecting fluid with pumps into a wellbore at a pressure sufficient to generate fissures in the formation surrounding the wellbore. The pressurized fluid is injected into a portion of the wellbore that is pressure-isolated from the remaining length of the wellbore so that fracturing is limited to a designated portion of the formation. The fracturing fluid slurry, whose primary component may be water, includes proppant (such as sand or ceramic) that migrate into the fractures with the fracturing fluid slurry and remain to prop open the fractures after pressure is no longer applied to the wellbore.


The pumps used in hydraulic fracturing operations may be powered by diesel engines. Recently, however, some pumps may be powered by electric motors, which can in turn be controlled by a variable frequency drive (VFD). Use of these electric motors in hydraulic fracturing pumps may not achieve smooth operation.


SUMMARY

In at least one embodiment, a system for use in fracturing operations is disclosed. The system includes an electric motor, a turbine generator, an encoderless vector control subsystem, and at least one pump. The turbine generator is adapted to generate electric power for the system. The encoderless vector control subsystem is adapted to receive the electric power from the turbine generator and to control the electric motor using determined parameters provided to the encoderless vector control subsystem. The at least one pump is adapted to receive torque input from the electric motor.


In at least one further embodiment, a method for using electric pumps in fracturing operations is also disclosed. The method includes engaging an electric motor with a turbine generator. The method also includes enabling an encoderless vector control subsystem to receive electric power from the turbine generator. The method includes a sub-process to control the electric motor using determined parameters input to the encoderless vector control subsystem. The determined parameters may be based in part on vibration induced in a feature associated with the turbine generator, such as the body of the turbine. At least one pump is engaged with the electronic motor in a further sub-process of the method so that the torque input from the electric motor may operate the at least one pump.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be readily understood upon reading the detailed description of non-limiting embodiments of the present disclosure with the accompanying drawing, in which:



FIG. 1A is a block diagram of a system, as positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure;



FIG. 1B is another block diagram of a system, as positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure;



FIG. 1C is another block diagram of a system, as positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure;



FIG. 2 is a section diagram of a turbine within a system used in a hydraulic fracturing operation and benefiting from encoderless vector control, according to at least one embodiment of the present disclosure;



FIG. 3 is graph illustrating system vibration and instability of a system for hydraulic fracturing that may benefit from aspects of the present disclosure;



FIG. 4 is a graph illustrating reduced system vibration and increased stability for a system for hydraulic fracturing that implements aspects of the present disclosure;



FIG. 5 illustrates select determined parameters and associated values within the encoderless vector control for a VFD used in hydraulic fracturing operations, according to at least one embodiment of the present disclosure; and



FIG. 6 illustrates a flowchart of a method for encoderless vector control for a VFD used in fracturing operations, according to at least one embodiment of the present disclosure.





DETAILED DESCRIPTION

The foregoing aspects, features, and advantages of the present technology will be further appreciated when considered with reference to the following description of preferred embodiments and accompanying drawing, wherein like reference numerals represent like elements. In describing the preferred embodiments of the technology illustrated in the appended drawing, specific terminology will be used for the sake of clarity. However, the technology is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.


Non-oil and gas related applications may implement a VFD to power an electric motor in fluid applications, such as fluids having consistent properties. In an instance, the fluids may be air or clean water. However, in fracturing operations, variable loads may exist because of the inconsistency of the materials involved. A further driver of variable loads may be an unpredictable formation pressure which can vary by several thousand PSI (pounds per square inch) and the fracturing process itself, which nay require fluid rate changes throughout the process. Further, in fracturing operations, electric motors may be expected to power a high number (e.g., 10 to 20) of hydraulic fracturing pump. In addition, the present disclosure is also able to address adaptions and configurations directed to a single electric motor powering a single pump, multiple smaller electric motors powering a single pump, or a single electric motor powering two pumps. These different adaptions and configurations may be additionally challenging to the fracturing process by adding further uncertainties.


Still further, the hydraulic fracturing pumps may be driven by an electric motor that is manifolded together with common suction and discharge piping systems. As such, in addition to the inconsistencies of the fluid involved in a fracturing operation, the fluid dynamics generated as a result of the group of hydraulic fracturing pumps working together off of an electric motor may cause rough operation of the electric motor and may result in bad pump performance. For instance, discharge flow ripples may be caused by triplex, quintuplex, novemplex, and septuplex plunger pumps, which are the predominant type of pumps used in hydraulic fracturing.


Additional fluid dynamics that might disrupt smooth operation of the electric motor may be also caused during the well formation process itself. The act of fracturing and the pumped fluid, as well as returning fluid, are additional fluid dynamic effects that need addressing to enable the electric motor to perform smoothly. Other phenomena regarding the interaction of other connected equipment on the surface, in fracturing operations, can also affect a VFDs control behavior. For instance, the surface equipment's natural frequencies may be excited by the fluid dynamics or the electrical harmonics within the connected equipment.


Still further, observations are made of oscillations or vibrations in a body of a turbine portion of the turbine generator during operation of the turbine and electric motor system for hydraulic fracturing operations. In at least one embodiment, the oscillations or vibrations in the body may be more apparent in a shaft and in an associated coupler that extends or connects the turbine portion of the turbine generator to the generator portion. The oscillations or vibrations represent mechanical resonance of components of at least the turbine, but can also cause mechanical resonance in other parts of the system. The mechanical resonance at least on the shaft of the turbine generator is apparent in higher amplitude oscillations resulting from higher torque fluctuations of the shaft. This may be a result of feedback received from the load variation on electric motor. The resonance leads, eventually, to failure of at least the coupler in the turbine generator, but can also damage other parts of the system.


These and other challenges in hydraulic fracturing operations may be addressed by the present disclosure using determined parameters asserted in an encoderless vector control scheme for VFD control in an electric motor. In at least one embodiment, the encoderless vector control scheme of the present disclosure includes determining parameters suited for the electric motor that are based in part on vibrations induced in a feature associated with the turbine generator. For instance, the vibrations may be induced in a portion of the body of turbine and may be apparent on a shaft or a coupler of the turbine generator. The determined parameters may be determined based in part on monitoring oscillation alarm values representing the vibrations in features of the turbine generator that are made apparent at the shaft or the coupler, among other end features of the system. In at least one embodiment, the vibrations are monitored on one or more body portions of the turbine part of the turbine generator.


As such, in at least one embodiment, the oscillation alarm values represent vibration in at least one part of the system for a period of time. The oscillation alarm values may be within a range of about 15 to about 45 upon engagement of the motor with a load for the period of time. In at least one embodiment, the encoderless vector control scheme includes determining parameters suited for the electric motor based in part on the oscillation alarm values being at least less than about 70 upon engagement of the motor with a load. In at least one embodiment, the determined parameters for the encoderless vector control subsystem are selected from at least speed values, motor values, and proportional-integral-derivative (PID) control values, among other values listed in Appendix A (referencing table 1) of the present disclosure under minimum and maximum values that may work to reduce the oscillation alarm values with the encoderless vector control scheme applied to the hydraulic fracturing system. As such, Appendix A is incorporated by reference herein to illustrate other parameters that may be used to form the determined parameters, as well as their associated range of values available to enable the encoderless vector control subsystem of the present disclosure. FIG. 5 provides example predetermined parameters from Appendix A, and their associated range of values to enable an embodiment of the encoderless vector control subsystem of the present disclosure.


Encoderless vector control schemes for VFDs are provided herein to support smooth operation in high-performance electric motor over an entire speed range, to enable capability of the electric motor to generate full torque at zero speed, to improve high dynamic performance for the electric motor, and to support fast acceleration and deceleration in the electric motor. The present disclosure adapts such requirements to the benefit of hydraulic fracturing operations. In at least one embodiment, vector control in an encoderless vector control subsystem refers to a control method for electric motors via the VFD, for instance, in which certain motor input components may be referenced by its vector. The vectors may include complex current or voltage values, for instance. In at least one embodiment, reference to encoderless is made in the encoderless vector control subsystem to indicate that the determined parameters are predetermined by at least an estimation conducted, such as in a testing environment using available parameters in the system to maintain vibrations below a threshold. In at least one embodiment, the vibrations may be measured using the oscillation alarms and the thresholds set using the oscillation alarms.



FIG. 1A is a block diagram of system 100 that is positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure. As such, the layout in FIG. 1A reflects how the system components may be positioned but not necessarily the flow of electric current or power, for instance, which is other described elsewhere throughout this description. The system 100 includes one or more generators 102 for generating power for an electric motor 112. The one or more generators may include a natural gas-powered generator. In at least one embodiment, the one or more generators may include a turbine generator. The system 100 also includes a pump, such as a fluid pump 114, to perform the hydraulic fracturing operation; a variable frequency drive (VFD) 104 for controlling the electric motor; breakers 106 to handle overloads and overdraw situations; and a motor control center (MCC) 108 for control of electrical sub-systems, including blower motors, coolant pumps, lube oil pumps, lighting, heaters, control power, receptacles, and fan motors.


In at least one embodiment, the pump 114 is configured for pumping the hydraulic fracturing fluid into a well and the associated formation. In addition, the pump 114 is adapted or configured for high pressure pumping so as to enable fracturing of the formation. The electric motor 112 may be coupled to the electric pump 114 via a high-strength steel or steel alloy shaft. One or more of these system components may be housed on main or auxiliary trailers so that they remain mobile.


In at least one embodiment, the MCC 108 may support the breakers 106 by a monitoring action. The breakers 106 support distribution of power from the generators to components of varied load requirements. In at least one embodiment, the components may be other than the system components, and may be equipment used at a wellsite, include lights, heaters, blowers, small pumps, control computers, and motors. Shorts or high draws from a load asserted through one or more of the breakers may cause the breakers 106 to trip for protection.


In at least one embodiment, a transformer 110 may be located on one or more trailer after the VFD 104 and prior to the electric motor 112, which may be on the same or different trailers. However, the location of the components on one or more trailers has no effect on the flow of current or power which is described separately. For instance, the generator generates electricity that may be input to VFD 104 through breakers, if needed, irrespective of the location of these components. Cables may be used to connect the various components irrespective of their locations on or off one or more trailers. As the generator 102 may support other components requiring power then the electric motor 112, the generator 102 may provide the required voltage via MCC 108. The transformer 110 steps down the voltage provided from the generator 102, for the VFD 104, the MCC 108, and the electric motor 112 to a manageable voltage handled by these components. The electric motor 112 drives the electric pump 114 to perform the requisite fracturing operations. In at least one embodiment, the electric motor 112 may be an induction motor or a permanent magnet motor.


In at least one embodiment, interface 116 may be used to provide the determined parameters to the VFD 104 or another component having at least a memory having instructions and a processor for executing the instructions to perform functions. In at least one embodiment, the memory may also store the determined parameters. In at least one embodiment, the functions include distributing the determined parameters to various system components for setting the system components according to the determined parameters.



