Encoding abelian variety-based ciphertext with metadata

Information

  • Patent Grant
  • 11146397
  • Patent Number
    11,146,397
  • Date Filed
    Tuesday, October 31, 2017
    7 years ago
  • Date Issued
    Tuesday, October 12, 2021
    3 years ago
Abstract
A technique includes encrypting plaintext to provide a set of projective coordinates that represents a point of an abelian variety curve and represents ciphertext. The technique includes encoding the projective coordinates with metadata, which is associated with the ciphertext.
Description
BACKGROUND

Data may be encrypted for many different reasons, such as, for example, for purposes of securing communications, protecting sensitive data (data representing social security numbers, salaries, account information, and so forth), and so forth. One way to encrypt and decrypt data is through public key cryptography, which uses a pair of keys: a public key, which, as the name implies, is widely disseminated; and a private keys, which is known to the owner(s) of the data. One type of public key cryptography system is Elliptic Curve Cryptography (ECC), which is based on the algebraic structure of elliptic curves over finite fields.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a computer system according to an example implementation.



FIG. 2 is a flow diagram depicting a technique to encode metadata into elliptic curve cryptography-based ciphertext to represent a key version associated with the ciphertext according to an example implementation.



FIG. 3 is a flow diagram depicting a technique to decode key version metadata from elliptic function-based ciphertext according to an example implementation.



FIG. 4 is a flow diagram depicting a technique to encode abelian variety-based ciphertext with metadata according to an example implementation.



FIG. 5 is an illustration of machine executable instructions stored on a machine readable non-transitory storage medium to extract an attribute of abelian variety-based ciphertext according to an example implementation.



FIG. 6 is an apparatus to encode metadata into elliptic curve-based ciphertext according to an example implementation.





DETAILED DESCRIPTION

Elliptic curve cryptography is based on the algebraic structure of elliptic curves over finite fields. In general, an elliptic curve is a plane curve, which consists of the points that satisfy the following equation:

y2+xy=x3+ax2+b,  Eq. 1

excluding cusps and self-intersections. In Eq. 1, the Cartesian coordinates (x,y) represent a point of the elliptic curve; and “a” and “b” are coefficients. The elliptic curve has a point at infinity. In this manner, the point at infinity acts like the value zero when performing calculations on the elliptic curve, so that if “O” represents the point at infinity, then P+O=P for all points on the elliptic curve, similar to the relationship of x+0=x for real numbers.


Elliptic curve calculations may involve modular inversions, which may be relatively expensive (from the standpoint of computing resources). For purposes of incorporating the point at infinity O and avoiding such expensive modular inversions, the points on an elliptic curve may alternatively be represented by projective coordinates. In this representation, instead of representing a point on the elliptic curve as a pair of Cartesian coordinates (x,y), three projective coordinates are instead used, such as, for example, coordinates (X,Y,Z). In this representation, the non-projective coordinates (x,y) coordinates are related to the projective coordinates (X,Y,Z) as follows:










x
=

x
z


,
and




Eq
.




2






y
=


x
z

.





Eq
.




3







It is noted that the relationship between the non-projective and projective points of the elliptic curve may be represented in other manners. For example, the relationship may be a nonlinear relationship (x=X/Z3 and y=Y/Z3, for example).


Using the projective coordinate representation of the points of the elliptic curve, the point at infinity O may be represented as Z=0, with the division by zero in x=X/Z or y=Y/Z indicating the point at infinity.


Thus, with elliptic curve cryptography (ECC), ciphertext may be represented as projective coordinates of an elliptic curve. It is noted that the elliptic curve cryptography is one example of abelian variety-based cryptography, or cryptography that is based on the algebraic structure of an abelian variety curve. As another example, abelian variety-based cryptography may be based on the algebraic structure of a hyperelliptic curve.


In accordance with example implementations that are described herein, metadata may be encoded into projective coordinates that represent abelian variety-based ciphertext. In this context, “abelian variety-based ciphertext” refers to data that has been encrypted based on the algebraic structure of an abelian variety curve. Moreover, “metadata” refers to data that represents information about other data (here, the ciphtertext). In this manner, a set of projective coordinates may represent ciphertext, and the ciphertext may be encoded with metadata, which represents an attribute (key version used to encrypt or decrypt the ciphertext, for example) of the ciphertext.