FIG. 1B is another block diagram of a system 150 that is positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure. As such and as in the case of FIG. 1, the layout in FIG. 1B reflects how the system components may be positioned, but not necessarily the flow of current or power, which is described elsewhere throughout this description otherwise. In at least one embodiment, as in the system 100, the system 200 of FIG. 1B includes one or more generators 152 for generating power for one or more electric motors 162A, B. The one or more generators 152 may include a natural gas-powered generator. In at least one embodiment, the one or more generators 152 may include a turbine generator. The system 150 also includes one or more pumps, such as a fluid pumps 164A, B, to perform the hydraulic fracturing operation; one or more variable frequency drives (VFDs) 158A, B for controlling the respective electric motors 162A, B; breakers 156A, B to handle respective overloads and overdraw situations associated with a respective electric motor 162A, B; and a motor control center (MCC) 168 for control of electrical sub-systems, including blower motors, coolant pumps, lube oil pumps, lighting, heaters, control power, receptacles, and fan motors.


In at least one embodiment, the pumps 164A, B are individually configured for pumping the hydraulic fracturing fluid into a well. In at least one embodiment, the pumps draw slurry, representing the fracturing fluid, from the blender at a low pressure, boost the slurry to a high pressure for application into the well that connected to the formation. In addition, the pumps 164A, B are individually adapted or configured for high pressure pumping so as to enable cracking of the formation. Furthermore, each electric motor 162A; 162B may be coupled to one or more pumps 164A, B, but each electric motor 162A; 162B may be couple to individual ones of the one or more pumps 164A, 164B. Each electric motor 162A, B may be coupled to the one or more electric pumps 164A, B via a high-strength steel or steel alloy shaft. One or more of these system components may be housed on main or auxiliary trailers so that they remain mobile.


In at least one embodiment, the MCC 160 may support the breakers 156A, B by a monitoring action. The breakers 156A, B support distribution of power from the generator(s) 152 to components of varied load requirements. In at least one embodiment, the components may be other than the system components, and may be equipment used at a wellsite, include lights, heaters, blowers, small pumps, control computers, and motors. Shorts or high draws from a load asserted through one or more of the breakers may cause the breakers 156A, B to trip for protection.


In at least one embodiment of FIG. 1B distinct from the system 100 of FIG. 1A, the transformer 154 may be located on one or more trailers after the generator 102 and prior to the breakers 156A, B or even the VFDs 158A, B, which may be on the same or different trailers. However, the location of the components on one or more trailers has no effect on the flow of current or power which is described separately. For instance, the generator generates electricity that passes through breakers 156A, B and to VFDs 158A, B. As the generator(s) 152 may support other components than illustrated that also require power, the generator 152 may be a high voltage generator. The transformer 154, therefore, steps down the voltage to a manageable voltage handled by the VFD 158A, B, and as required by components coupled to the MCC 160. In at least one embodiment, the electric motor 162A, B may be an induction motor or a permanent magnet motor, as in the system 100 of FIG. 1A.


Furthermore, applying an encoderless vector control scheme within the VFD in the present systems 100; 150 may not solve every one of the above-described problems, but focusing on certain parameters or many (e.g., thousands) of parameters available for control of the system allows for resolution of at least the vibrations, oscillations, or resonance associated with the turbine, the shaft, and/or coupler. In at least one embodiment, determined parameters from the available system parameters are adjusted and set for the application in any given situation, such as before a load is engaged with the system 100; 150. While each component, such as the electric motors 112; 162A, B, or the turbines 102; 152 have ratings or default parameters, these are not defined to the requirements of a hydraulic fracturing system.


In at least one embodiment, a vibration sensor is used with the system 100; 150, for example, at the turbine 102; 152 to determine parameters from the available parameters of the systems' components. In at least one embodiment, the determined parameters are coded into the VFD prior to engaging the electric motor with the respective electric pump. In at least one embodiment, the assertion of the determined parameters for of the VFD may override the default settings for the systems' components. The determined parameters have a range of settings that are, therefore, enable proper tuning of the electric motor for the hydraulic fracturing application, to obtain desired motor control behaviors. The tuned set of parameters described in concurrently submitted Appendix A forms part of this disclosure and may be selected based in part on monitoring vibration from various points of the turbine.


In at least one embodiment, the encoderless vector control scheme utilizes parameters associated with respective VFDs to enable an electric motor to drive a hydraulic fracturing pump smoothly over the motor's entire speed range, to generate full torque at zero speed, and to have high dynamic performance, including fast acceleration and deceleration of the hydraulic fracturing pumps. Also, natural frequencies present in the connected equipment may be isolated by the VFD having the determined parameters, and any excitement previously in the system 100; 150 may be limited after adopting encoderless vector control scheme as demonstrated by the discussion in at least FIG. 4, where specific tuned parameters or determined parameters were applied after monitoring effects of the vibration at the turbine. The determined parameters are not excited or affected during operation of the system 100; 150 after adopting encoderless vector control.


In at least one embodiment, interface 166, as in the case of the embodiment in FIG. 1A may be used to provide the determined parameters to the VFD 158A, B or another component having at least a memory having instructions and a processor for executing the instructions to perform functions. In at least one embodiment, the memory may also store the determined parameters. In at least one embodiment, the functions include distributing the determined parameters to various system components for setting the system components according to the determined parameters.



FIG. 1C is another block diagram of a system 170, as positioned on a trailer and used in a hydraulic fracturing operation with encoderless vector control, according to at least one embodiment of the present disclosure. Incoming power, from a generator, for instance, may pass through an incoming breaker 172. The incoming breaker 172 is optional as noted. A transformer 174 steps down the voltage of the income power from the generator. The transformer may feed one or more components. As illustrated, a further breaker in the form of an MCC breaker 176 enables power from the transformer to reach auxiliary components 178. These components 178 include one or more small motors and an auxiliary load center. The transformer may separately or concurrently feed a VFD through VFD breakers 180 and fuses 182. One or more of these breakers and fuse may be optional. The VFD is illustrated as one or more of components 184-190. The VFD may include an alternating current (AC) reactor 184, a rectifier 186, a direct current (DC) choke 188, and one or more inverters 190 that may be an IGBT (insulated-gate bipolar transistor)-type inverter. The rectifier 186 enables conversion of the AC to the DC power, which the inverters 190 then convert to pulse-width-modulated (PWM) AC power. The PWM AC power is used to power the electric pump or motor 192. FIG. 1C also illustrates that parameters from FIG. 5 (or Appendix A) may relate to one or more of the components in FIG. 1C and applied values for the parameters may adapt the operations of one or more of the components in FIG. 1C to reduce vibrations in at least the turbine features discussed with respect to at least FIG. 2.



FIG. 2 is a section diagram of a turbine 200 within a system used in a hydraulic fracturing operation and benefiting from encoderless vector control, according to at least one embodiment of the present disclosure. The turbine 200 includes low compressor section 202, a high compressor section 204, a gas generator section 206, a combustor section 208, a high/low turbine section 210, a power turbine section 212, and a gear box 228 for the high compressor section 204. A shaft 214, along with a coupler 216, translates the generated rotational motion to a generator to provide the electricity requirements for the electric motor.


In at least one embodiment, the turbine 200 is associated with one or more vibration monitors 222, which receive or monitor vibration at one or more sensors 220 (one is marked for reference) at one or more locations throughout the turbine 200. The locations may be on the body 228 adjacent to a section 202-212 within the body or may be directly within the sections. In at least one embodiment, physical connectors (represented in the example by reference numeral 218) carry signals from the one or more sensors 222 to the monitor(s) 220. In at least one embodiment, the vibrations monitored at the one or more locations are apparent on the shaft 214 and/or coupler 216, and may result in damage to the coupler. As such, even though no sensor is provided at the coupler, the monitor 220 provides sufficient information via Ethernet interface 224, for instance, to enable the determine parameters that may be asserted for an encoderless vector control scheme of the present disclosure. In at least one embodiment, FIG. 5 provides examples of determined parameters that may be used in the encoderless vector control scheme.


In at least one embodiment, the monitor 220 provides information pertaining to the oscillation alarms via Ethernet interface 224, for applied determined parameters of the system. The applied determined parameters are qualified for use with a similar application, under a similar configuration, as the determined parameters for the VFD to ensure that the vibrations are the least possible, as reflected by the oscillation alarms being reduced in reference to at least FIG. 4.



FIG. 3 is graph 300 illustrating system vibration and instability of a system for hydraulic fracturing that may benefit from aspects of the present disclosure. The y-axis 302 represents Number of Shaft Oscillation Alarm Values and the x-axis 304 represents Date and Time of Alarm, when an oscillation alarm occurs. In at least one embodiment, the oscillation alarm represents a monitored vibration beyond an acceptable vibration set within the monitor 220 of FIG. 2 for each of the one or more locations referenced in FIG. 2. Further, the oscillation alarm represents, in at least one embodiment, vibration that is associated with at least one turbine of a hydraulic fracturing system that may include one or more turbines, generators, or turbine generators.


The graph 300 in FIG. 3 illustrates system vibration and instability prior to implementation of an encoderless vector control scheme. In at least one embodiment, the graph represents the number of oscillation alarms received when the system is in operation over different dates and times as noted in the x-axis of the graph.


As illustrated, further, the instability is pertinently represented by a non-uniform scope of the oscillation alarms. In at least one embodiment, the vertical scale is a dimensionless value or number that is proportional to vibration (rpm/sec) for a portion or at least a feature of the equipment. In at least one embodiment, the feature is on the surface during pumping operations and the value or number may indicate a natural frequency of an excited system under operation. As illustrated the peak of the values in graph 300 approaches 350. A desired value is however lower, for instance, at around 20. At the lower value, instability is reduced or halted when pumping operations are ongoing, but in graph 300, the lower values are obtained only when pumping operations is significantly slowed, which is not desirable during hydraulic fracturing operations.



FIG. 4 is a graph 400 illustrating reduced system vibration and increased stability for a system for hydraulic fracturing that implements aspects of the present disclosure. In at least one embodiment, FIG. 4 illustrates a graph 400 having reduced system vibration and increased stability after implementation of an encoderless vector control scheme. Pertinently, however, even though the scale and dimensions on the x and the y-axes 402, 404 are similar to those of FIG. 3. The left side 406 of the graph 400 represents vibrations present at one or more of the monitored locations referenced in FIG. 2, but with some order, during each individual hydraulic fracturing stage, prior to encoderless vector control being implemented. The right side 408 of the graph 400, on the other hand, represents reduced vibrations monitored at the one or more locations referenced in FIG. 2, after implementation of the encoderless vector control scheme.


In at least one embodiment, the oscillation alarm values in the right side 408 of the graph 400 represent vibration in at least one part of the system for a period of time and may be within a range of about 15 to about 45 upon engagement of the motor with a load for the period of time. In at least one embodiment, the encoderless vector control scheme includes determining parameters suited for the electric motor based in part on the oscillation alarm values being at least less than about 45 or less than about 70 upon engagement of the motor with a load. These values are represented as attainable by the monitoring system indicating graph points within these values on the right side 408 of the graph 400.



FIG. 5 illustrates a table 500 of select determined parameters 502 and corresponding values 504, 506, with units 508, within the encoderless vector control for a VFD used in hydraulic fracturing operations, according to at least one embodiment of the present disclosure. Selected determined parameters 502 represent example parameters that may be tuned or adjusted for the encoderless vector control, at least as input for the VFD. The example parameters include example maximum and minimum values 504, 506, and their units 508. Table 1, in concurrently filed Appendix A, includes a set of further possible encoderless vector control determined parameters and some of the ranges of values that can be implemented for a fracturing pump VFD.


The VFD encoderless vector control system of the present disclosure enable the electric motor to drive a hydraulic fracturing pump in a smooth operating curve over the motor's entire speed range, to generate full torque at zero speed, and to have high dynamic performance, including fast acceleration and deceleration of the fracturing pump. Also, natural frequencies that were present within the connected equipment, and prone to excitation prior to adopting encoderless vector control and the specific tuned parameters, were not prone to excitation after adopting encoderless vector control and tuned parameters.



FIG. 6 illustrates a flowchart 600 of a method for encoderless vector control for a VFD used in fracturing operations, according to at least one embodiment of the present disclosure. In at least one sub-process 602, an electric motor is engaged with a turbine generator; to receive electric supply indirectly from the turbine generator, for instance. The engagement includes electrical coupling and/or mechanical coupling to associate these two system components together for a fracturing operation. Alternatively, sub-process 602 prepares the turbine generator to generate power by following the required starting and regulating protocols for the turbine generator, for instance. Sub-process 604 couples an encoderless vector control subsystem, such as an encoderless vector control VFD, between the electric motor and the turbine generator. Additional components including breakers and/or transformers may be required and may be recognized and implemented from the disclosure herein, but may be omitted for discussion of FIG. 6.


In at least one embodiment, sub-process 606 enables an interface to receive the determined parameters for the subsystem. In at least one embodiment, the encoderless vector control subsystem includes at least the VFD. The values may be loaded by an executable program or code provided to a machine interface of the VFD or to a component connected to the VFD. As such, the VFD may include or be associated with a processor and a memory including instructions executable by the processor to perform functions for the encoderless vector control subsystem. In at least one embodiment, the functions enable settings for one or more system components of the fracturing system. For instance, speed reference (vales from FIG. 5), motor current, and motor voltage may be all provided from a computer functioning as an interface (e.g., interfaces 116, 166 of FIGS. 1A, 1B), external to the VFD or the system.


Sub-process 608 determines if the encoderless vector control subsystem received values associated with the determined parameters. In at least one embodiment, sub-process 608 may use values from a prior application of the encoderless vector control subsystem to achieve stable operation of the system. Alternatively, sub-process 608 may be applied in a test environment using the vibration sensors and using the monitors previously referenced, prior to method 600 being applied in a real-time environment using the determined parameters from the test environment.


In at least one embodiment, when the determined parameters are available, sub-process 610 controls the electric motor using the determined parameters input to the encoderless vector control subsystem that may include the VFD and may include one or more additional component capable of providing settings for one or more system components of an encoderless vector control system for hydraulic fracturing. Sub-process 612 engages at least one pump with torque input provided from the electric motor when the fracturing operation is performed. Sub-process 606 for the interface remains available for updates to the determined parameters or to override the determined parameters previously provided, for instance.


In at least one embodiment, the system discussed herein for implementing aspects in accordance with various embodiments are computer-based environments having hardware and software capabilities. For instance, a computer-based environment may include human-machine interfaces, processors, memory components, and communication components for receiving input from external computers. Further, different computing environments may be used, as appropriate, to implement various embodiments. External computers may be used to interact with various embodiments and can include any appropriate device operable to send and receive requests, messages, or information over an appropriate network and convey information back to a user of the device. Examples of such external computers may include personal computers, smart phones, handheld messaging devices, laptop computers, and the like. The network can include any appropriate network, including an intranet, the Internet, a cellular network, a local area network, or any other such network or combination thereof. Components used for such a system can depend at least in part upon the type of network and/or environment selected. Protocols and components for communicating via such a network are well known and will not be discussed herein in detail. Communication over the network can be enabled by wired or wireless connections, and combinations thereof using communication component, such as discussed throughout this disclosure.


While the technology has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the technology. Furthermore, it is to be understood that the above disclosed embodiments are merely illustrative of the principles and applications of the present technology. Accordingly, numerous modifications can be made to the illustrative embodiments and other arrangements can be devised without departing from the spirit and scope of the present technology as defined by the appended claims.

Claims
  • 1. A system for use in fracturing operations, the system comprising: an electric motor;a turbine generator to generate electric power;an encoderless vector control subsystem to receive the electric power from the turbine generator and to control the electric motor using determined parameters provided to the encoderless vector control subsystem, wherein the determined parameters represent vibration in at least a portion of a body associated with the turbine generator, for a period of time and that is measured by monitoring oscillation alarm values; andat least one pump to receive torque input from the electric motor.
  • 2. The system of claim 1, further comprising: a vibration sensor for monitoring the vibration induced in a feature associated with a turbine of the turbine generator and providing input for the determined parameters based in part on the vibration.
  • 3. The system of claim 1, further comprising: the vibration sensor associated with the body of the turbine generator for monitoring the vibration induced in the body of the turbine of the turbine generator, in part, due to a feedback resonance received to the turbine.
  • 4. The system of claim 1, further comprising: an encoderless variable frequency drive (VFD) functioning as the encoderless vector control subsystem.
  • 5. The system of claim 1, further comprising: a machine interface to receive the determined parameters for the encoderless vector control subsystem; andat least one processor to apply the determined parameters to the electric motor prior to engagement of a load with the electric motor.
  • 6. The system of claim 1, wherein the determined parameters for the encoderless vector control subsystem are determined based in part on the oscillation alarm values for the vibration that occurs over a period of time and within a predetermined range of the oscillation alarm values, upon engagement of the motor with a load.
  • 7. The system of claim 1, wherein the determined parameters for the encoderless vector control subsystem are determined based in part on the oscillation alarm values for the vibration that occurs over a period of time and within a predetermined number of the oscillation alarm values, upon engagement of the motor with a load.
  • 8. The system of claim 1, wherein the determined parameters for the encoderless vector control subsystem are selected from at least speed values, motor values, and proportional-integral-derivative (PID) control values.
  • 9. The system of claim 1, further comprising: one or more triplex, quintuplex, novemplex, or septuplex plunger pumps adapted to receive the torque input from the electric motor.
  • 10. A method for using electric pumps in fracturing operations comprising: engaging an electric motor with a turbine generator;enabling an encoderless vector control subsystem to receive electric power from the turbine generator;controlling the electric motor using determined parameters input to the encoderless vector control subsystem, wherein the determined parameters represent vibration in at least a portion of a body associated with the turbine generator, for a period of time and that is measured by monitoring oscillation alarm values; andengaging at least one pump with the torque input from the electric motor.
  • 11. The method of claim 10, wherein the determined parameters are based in part on the vibration induced in a feature associated with the turbine generator.
  • 12. The method of claim 11, further comprising: monitoring the vibration induced in the body of a turbine associated with the turbine generator, the determined parameters based in part on the vibration induced in the body, in part, due to a feedback resonance received to the turbine generator.
  • 13. The method of claim 10, further comprising: using an encoderless variable frequency drive (VFD) as the encoderless vector control subsystem.
  • 14. The method of claim 10, further comprising: enabling a machine interface to receive the determined parameters for the encoderless vector control subsystem; andapplying, using at least one processor, the determined parameters to the electric motor prior to engagement of a load with the electric motor.
  • 15. The method of claim 10, wherein the determined parameters for the encoderless vector control subsystem are determined based in part on the oscillation alarm values for the vibration that is over a period of time and within a predetermined range of the oscillation alarm values, upon engagement of the motor with a load.
  • 16. The method of claim 10, wherein the determined parameters for the encoderless vector control subsystem are determined based in part on the oscillation alarm values for the vibration that occurs over a period of time and within a predetermined number of the oscillation alarm values, upon engagement of the motor with a load.
  • 17. The method of claim 10, wherein the determined parameters for the encoderless vector control subsystem are selected from at least speed values, motor values, and proportional-integral-derivative (PID) control values.
  • 18. The method of claim 10, further comprising: engaging one or more triplex, quintuplex, novemplex, or septuplex plunger pumps with the electric motor to receive the torque out from the electric motor.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application is related to and claims the benefit of priority from U.S. Provisional Application 62/847,022, filed May 13, 2019, titled ENCODERLESS VECTOR CONTROL FOR VFD IN HYDRAULIC FRACTURING APPLICATIONS, the entire disclosure of which is incorporated by reference herein for all intents and purposes.