In accordance with example implementations, the metadata encoding takes advantage of the non-uniqueness of the projective coordinate representation. In this manner, the representation of given point of an abelian variety curve by the projective coordinates (X,Y,Z) coordinates is not unique, as the point of infinity coordinate, Z, may have an arbitrary value. For example, Z may be equal to “1” and using the relationships that are set forth above in Eqs. 1 and 2, the Cartesian coordinates of (1,2) may be represented as (1,2,1). However, other values of Z may be used to represent the coordinates of (1,2). In this manner, based on the relationships of Eqs. 1 and 2, values of Z=2 and Z=3 may be selected to alternatively represent the coordinates of (1,2) as (2,4,2) and (3,6,3). In accordance with example implementations, by varying the value of Z, metadata may be embedded into the projective coordinates.


For example, a key version of “3” may be encoded into the ciphertext. In this manner, for ciphertext represented by the coordinates (1,2), Z may be set equal to “3,” and the transformations that are described above in Eqs. 1 and 2 may be applied to generate the metadata-encoded ciphertext of (3,6,3).


As a more specific example, FIG. 1 depicts a computer system 100 in accordance with some implementations. In general, the computer system 100 includes a secure data storage system 110 (a secure storage area network (SAN), for example), which includes initiator nodes 134 and target nodes 120. The target nodes 120 contain physical mass storage devices that collectively form a storage database 121 and store encrypted data (called “ciphertext data” herein) to form a storage database 121. In accordance with example implementations, at least some of the ciphertext data, called “metadata-encoded ciphertext data,” may be encoded with metadata that represents one or multiple attributes of the ciphertext data.


In general, hosts 150 may communicate read and write requests to the secure data storage system 110, which cause initiator nodes 134 of the secure data storage system 110 to read and write data to and from the database 121. In this manner, the initiator node 134 is a processing node, which may handle the processing of a request (a read or write request, for example) from a given host 150, identify the target node or nodes 120 associated with the request, and perform the corresponding read and/or writes to the target node(s) 120.


In accordance with example implementations, the hosts 150 communicate with the secure data storage system 110 via network fabric 140. The network fabric 140 may include any type any type of wired or wireless communication network, including cellular networks (e.g., Global System for Mobile Communications (GSM), 3G, Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), etc.), digital subscriber line (DSL) networks, cable networks (e.g., coaxial networks, fiber networks, etc.), telephony networks, local area networks (LANs) or wide area networks (WANs), global networks (e.g., the Internet), or any combination thereof. Moreover, in accordance with example implementations, the network fabric 140 may include any number of network devices for purposes of facilitating communications between the hosts 150 and the secure data storage system 110. Moreover, a given host 150 may be any electronic device that may interact with the secure data storage system 110, such as, as examples, a desktop computer, a laptop computer, a smartphone, a wearable device (a watch, for example), a client, a server, a thin client, a tablet computer, and so forth.


In accordance with example implementations, the hosts 150 may communicate unencrypted data (called “plaintext data” herein) with the secure data storage system 110. For example, a host 150 may communicate a write request to the secure data system 110, the write request may include plaintext data, and the secure data storage system 110 may encrypt the plaintext data to form ciphertext data that is stored in the storage database 121. As another example, a host 150 may communicate a read request to the secure data system 110, and the secure data storage system 110 may retrieve ciphertext data from the secure data storage system 110 corresponding to the read request. The secure data storage system 110 may then decrypt the ciphertext to form plaintext data, which the secure data storage system 110 communicates to the host 110.


Although example implementations are described herein in which cryptographic operations are performed in the secure data storage system 110, in accordance with further example implementations, the hosts 150 may communicate ciphertext data with the secure data storage system 110; and the hosts 150 may perform cryptographic operations that are similar to the operations that are described below as being performed by the secure data storage system 110. Moreover, in accordance with further example implementations, the hosts 150 and the secure data storage system 110 may both perform cryptographic operations as described herein.


In accordance with example implementations, one or multiple initiator nodes 134 include an elliptic curve-based cryptography engine 152. In general, the cryptography engine 152 encrypts plaintext data (to generate ciphertext data) and decrypts ciphertext data (to generate plaintext data) based on the algebraic structure of elliptic curves over finite fields. In this manner, the elliptic curve-based cryptography engine 152 may encrypt plaintext data that is communicated from the hosts 150 for purposes of providing ciphertext data that is stored in the storage database 121; and the elliptic curve-based cryptography engine 152 may decrypt ciphertext data that is read from the storage database 121 to provide corresponding plaintext data that is communicated to the hosts 150.


In accordance with example implementations, the ciphertext data represents ciphertext and metadata, i.e., the ciphertext data is encoded with the metadata. Moreover, in accordance with example implementations, the ciphertext is the format of projective coordinates (X,Y,Z), which correspond to points of an elliptic curve; and the metadata represents one or multiple attributes that are associated with the ciphertext.


As depicted in FIG. 1, the elliptic curve-based cryptography engine 152 may include a metadata encoder 156, which is constructed to encode elliptic curve-based ciphertext to generate the metadata-encoded ciphertext 130. In this manner, in accordance with some implementations, the metadata encoder 156 may receive elliptic curve-based ciphertext in the form of projective coordinates (X,Y,Z) and modify the X, Y and Z coordinates based on one or more attributes that are associated with the ciphertext to provide projective coordinates (X′,Y′,Z′) that represent both the ciphertext and the metadata. Moreover, in accordance with example implementations, the elliptic function-based cryptography engine 152 may include a metadata decoder 154, which is constructed to process the metadata-encoded ciphertext data 130 to extract the encoded metadata.


As a more specific example, in accordance with some implementations, the metadata may represent a version of a key that is used to encrypt the plaintext data and/or decrypt the ciphertext data. In this manner, the elliptic function-based cryptography engine 152 may encrypt the plaintext data using a key that is provided by a secure key manager 160 of the secure database storage system 110. Moreover, when decrypting data read from the storage database 121, the elliptic function-based cryptography engine 152 may retrieve the appropriate key from the key manager 160 for purposes of decrypting the ciphertext data to produce corresponding plaintext that is provided to the requesting host 150. In accordance with example implementations, the ciphertext data that is read from the database 121 may be associated with a particular version of a key. In other words, although the elliptic function-based cryptography engine 152 may be aware of a particular key to be used to decrypt the ciphertext data read from the database 121, the particular version of the key may vary.


In accordance with example implementations, when the elliptic curve-based cryptography engine 152 encrypts plaintext data to generate corresponding ciphertext data, the metadata encoder 156 encodes the ciphertext data with metadata that represents the version of the key, which is used in the encryption. More specifically, in accordance with some implementations, the infinity point Z may represent a particular key version.


For example, in accordance with some implementations, the elliptic curve-based cryptography engine 152 may first generate ciphertext, i.e., generate projective coordinates, based on Z being “1.” The metadata encoder 156, in turn, may transform these projective coordinates by changing Z to represent the key version and changing X and Y based on the new value for “Z.” As a more specific example, for a key version “3” and the transformations that are defined by Eqs. 1 and 2, the metadata encoder 156 may convert the ciphertext projective coordinates of (2,1,1) into metadata encoded ciphertext projective coordinates of (6,3,3). It is noted that is also equivalent to the elliptic curve point of (2,1).


The metadata decoder 154, in accordance with example implementations, applies the inverse operation. For the example that is set forth above, the metadata decoder 154 may decode the projective coordinate of (6,3,3) to coordinates that are based on Z being equal to “1.” By doing so, the metadata decoder 154 may extract the key version of “3.”


In accordance with example implementations, the initiator node 134 is an actual physical machine that is made up of actual hardware and machine executable instructions (or “software”). In general, the initiator node 134 may include, for example, one or multiple processors 135 (one or multiple central processing units (CPUs), one or multiple CPU processing cores, and so forth) and a memory 137. In general, the memory 137 may store data 139 pertaining to preliminary, intermediate, or final results associated with perations of the elliptic function-based cryptography engine 152, as described herein.


The memory 137 may store machine executable instructions 141 (or “software”). In this manner, one or multiple processor(s) 135 may execute the machine executable instructions 141 for purposes of forming one or multiple software components of the initiator node 134, such as, for example, the elliptic function-based cryptography engine 152, the metadata encoder 156, the metadata decoder 154, and so forth.