US Referenced Citations (641)
Number Name Date Kind
1541601 Tribe Jun 1925 A
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
1743771 Hall Jan 1930 A
1967466 Damsel Jul 1934 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2244106 Granberg Jun 1941 A
2248051 Armstrong Jul 1941 A
2389328 Stilwell Nov 1945 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
2976025 Pro Mar 1961 A
3055682 Bacher Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3347570 Roessler Oct 1967 A
3601198 Ahearn Aug 1971 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3878884 Raleigh Apr 1975 A
3881551 Terry May 1975 A
3967841 Kendrick Jul 1976 A
3978877 Cox Sep 1976 A
4037431 Sugimoto Jul 1977 A
4066869 Apaloo Jan 1978 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4411313 Johnson et al. Oct 1983 A
4421975 Stein Dec 1983 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4601629 Zimmerman Jul 1986 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4768884 Elkin Sep 1988 A
4783038 Gilbert Nov 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4877956 Priest Oct 1989 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber et al. Jun 1991 A
5050673 Baldridge Sep 1991 A
5114239 Allen May 1992 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5134328 Johnatakis Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5230366 Marandi Jul 1993 A
5293947 Stratton Mar 1994 A
5334898 Skybyk Aug 1994 A
5334899 Skybyk Aug 1994 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5433243 Griswold Jul 1995 A
5439066 Gipson Aug 1995 A
5486047 Zimmerman Jan 1996 A
5517593 Nenniger May 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5549285 Collins Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5606853 Birch Mar 1997 A
5655361 Kishi Aug 1997 A
5712802 Kumar Jan 1998 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5791636 Loziuk Aug 1998 A
5798596 Lordo Aug 1998 A
5813455 Pratt et al. Sep 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
5950726 Roberts Sep 1999 A
6007227 Carlson Dec 1999 A
6035265 Dister et al. Mar 2000 A
6059539 Nyilas May 2000 A
6097310 Harrell et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121705 Hoong Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6167965 Bearden Jan 2001 B1
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann et al. Aug 2001 B1
6315523 Mills Nov 2001 B1
6321860 Reddoch Nov 2001 B1
6406011 Kosar Jun 2002 B1
6442942 Kopko Sep 2002 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6510695 Fisher Jan 2003 B1
6529135 Bowers et al. Mar 2003 B1
6585455 Petersen et al. Jul 2003 B1
6626646 Rajewski Sep 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida Aug 2004 B2
6786051 Kristich Sep 2004 B2
6788022 Sopko Sep 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6837910 Yoshikawa Jan 2005 B1
6857486 Chitwood Feb 2005 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
6985750 Vicknair Jan 2006 B1
7006792 Wilson Feb 2006 B2
7011152 Soelvik Mar 2006 B2
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7279655 Blutke Oct 2007 B2
7308933 Mayfield Dec 2007 B1
7309835 Morrison Dec 2007 B2
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7341287 Gibb Mar 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Koshida Sep 2009 B2
7660648 Dykstra Feb 2010 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7770396 Roby Aug 2010 B2
7795830 Johnson Sep 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7900893 Teurlay Mar 2011 B2
7901314 Salvaire Mar 2011 B2
7926562 Poitzsch Apr 2011 B2
7940039 de Buda May 2011 B2
7949483 Discenzo May 2011 B2
7971650 Yuratich Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
7984757 Keast Jul 2011 B1
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8069710 Dodd Dec 2011 B2
8083504 Williams Dec 2011 B2
8091928 Carrier Jan 2012 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8174853 Kane May 2012 B2
8221513 Ariyapadi Jul 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8379424 Grbovic Feb 2013 B2
8469097 Gray Jun 2013 B2
8474521 Kajaria Jul 2013 B2
RE44444 Dole Aug 2013 E
8503180 Nojima Aug 2013 B2
8506267 Gambier Aug 2013 B2
8534235 Chandler Sep 2013 B2
8534366 Fielder Sep 2013 B2
8556302 Dole Oct 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8622128 Hegeman Jan 2014 B2
8628627 Sales Jan 2014 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8727737 Seitter May 2014 B2
8727783 Chen May 2014 B2
8760657 Pope Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak et al. Jul 2014 B2
8789601 Broussard Jul 2014 B2
8789609 Smith Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8874383 Gambier Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9062545 Roberts et al. Jun 2015 B2
9067182 Nichols Jun 2015 B2
9080412 Wetzel Jul 2015 B2
9103193 Coli Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140105 Pattillo Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9260253 Naizer Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer Apr 2016 B2
9340353 Oren May 2016 B2
9353593 Lu et al. May 2016 B1
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver Nov 2016 B2
9506333 Castillo et al. Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9790858 Kanebako Oct 2017 B2
9822631 Ravi Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9841026 Stinessen Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
RE46725 Case Feb 2018 E
9893500 Oehring Feb 2018 B2
9903190 Conrad Feb 2018 B2
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9963961 Hardin May 2018 B2
9970278 Broussard May 2018 B2
9976351 Randall May 2018 B2
9995218 Oehring Jun 2018 B2
10008880 Vicknair Jun 2018 B2
10020711 Oehring Jul 2018 B2
10036238 Oehring Jul 2018 B2
10107086 Oehring Oct 2018 B2
10119381 Oehring Nov 2018 B2
10167863 Cook Jan 2019 B1
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10221639 Romer et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard Jul 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10408030 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415332 Morris et al. Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
10443660 Harris Oct 2019 B2
10526882 Oehring Jan 2020 B2
10627003 Dale et al. Apr 2020 B2
10648270 Brunty et al. May 2020 B2
10648311 Oehring et al. May 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla Jun 2020 B2
10686301 Oehring et al. Jun 2020 B2
10690131 Rashid Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
10731561 Oehring et al. Aug 2020 B2
10740730 Altamirano et al. Aug 2020 B2
10767561 Brady Sep 2020 B2
10781752 Kikkawa et al. Sep 2020 B2
10794165 Fischer et al. Oct 2020 B2
10934824 Oehring Mar 2021 B2
10988998 Fischer et al. Apr 2021 B2
11091992 Broussard Aug 2021 B2
20010000996 Grimland et al. May 2001 A1
20020169523 Ross et al. Nov 2002 A1
20030079875 Weng Jan 2003 A1
20030056514 Lohn Mar 2003 A1
20030057704 Baten Mar 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr et al. Mar 2004 A1
20040045703 Hooper et al. Mar 2004 A1
20040102109 Cratty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050201197 Duell et al. Sep 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060109141 Huang May 2006 A1
20070125544 Robinson Jun 2007 A1
20070131410 Hill Jun 2007 A1
20070151731 Butler Jul 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070204991 Loree Sep 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080066911 Luharuka Mar 2008 A1
20080095644 Mantei et al. Apr 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080164023 Dykstra et al. Jul 2008 A1
20080187444 Molotkov Aug 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080257449 Weinstein et al. Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080277120 Hickie Nov 2008 A1
20080288115 Rusnak Nov 2008 A1
20080303469 Nojima Dec 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090068031 Gambier Mar 2009 A1
20090068301 Gambier Mar 2009 A1
20090072645 Quere Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Suijaatmadja Apr 2009 A1
20090101410 Egilsson Apr 2009 A1
20090114392 Tolman May 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090194273 Surjaatmadja Aug 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20090315297 Nadeau Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038077 Heilman Feb 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100193057 Garner Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100281876 Khan Nov 2010 A1
20100293973 Erickson Nov 2010 A1
20100300683 Looper Dec 2010 A1
20100303655 Scekic Dec 2010 A1
20100310384 Stephenson Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110052423 Gambier Mar 2011 A1
20110061855 Case et al. Mar 2011 A1
20110079302 Hawes Apr 2011 A1
20110081268 Ochoa et al. Apr 2011 A1
20110085924 Shampine Apr 2011 A1
20110110793 Leugemors et al. May 2011 A1
20110166046 Weaver Jul 2011 A1
20110175397 Amrine Jul 2011 A1
20110194256 De Rijck Aug 2011 A1
20110197988 Van Vliet Aug 2011 A1
20110241590 Horikoshi Oct 2011 A1
20110247831 Smith Oct 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120063936 Baxter et al. Mar 2012 A1
20120067582 Fincher Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120112757 Vrankovic et al. May 2012 A1
20120127635 Grindeland May 2012 A1
20120150455 Franklin et al. Jun 2012 A1
20120152549 Koroteev Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205112 Pettigrew Aug 2012 A1
20120205119 Wentworth Aug 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli et al. Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130051971 Wyse et al. Feb 2013 A1
20130064528 Bigex Mar 2013 A1
20130078114 Van Rijswick Mar 2013 A1
20130138254 Seals May 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Olarte Caro Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130242688 Kageler Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130278183 Liang Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130299167 Fordyce Nov 2013 A1
20130306322 Sanborn et al. Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140041730 Naizer Feb 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140077607 Clarke Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140127036 Buckley May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140147310 Hunt May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140205475 Dale Jul 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140294603 Best Oct 2014 A1
20140332199 Gilstad Nov 2014 A1
20140379300 Devine Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150078924 Zhang Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150147194 Foote May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150233530 Sandidge Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160006311 Li Jan 2016 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160230660 Zeitoun et al. Aug 2016 A1
20160258267 Payne Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang et al. Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326853 Fred et al. Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170082033 Wu et al. Mar 2017 A1
20170096885 Oehring Apr 2017 A1
20170096889 Blanckaert et al. Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170145918 Oehring May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170204852 Barnett Jul 2017 A1
20170212535 Shelman et al. Jul 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring Aug 2017 A1
20170222409 Oehring Aug 2017 A1
20170226838 Ceizobka Aug 2017 A1
20170226839 Broussard Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20170370639 Barden et al. Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180045331 Lopez Feb 2018 A1
20180090914 Johnson et al. Mar 2018 A1
20180156210 Oehring Jun 2018 A1
20180181830 Laharuka et al. Jun 2018 A1
20180183219 Oehring Jun 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180238147 Shahri Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180245568 Pedersen Aug 2018 A1
20180258746 Broussard Sep 2018 A1
20180259080 Dale et al. Sep 2018 A1
20180266217 Funkhauser et al. Sep 2018 A1
20180266412 Stokkevag Sep 2018 A1
20180274446 Oehring Sep 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180291713 Jeanson Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180312738 Rutsch et al. Nov 2018 A1
20180313677 Warren et al. Nov 2018 A1
20180320483 Zhang Nov 2018 A1
20180343125 Clish Nov 2018 A1
20180363437 Coli Dec 2018 A1
20180363640 Kajita et al. Dec 2018 A1
20180366950 Pedersen et al. Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190040727 Oehring et al. Feb 2019 A1
20190055827 Coli Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190119096 Haile Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190128104 Graham et al. May 2019 A1
20190145251 Johnson May 2019 A1
20190154020 Glass May 2019 A1
20190162061 Stepheson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190249527 Kraynek Aug 2019 A1
20190257462 Rogers Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20200040878 Morris Feb 2020 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Allion et al. Mar 2020 A1
20200194976 Benussi Jun 2020 A1
20200232454 Chretien Jul 2020 A1
20200325760 Markham Oct 2020 A1
20200350790 Luft et al. Nov 2020 A1
Foreign Referenced Citations (70)
Number Date Country
2011203353 Jul 2011 AU
2158637 Sep 1994 CA
2406801 Nov 2001 CA
2653069 Dec 2007 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2773843 Oct 2012 CA
2845347 Oct 2012 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
3067854 Jan 2019 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
101639059 Feb 2010 CN
101977016 Feb 2011 CN
201730812 Feb 2011 CN
201819992 May 2011 CN
201925157 Aug 2011 CN
202157824 Mar 2012 CN
202406331 Aug 2012 CN
202463670 Oct 2012 CN
202500735 Oct 2012 CN
202545207 Nov 2012 CN
103095209 May 2013 CN
104117308 Oct 2014 CN
102758604 Dec 2014 CN
104196613 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
112196508 Jan 2021 CN
3453827 Mar 2019 EP
3456915 Mar 2019 EP
2004264589 Sep 2004 JP
3626363 Mar 2005 JP
2008263774 Oct 2008 JP
2012-117371 Jun 2012 JP
20100028462 Mar 2010 KR
48205 Sep 2005 RU
98493 Oct 2010 RU
2421605 Jun 2011 RU
9320328 Oct 1993 WO
9853182 Nov 1998 WO
0047893 Aug 2000 WO
2008136883 Nov 2008 WO
2009023042 Feb 2009 WO
2009046280 Apr 2009 WO
2011127305 Oct 2011 WO
2012051705 Apr 2012 WO
2012122636 Sep 2012 WO
2012137068 Oct 2012 WO
2014116761 Jul 2014 WO
2014177346 Nov 2014 WO
2014177346 Nov 2014 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
2018044307 Mar 2018 WO
2018213925 Nov 2018 WO
2019210417 Nov 2019 WO
Non-Patent Literature Citations (392)
Entry
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 on Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Patent Application No. PCT/US18/63977.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Patent Application No. PCT/US18/63970.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Kroposki et al., Making Microgrids Work, 6 IEEE Power and Energy Mag. 40, 41 (2008).
Dan T. Ton & Merrill A. Smith, The U.S. Department of Energy's Microgrid Initiative, 25 The Electricity J. 84 (2012), pp. 84-94.
Non-Final Office Action issued in U.S. Appl. No. 16/871,328 dated Dec. 9, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,935 dated Oct. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/564,186, dated Oct. 15, 2021.
Final Office Action issued in U.S. Appl. No. 16/356,263 dated Oct. 7, 2021.
Non-Final Office Action issued in U.S. Appl. No. 17/060,647 dated Sep. 20, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/901,774 dated Sep. 14, 2021.
Canadian Office Action issued in Canadian Application No. 3,094,768 dated Oct. 28, 2021.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf, Apr. 24, 2020, 52 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237 Document 72-9, Declaration of Dr. Robert Schaaf—part 2, Apr. 24, 2020, 128 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72-9, Declaration of Dr. Robert Schaaf—part 3, Apr. 24, 2020, 47 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 72, Plaintiffs Opening Claim Construction Brief, Apr. 24, 2020, 37 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 1, Plaintiffs Original Complaint, 63 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 90, Plaintiffs Opposition to Defendants' Motion for Summary Judgment of Invalidity under 35 USC 112, 30 pages.
U.S. Well Services, LLC v Tops Well Services, LLC and Honghua America, LLC, Case No. 3:19-cv-00237, Document 116, Hearing on Markman and Summary Judgment via Video Conference before the Honorable Andrew M. Edison Day 1 of 1 Day—Transcript, Jun. 15, 2020, 308 pages.
Kirsch Research and Development, LLC v Tarco Specialty Products, Inc., Case No. 6:20-cv-00318-ADA, Document 62, Memorandum Opinion and Order Granting Defendant's Opposed Motion to Stay Pending Inter Partes Review of the ′482 Patent [ECF No. 57], Oct. 4, 2021, 6 pages.
Ledcomm LLC v Signfiy North America Corp., Signify Holding B.V., and Signify N.V., Case No. 6:20-cv-01056-ADA, Document 24, Scheduling Order, Aug. 13, 2021, 4 pages.
Transcend Shipping Systems, LLC and Hapag-Lloyd AG and Hapag-Lloyd (America) LLC, CMA CGM (America) LLC and CMA CGM S.A., Mediterranean Shipping Company S.A., Case Nos. 6:20-cv-1195-ADA, 6:21-cv-0018-ADA, and 6:21-cv-0040-ADA, Document 19, Proposed Amended Scheduling Order, Aug. 13, 2021, 6 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 51, Agreed Scheduling Order, Sep. 16, 2021, 5 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Plaintiffs Disclosure of Asserted Claims and Preliminary Infringement Contentions, Jul. 12, 2021, 9 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Plaintiff U.S. Well Services, LLC's Disclosure of Extrinsic Evidence, Oct. 19, 2021, 10 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Defendants' Preliminary Invalidity Contentions, Sep. 10, 2021, 193 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 1-8, Exhibit H, Halliburton—All Electric Fracturing Reducing Emissions and Cost, Apr. 15, 2021, 6 pages.
Bill Lockley and Barry Wood, “What do the API Motor/Generator Features Cost and What Do They Buy You?” 2010 IEEE, Paper No. PCIC-2010-22, 10 pages.
American Petroleum Institute, “Form-wound Squirrel-Cage Induction Motors—500 Horsepower and Larger,” Jun. 2004, Fourth Edition, ANSI/API Standard 541-2003, 88 pages.
Assignment record of U.S. Pat. No. 9,366,114, accessed Aug. 19, 2021, 2 pages.
ASTM International, “Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements” Oct. 13, 2006, 16 pages.
“U.S. Well Services Issues $125.5 Million Convertible Senior Secured PIK Notes, Executes License Agreement with ProFrac Manufacturing, LLC and Finalizes Amendment to Senior Secured Term Loan,” Jun. 28, 2021, https://finance.yahoo.com/news/u-well-services-issues-125-203000637.html?guccounter=1, 6 pages.
Declaration of Joel N. Broussard, Case Nos. IPR2021-01032 & IPR2021-01033, Oct. 13, 2021, 9 pages.
Declaration of Dr. Robert Durham, Case Nos. IPR2021-01033, IPR2021-01032 and IPR2021-01034, Jun. 18, 2021, 179 pages.
Declaration of Robert Schaaf, Case Nos. IPR2021-01032 and IPR2021-01033, Oct. 12, 2021, 45 pages.
Declaration of Sylvia D. Hall-Ellis, Ph D., Case Nos. IPR2021-01032, IPR2021-01033, and IPR2021-01034, Jun. 18, 2021, 173 pages.
Stephen Cary et al., “Electric Rotating Machine Standards Part IL Magnetic Wedge Design & Monitoring Methods,” 2011 IEEE, Paper No. PCIC-2011-41, 8 pages.
Janice Hoppe-Spiers, “Deploying Change,” Energy & Mining International, Spring 2017, https//www.emi-magazine.com, 5 pages.
Jim Harris, “U.S. Well Services LLC—Energy and Mining Magazine,” Energy & Mining International, Oct. 12, 2021, https://www.emi-magazine.com/sections/profiles/1221-us-well-services-llc, 3 pages.
“Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites,” Fluid Power Journal, https://fluidpowerjournal.com/clean-fleet-reduces-emissions/, accessed Sep. 22, 2021, 5 pages.
Gardner Denver, Well Servicing Pump Model GD-2500Q Quintuplex—Operating and Service Manual, Aug. 2005, 46 pages.
“Halliburton Delivers Successful Grid-Powered Frac Operation,” https://www.halliburton.com/en/about-us/press-release/halliburton-delivers-first-successful-grid-powered-fracturing-operation, accessed Sep. 27, 2021, 4 pages.
Hart Energy, Hydraulic Fracturing Techbook, 2015, 99 pages.
R. Mistry et al., “Induction Motor Vibrations in view of the API 541—4th Edition,” IEEE, accessed Jun. 10, 2021, 10 pages.
“Game-changing hydraulic fracturing technology, reduces emissions by 99%,” Intrado Globe News Wire, Oct. 1, 2014, https://www.globenewswire.com/fr/news-release-2014/10/01/670029/10100696/en/Game-changing-hydraulic-facturing-technology-reduces-emissions-by-99.html, 4 pages.
M. Hodowanec et al., “Introduction to API Standard 541,4th Edition—Form-Wound Squirrel Cage Induction Motors—Larger than 500 Horsepower,” 2003, IEEE, Paper No. PCIC-2003-33, 9 pages.
D. Bogh et al., “A User's Guide to Factory Testing of Large Motors: What Should Your Witness Expect,” IEEE, accessed Jun. 10, 2021, 8 pages.
Ryan Davis, “Albright Says He'll Very Rarely Put Cases on Hold for PTAB,” Law 360, https://www.law360.com/articles/1381597/print?section=ip, 2 pages.
Dani Kass, “Fintiv Fails: PTAB Uses “Remarkably Inaccurate” Trial Dates,” Nov. 2, 2021, Law 360, 1 page.
Eugene A. Avallone et al., “Marks' Standard Handbook for Mechanical Engineers, 11th Edition,” 2007, pp. 3-65, 14-2, 14-3, 14-13, 14-14, 20-91, 22-12, 22-13, 22-14, 22-15, 22-16, 10-3, 20-21, 20-22, 20-85, 20-86, 20-89, and 20-90.
T. W. Pascall et al., “Navigating the Test Requirements of API 541 4th Edition,” 2007, IEEE, Paper No. PCIC-2007-11, 12 pages.
“Kerr Pumps & FlowVale Awards for Excellence in Well Completion, Northeast 2017—Awarded to: U.S. Well Services,” https://www.oilandgasawards.com/winner/northeast-2017-kerr-pumps-flowvale-awards.., accessed Oct. 5, 2021, 4 pages.
“New Technology Development Award—General/Products, Northeast 2015—Awarded to: U.S. Well Services, LLC,” https://www.oilandgasawards.com/winner/northeast-2015-new-technology-development-award-generalproducts/#, accessed Aug. 23, 2021, 4 pages.
U.S. Well Services, Inc. v. Halliburton Company, Civil Docket for Case # 6:21-cv-00367-ADA, https://ecf.txwd.uscourts.gov/cgi-bin/DktRpt.pl?190912742001885-L_1_0-1, Accessed Nov. 29, 2021, 13 pages.
A. T. Dufresne, “How reliable are trial dates relied on by the PTAB in the Fintiv analysis?” Perkins Coie, 2021, 3 pages.
J. Malinowski et al., “Petrochemical Standards A Comparison Between IEEE 841-2001, API 541, and API 547,” 2004, IEEE, Paper No. PCIC-2004-22, 8 pages.
“Petroleum Alumnus and Team Develop Mobile Fracturing Unit that Alleviates Environmental Impact,” 2015, LSU, https://www.lsu.edu/eng/news/2015/07/20150713-mobile-fracturing-unit.php, accessed Sep. 22, 2021, 2 pages.
Liz Hampton, “Low-cost fracking offers boon to oil producers, headaches for suppliers,” Reuters, Sep. 12, 2019, https://www.reuters.com/article/us-usa-oil-electric-fracturing-focus/low-cost-fracking-offers-boon-to-oil-producers-headaches-for-supplies, 11 pages.
Liz Hampton, “U.S. Well Services files e-frac patent lawsuit against Halliburton, Cimarex Energy,” Reuters, Apr. 15, 2021, https://www.reuters.com/business/energy/us-well-services-files-e-frac-patent-lawsuit-against-halliburton-cimarex-energy, 10 pages.
Borets, “Borets Oil Equipment,” accessed Sep. 4, 2020, 158 pages.
Andrew Howard Nunn, “The feasibility of natural gas as a fuel source for modern land-based drilling,” Dec. 2011, 94 pages.
R. Saidur, “Applications of variable speed drive (VSD) in electrical motors energy savings,” 2012, vol. 16, pp. 543-550.
Discenzo, “Next Generation Pump Systems Enable New Opportunities for Asset Management and Economic Optimization,” accessed Sep. 4, 2020, 8 pages.
Nikolich, “Compressors, pumps, refrigeration equipment: improvement and specialization of piston pumps for oil and gas well-drilling and production operations,” 1996, Chemical and Petroleum Engineering, vol. 32, pp. 157-162.
Finger, “Sandia National Handbook Laboratories Report: Slimhole handbook: procedures and recommendations for slimhole drilling and testing in geothermal exploration,” Oct. 1999, 164 pages.
Steve Besore, MTU Detroit Diesel Inc., “How to select generator sets for today's oil and gas drill rigs: careful comparison and selection can improve performance and reduce costs,” May 5, 2010, 4 pages, https:/www.mtu-online.com/fileadmin/fm-dam/mtu-USA/mtuinnorthamerica/white-papers/WhitePaper_EDP.pdf.
Pemberton, “Strategies for Optimizing pump efficiency and LCC performance: process pumps are the largest consumers of energy in a typical pulp and paper mill—boosting their efficiency is a new avenue to reduced plant operating costs,” Jun. 2003, Paper Age, pp. 28-32.
Robert B. Thompson, “Optimizing the production system using real-time measurements: a piece of the digital oilfield puzzle,” Nov. 11-14, 2007, SPE Annual Technical Conference and Exhibition, Anaheim, CA, pp. 1-10.
Guffey, “Field testing of variable-speed beam-pump computer control,” May 1991, SPE Production Engineering, pp. 155-160.
Irvine, “The use of variable frequency drives as a final control in the petroleum industry,” 2000, IEEE, pp. 2749-2758.
R. Ikeda et al., “Hydraulic fracturing technique: pore pressure effect and stress heterogeneity,” 1989, Int. J. Rock Mech. Min Sci. & Geomech., vol. 26, No. 6, pp. 471-475.
Coli Patent Application, “Mobile, modular, electrically powered system for use in fracturing underground formations,” filed Apr. 7, 2011, 28 pages.
Gardner Denver—Well Servicing Pump Model GD-2500Q, GD-2500Q-HD, Quintuplex Pumps, GWS Fluid End Parts List, Jul. 2011, 39 pages.
Gardner Denver GD-2500Q Well Service Pump, 2 pages.
Gardner Denver C-2500 Quintuplex Well Service Pump, 2013, 2 pages.
Toshiba 2011 Industrial Catalog, Drives, PAC, PLCs, 2011, 272 pages.
Gardner Denver GD-2500 Quintuplex Well Service Pump, 2003, 2 pages.
Gardner Denver GD-2500Q Quintuplex Well Service Pump Operating and Service Manual, Aug. 2005, 46 pages.
Gardner Denver GD-2500Q Quintuplex Well Service Pump Power End Parts List, Apr. 2007, 15 pages.
Toshiba H9 ASD Installation and Operation Manual, Mar. 2011, 287 pages.
Offshore Technology Conference, Houston, TX, April 30-May 3, 2012, Honghua Group Brochure and Pictures, 6 pages.
Honghua Group Customer Spreadsheet, 2 pages.
Charlotte Owen, “Chinese company launches new fracking rigs,” May 2, 2012, Oil & Gas Technology Magazine, 2 pages.
Honghua Group Limited, Complete Equipment and System Integrating by Using of Gas Power-gen and Power Grid and VFD System, 30 pages.
Honghua Group Limited, Is gas and electricity driven equipment the future trend for develop lithologic reservoirs, 2 pages.
ABB Group, MV Drive benefits for shale gas applications, Powerpoint, Apr. 2012, 16 pages.
U.S. Well Services, Game-changing hydraulic fracturing technology, reduces emissions by 99%: U.S. Well Services's patented clean fleet technology proven to cut emission, save fuel and allow for quieter operations on site, Oct. 1, 2014, 3 pages.
ASME, Hydraulic Fracturing's Greener Tint, Jan. 11, 2018, 2 pages.
Fluid Power, Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites, Jan. 11, 2005, 3 pages.
Louisiana State University, Petroleum alumnus and team develop mobile fracturing unit that alleviates environmental impact, LSU School of EE & CS, Nov. 2012, 2 pages.
Linda Kane, Energy pipeline: US Well Services brings clean fleet to Weld County, Nov. 4, 2015, Greeley Tribute, 7 pages.
Business Wire, Hunghua Group showcases shale gas, offshore and land drilling solutions at the 2013 Offshore Technology Conference, May 6, 2013, 2 pages.
Joanne Liou, Hunghua Group introduces 6,000-hp integrated shale gas system, Drilling Matters, May 21, 2012, 2 pages.
TESS Record—Trademark for Clean Fleet registered Sep. 5, 2013, accessed Jan. 14, 2020, 2 pages.
U.S. Well Services, About U.S. Well Services, accessed Jan. 14, 2020, 14 pages.
Unknown, “Improving the Drilling Cycle,” Oilfield Technology, Dec. 2009, vol. 2, Issue 9, 5 pages.
Unknown, “Andon (manufacturing),” last edited Septembers, 2019, https://en.wikipedia.org/w/index.php?title=Andon_ (manufacturing)&oldid=914575778, 2 pages.
S.K. Subramaniam, “Production monitoring system for monitoring the industrial shop floor performance,” 2009, International Journal of Systems Applications, Engineering & Development, vol. 3, Issue 1, pp. 28-35.
Unknown, Evolution Well Services advances fracturing operations with an electrically powered system,Calgary PR Mewswire, Jun. 4, 2012, 2 pages.
Honghua Group, Honghua America, LLC, HHF—1600 Mud Pump, 2 pages.
Honghua Group, Honghua Shale Gas Solutions Power Point Slides, Feb. 2012, 41 pages.
Mactel, Frac Test with VFDs Final Report Hydraulic Fracturing Pilot Test Results and Preliminary Full Scale Design United Nuclear Church Rock Facility, Dec. 23, 2003, 73 pages.
Jon Gates, ASME Hydraulic Fracturing Conference, Mar. 24, 2015, http://www.otrglobal.com/newsroom/cnotes/128720, 6 pages.
Gardner Denver Well Servicing Pump Model C2500Q Quintuplex Operating and Service Manual, Apr. 2011, 46 pages.
Coli, Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas, Oct. 5, 2012, U.S. Appl. No. 61/710,393, 59 pages.
Toshiba, G9 Brochure—G9 Series Adjustable Speed Drives, Jun. 2007, 6 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Pumps & Systems, Dec. 17, 2011, https://www.pumpsandsystems.com/variable-frequency-drives-oil-and-gas-pumping-systems, 5 pages.
Unknown, “U.S. Well Services for Antero Fracking,” Oct. 3, 2014, HHP Insight, http://hhpinsight.com/epoperations/2014/10/u-s-well-services-for-antero-fracking/, 3 pages.
Stuart H. Loewenthal, Design of Power-Transmitting Shafts, NASA Reference Publication 1123, Jul. 1984, 30 pages.
“VZ Environmental Award of Excellence in Environmental Stewardship, Rocky Mountain 2016—Awarded to: U.S. Well Services, LLC,” Oil & Gas Awards, 2016, https://www.oilandgasawards.com/winner/rocky-mountain-2016-vz-environmental-award-for-excellence-in-environmental-stewardship, accessed Aug. 23, 2021, 4 pages.
Austin H. Bonnett, “Root Cause Failure Analysis for AC Induction Motors in the Petroleum and Chemical Industry,” 2010, IEEE, Paper No. PCIC-2010-43, 13 pages.
Carolyn Davis, “Natural Gas Finding Niche in E-Fracking, But Diesel Still Rules,” Sep. 6, 2019, Natural Gas Intel, https://www.naturalgasintel.com/natural-gas-finding-niche-in-e-fracking-but-diesel-still-rules, 9 pages.
Tim Rahill and Michael C. Fousha, “Sorting Out the Overlap,” Jan./Feb. 2009, IEEE Industry Applications Magazine, 12 pages.
Jodi Shafto, “Growth in electric-fracking fleets stunted by tight producer budgets,” Aug. 6, 2019, S&P Global Market Intelligence, https://wwww.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/growth-in-electric-facking-fleets-stunted-by-tight-producer-budgets, accessed Sep. 16, 2021, 4 pages.
A. H. Bonnett et al., “Squirrel Cage Rotor Options for A.C. Induction Motors,” IEEE, accessed May 18, 2021, 4 pages.
U.S. Well Services Investor and Analyst Update: Second Quarter 2021 in Review, 2021, 7 pages.
Standing Order Governing Proceedings—Patent Cases, in the United States District Court for the Western District of Texas, Waco Division, filed Nov. 17, 2021, 11 pages.
U.S. Well Services—Services, http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages.
Elsevier, “Variable Speed Pumping—A Guide to Successful Applications,” 2019, 186 pages.
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Setting Markman Hearing, Nov. 29, 2021, 1 page.
U.S. Well Services, Inc., and U.S. Well Services, LLC v Halliburton Company, Cimarex Energy Co., Halliburton Energy Services, Inc., and Halliburton US Techologies, Inc., Case No. WA:21-CV-00367-ADA, Document 61, Order Resetting Markman Hearing, Dec. 8, 2021, 1 page.
Affidavit of Duncan Hall, Internet Archives on Jun. 7, 2021, https://web.archive.org/web/20120917102614/http:/www.quincieoilfield.com/pdf/3.0%20Gardner%20Denver/2500/GD2500Q%200p%20&%20Service%20Manual.pdf, 76 pages.
Non-Final Office Action issued in U.S. Appl. No. 16/871,928 dated Aug. 25, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/943,727 dated Aug. 3, 2021.
Non-Final Office Action issued in U.S. Appl. No. 14/881,525 dated Jul. 21, 2021.
Non-Final Office Action issued in U.S. Appl. No. 16/404,283 dated Jul. 21, 2021.
Notice of Allowance and Notice of Allowability issued in U.S. Appl. No. 15/829,419 dated Jul. 26, 2021.
Noodbury et al., “Electrical Design Considerations for Drilling Rigs,” IEEE Transactions on Industry Applications, vol. 1A-12, No. 4, Jul./Aug. 1976, pp. 421-431.
Morris et al., U.S. Appl. No. 62/526,869; Hydration-Blender Transport and Electric Power Distribution for Fracturing Operation; Jun. 28, 2018; USPTO; see entire document.
Final Office Action dated Feb. 4, 2021 in U.S. Appl. No. 16/597,014.
International Search Report and Written Opinion dated Feb. 4, 2021 in PCT/US20/59834.
International Search Report and Written Opinion dated Feb. 2, 2021 in PCT/US20/58906.
International Search Report and Written Opinion dated Feb. 3, 2021 in PCT/US20/58899.
Non-Final Office Action dated Jan. 29, 2021 in U.S. Appl. No. 16/564,185.
Final Office Action dated Jan. 21, 2021 in U.S. Appl. No. 16/458,696.
Final Office Action dated Jan. 11, 2021 in U.S. Appl. No. 16/404,283.
Non-Final Office Action dated Jan. 4, 2021 in U.S. Appl. No. 16/522,043.
International Search Report and Written Opinion dated Dec. 14, 2020 in PCT/US2020/53980.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/170,695 dated Jun. 7, 2019.
Non-Final Office Action issued in corresponding U.S. Appl. No. 16/268,030 dated May 10, 2019.
Final Office Action issued in corresponding U.S. Appl. No. 16/210,749 dated Jun. 11, 2019.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
International Search Report and Written Opinion dated Jul. 9, 2019 in related PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 7, 2019 in related U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Mar. 3, 2020 in related U.S. Appl. No. 16/152,695.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
Final Office Action dated Mar. 31, 2020 in related U.S. Appl. No. 15/356,436.
Non-Final Office Action dated May 20, 2020 in related U.S. Appl. No. 14/881,535.
Non-Final Office Action dated May 22, 2020 in related U.S. Appl. No. 16/458,696.
Non-Final Office Action dated May 8, 2020 in related U.S. Appl. No. 15/145,443.
International Search Report and Written Opinion dated Jun. 2, 2020 in related PCT Application No. PCT/US20/23809.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines.
Goodwin, “High-voltage auxiliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg.
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912.
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017.
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359.
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861.
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444.
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968.
Office Action dated Jul. 23, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436.
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273.
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727.
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263.
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083.
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, p. 1-10, 1967.
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974.
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-burner) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters].
Water and Glycol Heating Systems* (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
“Heat Exchanger” (https://en.wiklpedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Dec. 18, 2019 Apr. 2019 (Dec. 18, 2019), entire document, especially para (0001].
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707.
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980.
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821.
International Search Report and Written Opinion mailed in PCT/US20/67526 dated May 6, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67608 dated Mar. 30, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67528 dated Mar. 19, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67146 dated Mar. 29, 2021.
International Search Report and Written Opinion mailed in PCT/US20/67523 dated Mar. 22, 2021.
International Search Report and Written Opinion mailed in PCT/US2020/066543 dated May 11, 2021.
Response to Non-Final Office Action dated Aug. 3, 2015 in related U.S. Appl. No. 13/679,689, 62 pages.
George E. King, “Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells,” Feb. 6-8, 2012, Society of Petroleum Engineers, 80 pages.
Gardner Denver Pumps, GD2500Q Quintuplex Pump, Oct. 14, 2019, http://www.gardnerdenver.com/en-us/pumps/quintuplex-pump-gd-2500q#menu, 7 pages.
TMEIC, TMEIC Industrial Motors Manual, 2012, 12 pages.
Toshiba, Toshiba Q9 ASD Installation and Operation Manual, Apr. 2010, 233 pages.
ABB, ABB drives in power generation: medium voltage drives for more efficient and reliable plant operation, 2006, 12 pages.
ABB, Industry Brochure—ABB drives in chemical, oil and gas medium voltage drives for greater profitability and performance, 2009, 16 pages.
ABB, ABB drives in chemical, oil and gas Medium voltage drives for greater profitability and performance, 2011, 16 pages.
ABB, Drive PC Tools: Startup and maintenance, DriveWindow Light, 2014, 2 pages.
ABB, Global Center of Excellence DC Drives: DriveWindow light upgrade for DC drives Used for DWL 2.95 and DC DriveAP, Dec. 4, 2018, 1 page.
ABB, ABB Drive Ware User's Manual, DriveWindow 2, Dec. 31, 2012, 604 pages.
ABB, ABB Drive Ware User's Guide, DriveWindow Light 2, Oct. 15, 2013, 45 pages.
Warren Electric Corp., Hydraulic heaters maintain fluid quality and consistency, Hydraulics & Pneumatics, Dec. 30, 2010, 12 pages.
Onyx Industries Inc., Stack Light Engineering Reference Guide, Sep. 23, 2012, 4 pages.
U.S. Well Services, Inc. files suit against Halliburton Company and Cimarex Energy Co. for patent infringement, Apr. 15, 2021, PR Newswire, https://www.prnewswire.com/news-releases/us-well-services-inc-files-suit-against-halliburton-company-and-cimarex-energy-co-for-patent-infringement-301270118.html, 2 pages.
Services—U.S. Well Services, http://uswellservices.com/services/, accessed Nov. 13, 2021, 10 pages.
Publications, U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150626140537/https://www.osha.gov/pls/publications/publication.html, 47 pages.
OSHA Publications, U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406054914/https://www.osha.gov/pls/publications/publication.AthruZ?pType=Industry, Jun. 13, 2021, 3 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, https://web.archive.org/web/20150406152927/https://www.osha.gov/, 4 pages.
Steven C. Carlson, Weaponizing IPRs, Landslide, Sep. 22, 2019, 10 pages.
Declaration of Dr. Mark Ehsani, IPR2021-01066, Jul. 2, 2021, 213 pages.
Declaration of Robert Schaaf, IPR2021-01066, Nov. 17, 2021, 43 pages.
U.S. Appl. No. 62/823,303.
Amazon.com purchase page for Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, https://web.archive.org/web/20070103124447/https:/www.amazon.com/Electrical-Engineering-Reference-Manual-Computer/dp/1888577568/, accessed Jul. 23, 2021, 7 pages.
Public Catalog of the U.S. Copyright Office for search result: electrical engineering reference manual, https://cocatalog.loc.gov/cgi-bin/Pwebrecon.cgi?v1=6&ti=1, 6&Search_Arg=electrical engineering reference manual&Search_Code=TALL&CNT=25&PI . . . , accessed Jul. 21, 2021, 2 pages.
Declaration of Robert Schaaf, IPR2021-01238, Nov. 17, 2021, 38 pages.
John A. Camera, PE, Electrical Engineering Reference Manual for the Electrical and Computer PE Exam, Sixth Edition, 2002, 102 pages.
U.S. Appl. No. 62/180,289.
IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition, 2000, 7 pages.
National Electrical Manufacturers Association, NEMA ICS 61800-4 Adjustable Speed Electrical Power Drive Systems, Part 4: General Requirements—Rating Specifications for A.C. Power Drive Systems above 1000 V a.c. and Not Exceeding 35 kV, 2004 22 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, About PPI, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_aboutppi.html, accessed Jul. 22, 2021, 1 page.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, What PPI Customers Say, https://web.archive.org/web/20031226130924/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_comments-EEcomments.html, accessed Jul. 22, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Homepage, https://web.archive.org/web/20040209054901/http://ppi2pass.com:80/catalog/servlet/MyPpi, accessed Jul. 19, 2021, 1 page.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, The PPI Online Catalog, https://web.archive.org/web/20040215142016/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_MAIN, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Electrical PE Exam Review Products, https://web.archive.org/web/20040214233851/http://ppi2pass.com:80/catalog/servlet/MyPpi_ct_ELECTRICAL, accessed Jul. 19, 2021, 7 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Instructor's Corner, https://web.archive.org/web/20031219232547/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-corner.html, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., FE Exam, PE Exam, ARE Exam, and NCIDQ Exam Review / Professional Engineering Licensing, Teaching an Electrical and Computer Engineering PE Exam Review Course, https://web.archive.org/web/20031223100101/http://ppi2pass.com:80/catalog/servlet/MyPpi_pg_corner-teachee.html, accessed Jul. 19, 2021, 2 pages.
Professional Publications, Inc., Electrical Engineering Reference Manual, 12 pages.
Professional Publications, Inc., Books for the FE, PE, FLS and PLS Exams, Spring 2004, http://www.ppi2pass.com/corner/catalog.pdf, 16 pages.
Lionel B. Roe, Practices and Procedures of Industrial Electrical Design, 1972, McGraw-Hill, Inc., Chapter 2: The Basic Electric System, 11 pages.
Declaration of Duncan Hall, Jul. 23, 2021, https://web.archive.org/web/20031219231426/http://ppi2pass.com:80/catalog/servlet/MyPpi_jg_aboutppi.html, 12 pages.
Declaration of Robert Durham, IPR2021-01315, Aug. 12, 2021, 209 pages.
Declaration of Robert Schaaf, IPR2021-01315, Nov. 19, 2021, 39 pages.
U.S. Appl. No. 62/323,168.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 63, Defendants' Claim Construction Brief in Reply to U.S. Well Services, LLC's Responsive Brief, Dec. 2, 2021, 30 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 17, 2021, 14 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Document 64, Order Resetting Markman Hearing, Decembers, 2021, 1 page.
Approved American National Standard, ANSI/NEMA MG Jan. 2011, American National Standard Motors and Generators, Dec. 9, 2021, 636 pages.
Comprehensive Power: Power it Up, Feb. 27, 2013, 28 pages.
Comprehensive Power: Power it Up, Brochure, 26 pages.
Declaration of Robert Schaaf, IPR2021-01316, Nov. 19, 2021, 33 pages.
Declaration of Robert Durham, IPR2021-01316, Aug. 13, 2021, 75 pages.
Declaration of Robert Schaaf, IPR2021-01538, Dec. 28, 2021, 40 pages.
Declaration of Dr. L. Brun Hilbert, Jr., P.E., IPR2021-01538, Sep. 22, 2021, 99 pages.
Maxwell James Clerk 1868, On Governors, Proc. R. Soc. Lond., pp. 16270-283.
Katsuhiko Ogata, Modern Control Engineering: Third Edition, 1997, 2 pages.
49 C.F.R. Part 393 (Oct. 1, 2006), 36 pages.
Gardner Denver, 3″ 1502 Male Hammer Union Discharge Flange, 2005, 13 pages.
Donald G. Fink, “Standard Handbook for Electrical Engineers—Thirteenth Edition,” 1993, McGraw-Hill Inc., pp. 10-13, 20-21, 20-22, 20-85, 20-20, 20-89, 20-90, 20-91, 22-12, 22-13, 22-14, 22-15 and 22-16.
Email from Michael See on Jun. 10, 2021 regarding API-541 Fourth Edition: Public Availability, 2 pages.
Halliburton, Halliburtion All-Electric Fracturing Reducing Emissions and Cost Brochure, 2021, 6 pages.
IEEE Power Engineering Society, 112 IEEE Standard Test Procedure for Polyphase Induction Motors and Generators, 2004, 87 pages.
U.S. Well Services, LLC v Tops Well Services, LLC, Case No. 3:19-cv-237, Document 135, Order, Sep. 22, 2021, 2 pages.
U.S. Well Services, Inc. and U.S. Well Services, LLC v Halliburton Company and Cimarex Energy Co., Case No. 6:21-cv-00367-ADA, Document 56, Defendants' Opening Claim Construction Brief, Oct. 27, 2021, 46 pages.
“Screenshot of USWS Clean Fleet System Video,” 1 page.
John Daniel, “8.30 DEP Industry Observations: New Flac Fleet; New Fleet Designs Forthcoming,” Daniel Energy Partners, Aug. 30, 2020, 13 pages.
Declaration of Joel N. Broussard, IPR2021-01034, IPR2021-01035, IPR2021-01036, and IPR2021-01037, Oct. 20, 2021, 11 pages.
Declaration of Robert Schaaf, IPR2021-01034, Oct. 20, 2021, 47 pages.
Declaration of Dr. Mark Ehsani, IPR2021-01035, Jun. 18, 2021, 188 pages.
Stan Gibilisco, The Illustrated Dictionary of Electronics: Audio/Video Consumer Electronics Wireless Technology -Eighth Edition, 2001, p. 667.
Declaration of Robert Schaaf, IPR2021-01035, Oct. 20, 2021, 51 pages.
Declaration of Dr. L. Brun Hilbert, P.E., IPR2021-01037 and IPR2021-01038, Jun. 21, 2021, 124 pages.
U.S. Appl. No. 62/242,173.
Declaration of Robert Schaaf, IPR2021-01037, Oct. 20, 2021, 52 pages.
Zeus Electric Pumping Unit, Halliburton, http://www.halliburton.com/en/products/zeus-electric-pumping-unit, 2021, 4 pages.
Declaration of Joel N. Broussard, IPR2021-01038, Oct. 20, 2021, 11 pages.
LedComm LLC v Signify North America Corporation, Case No. 6:20-cv-01056-ADA, Civil Docket, accessed Dec. 3, 2021, 11 pages.
U.S. Well Services, Inc. v Halliburton Company, Case No. 6:21-cv-00367-ADA, Civil Docket, accessed Dec. 13, 2021, 14 pages.
Declaration of Robert Schaaf, IPR2021-01038, Nov. 10, 2021, 40 pages.
Transcend Shipping Systems LLC v Mediterranean Shipping Company S.A., Case No. 6:21-cv-00040, Document 27, Order of Dismissal with Prejudice, Dec. 7, 2021, 1 page.
Centers for Disease Control and Prevention, NIOSH Numbered Publications, https://web.archive.org/web/20120721180008/http://www.cdc.org/niosh/pubs/all_date_desc_nopubnumbers.html, 2012, 57 pages.
America Invents Act, H.R. Rep. No. 112-98, Jun. 1, 2011, 165 pages.
Declaration of Joel N. Broussard, IPR2021-01065, Oct. 20, 2021, 11 pages.
Declaration of Dr. Robert Durham, IPR2021-01065, Jun. 18, 2021, 138 pages.
Declaration of Robert Schaaf, IPR2021-01065, Nov. 10, 2021, 33 pages.
U.S. Pat. No. 9,410,410, Excerpt—Response to Non-Final Office Action filed Feb. 3, 2016.
U.S. Appl. No. 62/242,566.
Industrial Safety & Hygiene News, OSHA issues hazard alert for fracking and drilling, Jan. 6, 2015, 1 page.
Portfolio Media Inc., A Shift to Sand: Spotlight on Silica Use in Fracking, Law360, https://www.law360.com/articles/366057/print?section=energy, accessed Jun. 10, 2021, 5 pages.
Henry Chajet, “OSHA Issues Alert on Non-Silica Fracking Hazards,” Jan. 30, 2015, National Law Review Newsroom, 2 pages.
U.S. Well Services, LLC, v Voltagrid LLC, Nathan Ough, Certarus (USA) Ltd., and Jared Oehring, Case No. 4:21-cv-3441-LHR, Document 13, Plaintiff U.S. Well Services, LLC's Motion for Preliminary Injunction and Request for Hearing, Nov. 4, 2021, 311 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, Hydraulic Fracturing and Flowback Hazards Other than Respirable Silica, 27 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, Hazard Alert—Worker Exposure to Silica Turing Hydraulic Fracturing, 2012, 7 pages.
U.S. Department of Labor—Occupational Safety and Health Administration, OSHA and NIOSH issued hazard alert on ensuring workers in hydraulic fracturing operations have appropriate protections from silica exposure, Jun. 21, 2012, 4 pages.
Occupational Safety and Health Administration—Home, United States Department of Labor, https://web.archive.org/web/20120722160756/http://www.osha.gov/, accessed Jun. 13, 2021, 2 pages.
Industry/Hazard Alerts, United States Department of Labor, https://web.archive.org/web/20120801064838/http://www.osha.gov:80/hazardindex.html, accessed Jun. 13, 2021, 1 page.
Hazard Alert—Worker Exposure to Silica during Hydraulic Fracturing, United States Department of Labor, https://web.archive.org/web/20120808200919/http://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.html, accessed Jun. 13, 2021, 5 pages.
A. Abbott, Crippling the Innovation Economy: Regulatory Overreach at the Patent Office, Regulatory Transparency Project, Aug. 14, 2017, 35 pages.
D. Heidel, Safety and Health Management Aspects for Handling Silica-based Products and Engineered Nanoparticles in Sequences of Shale Reservoir Stimulations Operations, Society of Petroleum Engineers, 2004, 4 pages.
Testimony of Judge Paul R. Michel (Ret.) United States Court of Appeals for the Federal Circuit Before the Subcommittee on Intellectual Property, U.S. Senate Committee on the Judiciary, Jun. 4, 2019, 8 pages.
Bernard D. Goldstein, The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing, 2014, Toxicological Sciences, vol. 139, No. 2, pp. 271-283.
Mike Soraghan, OSHA issues hazard alert for fracking and drilling, E&E, Dec. 10, 2014, 1 page.
The American Heritage Dictionary of the English Language, Fifth Edition, Fiftieth Anniversary, p. 911.
Collins English Dictionary, Twelfth Edition, 2014, p. 1005.
Declaration of Robert Schaaf, IPR2021-01539, Jan. 25, 2022, 37 pages.
Department of Transportation, Federal Motor Carrier Safety Administration, 49 CFR Parts 390, 392 and 393—Parts and Accessories Necessary for Safe Operation; General Amendments; Final Rule, Federal Register, Aug. 15, 2005, vol. 70, No. 156, 49 pages.
D. Nedelcut et al., “On-line and Off-line Monitoring-Diagnosis System (MDS) for Power Transformers,” IEEE, 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, Apr. 21-24, 2008, 7 pages.
Random House Webster's Unabridged Dictionary, Second Edition, 2001, p. 990.
A. B. Lobo Ribeiro et al., “Multipoint Fiber-Optic Hot-Spot Sensing Network Integrated Into High Power Transformer for Continuous Monitoring,” IEEE Sensors Journal, Jul. 2008, vol. 8, No. 7, pp. 1264-1267.
Society of Automotive Engineers, SAE J1292: Automobile, Truck, Truck-Tractor, Trailer, and Motor Coach Wiring, 49 CFR 393.28, Oct. 1981, 6 pages.
“StarTech NETRS2321E 1 Port RS-232/422/485 Serial over IP Ethernet Device Server,” StarTech, http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YN0NOS, May 31, 2014, 4 pages.
“StarTech.com 1 Port RS232 Serial to IP Ethernet Converter (NETRS2321P),” StarTech, http://www.amazon.com/StarTech-com-Serial-Ethernet-Converter-NETRS232IP/dp/B00FJEHNSO, Oct. 9, 2014, 4 pages.
“TCP/IP Ethernet to Serial RS232 RS485 RS422 Converter,” Atc, http://www.amazon.com/Ethernet-Serial-RS232-RS485-Converter/dp/B00ATV2DX2, Feb. 1, 2014, 2 pages.
“SainSmart TCP/IP Ethernet to Serial RS232 RS485 Intelligent Communication Converter,” SainSmart, http://www.amazon.com/SainSmart-Ethernet-lntelligent-Communication-Converter/dp/B008BGLUHW, Aug. 17, 2014, 4 pages.
“Global Cache iTach, IP to Serial with PoE (IP2SL-P),” Global Cache, https://www.amazon.com/Global-Cache-iTach-Serial-IP2SL-P/dp/B003BFVNS4/, Oct. 30, 2014, 3 pages.
Declaration of Robert Durham, IPR2022-00074, Nov. 8, 2021, 177 pages.
Declaration of Robert Schaaf, IPR2022-00074, Feb. 17, 2022, 36 pages.
U.S. Appl. No. 62/204,331.
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, p. 16-4 and 16-22.
Moxa 802.11 Ethernet to Serial, Moxastore, http://www.moxastore.com/Moxa_802_11_Wi_Fi_Ethernet_to_Serial_s/587.html, May 24, 2016, 1 page.
Project Registration, Moxastore, http://www.moxastore.com, Feb. 15, 2015, 2 pages.
About Us, Moxastore, http://www.moxastore.com/aboutus.asp, Mar. 8, 2015, 1 page.
NPORTIA5250, Moxastore, http://www.moxastore.com/NPORTIA5250_p/nportia5250.htm.
Declaration of Duncan Hall, Internet Archive, Oct. 26, 2021, https://web.archive.org/web/20140531134153/http://www.amazon.com/StarTech-NETRS2321E-RS-232-Serial-Ethernet/dp/B000YB0NOS, 43 pages.
Michael Quentin Morton, Unlocking the Earth: A Short History of Hydraulic Fracturing (2013), GeoExpro, vol. 10, No. 6, 5 pages.
Accommodating Seismic Movement, Victaulic Company, 2015, https://web.archive.org/web/20150412042941/http://www.victaulic.com:80/en/businesses-solutions/solutions/accommoda . . . , 2 pages.
Style W77 AGS Flexible Coupling, Victaulic Company 2015, https://web.archive.org/web/20150423052817/http://www.victaulic.com:80/en/products-services/products/style-w77-ags-f . . . , 1 page.
AGS Large Diameter Solutions, Victaulic Company, 2015, https://web.archive.org/web/20150419063052/http://www.victaulic.com:80/en/businesses-solutions/solutions/advanced-gr . . . , 2 pages.
Chiksan Original Swivel Joints, FMC, 1997, 16 pages.
CoorsTek Flowguard Products, 2012, 8 pages.
Declaration of Sylvia D. Hall-Ellis, IPR2022-00610, Feb. 28, 2022, 98 pages.
Flowline Products and Services, FMC Technologies, http://www.fmctechnologies.com, 80 pages.
Gardner Denver, Well Servicing Pump Model GD-2500Q, GD-2500Q-HD, Quintuplex Pumps, Sep. 2011, 45 pages.
Eugene A. Avallone, Marks' Standard Handbook for Mechanical Engineers: 11th Edition, 2007, Section 14, 18 pages.
Mohinder L. Nayyar, Piping Handbook Seventh Edition, McGraw-Hill Handbook, 2000, 77 pages.
Pulsation Dampers, Coorstek, 2014, https://web.archive.org/web/20140919005733/http://coorstek.com/markets/energy_equip . . . , 2 pages.
M. E. Rahman et al., “Wire rope isolators for vibration isolation of equipment and structures—A review,” IOP Conference Series Materials Science and Engineering, Apr. 2015, 12 pages.
Victaulic Couplings Vibration Attenuation Characteristics, Victaulic, Publication 26.04, Oct. 2014, 5 pages.
Thorndike Saville, The Victaulic Pipe Joint, Journal of American Water Works Association, Nov. 1922, vol. 9, No. 6, pp. 921-927.
J. C. Wachel et al., “Analysis of Vibration and Failure Problems in Reciprocating Triplex Pumps for Oil Pipelines,” The American Society of Mechanical Engineers, Presented at the Energy-Sources and Technology Conference and Exhibition, Dallas, Texas, Feb. 17-21, 1985, 8 pages.
Declaration of Nathaniel E. Frank-White, Internet Archive, Feb. 17, 2022, http://web.archive.org/web/20140329090440/http://www.enidline.com/pdffiles/WR_Catalog_2012.pdf, 82 pages.
Wire Rope Isolator Technologies, Enidine, Dec. 2011, 78 pages.
World's Best Swivel Joints, Flowvalve, 2013, https://web.archive.org/web/20150117041757/http://www.flowvalve.com:80/swivels, 10 pages.
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020.
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020.
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020.
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines (Year 2015).
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
Related Publications (1)
Number Date Country
20200362681 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62847022 May 2019 US