In accordance with example implementations, the memory 137 is a non-transitory storage medium and may be formed from, as examples, semiconductor storage devices, phase change memory devices, memristors, volatile memory devices, non-volatile memory devices, storage devices associated with other storage technologies, a combination of storage devices selected from one or more of the foregoing storage technologies, and so forth.


Thus, the initiator node 134, in accordance with example implementations, may be software-based, in that one or multiple hardware processors of the node 134 may execute machine executable instructions that are stored in a non-transitory storage medium for purposes of performing the encryption, decryption, metadata encoding and metadata decoding, as described herein. In accordance with further example implementations, one or multiple functions of the initiator node 134 may be formed from a hardware circuit that does not execute machine executable instructions, such as a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), and so forth. For example, in accordance with some implementations, the elliptic function-based cryptography engine 152 may be formed from such a hardware circuit. As other examples, the metadata encoder 156 and/or the metadata decoder 154 may be such hardware circuits.


Although the initiator node 134 is depicted in FIG. 1 as being a single unit, such as a “box,” or “rack,” in accordance with further example implementations, the initiator node 134 may be formed from multiple machines or machines disposed on multiple racks. Moreover, in accordance with example implementations, the initiator node 134 may include components that are geographically distributed at multiple locations. Thus, many implementations are contemplated, which are within the scope of the appended claims.


Referring to FIG. 2 in conjunction with FIG. 1, in accordance with example implementations, the elliptic function-based cryptography engine 152 may perform a technique 200 for purposes of storing data in the storage database 121 in response to a write request from a host 150. Pursuant to the technique 200, the cryptography engine 152 receives (block 204) plaintext data representing content to be stored in the storage database 121. The cryptography engine 152 encrypts (block 208) the plaintext data based on a key and on an elliptic curve to provide first ciphertext data representing points of the elliptic curve as pairs of first projective coordinates. Pursuant to block 212, the cryptography engine 152 encodes the first ciphertext data with metadata to provide second ciphertext data representing the second projective coordinates and the version of the key. Pursuant to block 216, the cryptography engine 152 may then store the second ciphertext in data in the storage database 121.


Referring to FIG. 3 in conjunction with FIG. 1, in accordance with example implementations, the cryptography engine 152 may perform a technique 300 in response to receiving a read request from a given host 150. Pursuant to the technique 300, the cryptography engine 152 may receive (block 304) elliptic curve-based ciphertext data stored in a storage database 121 and decode (block 308) the ciphertext data to extract metadata representing the key version used in the encryption of the ciphertext. Based on the key version and knowledge of the specific key, the cryptographic engine 152 may then request (block 312) the corresponding key from a key manager 160 and decrypt (block 316) the ciphertext data using the key to provide plaintext data that may be communicated to the host 150.


Although specific examples have been set forth herein describing the metadata representing the version of a key, the metadata may represent one or multiple other attributes associated with the ciphertext, in accordance with further example implementations. For example, in accordance with further example implementations, the metadata may represent an address associated with the key, i.e., may represent a location of the key. More specifically, in accordance with some implementations, the metadata may represent a Uniform Resource Locator (URL) address for retrieving the key. In accordance with further example implementations, the metadata may represent attributes not associated with a particular key. For example, in accordance with some implementations, the metadata may represent a particular policy associated with the encryption or, as another example, a particular policy or version associated with a digital signature.


In accordance with further example implementations, the cryptography may be based on the algebraic structure of an abelian variety curve other than an elliptic curve. For example, in accordance with further implementations, the cryptography may be based on the algebraic structure of a hyperelliptic curve.


Among the advantages of the techniques and systems that are described herein, the metadata decoding/encoding is a format preserving encryption (FPE) that preserves the format of the plaintext data in the ciphertext data. In this manner, FPE refers to a type of encryption in which the format of the plaintext data is the same as the format of the encrypted data. For example, a 16 digit credit card number may be encrypted pursuant to FPE so that the corresponding ciphertext data also has a 16 digit value. The metadata encoding described herein may be performed without consuming any additional storage, as the metadata-encoded ciphertext may have the same data structure and size as ciphertext data that has not be encoded with the metadata. Other and different advantages may be possible using the techniques and systems that are described herein, in accordance with further implementations.


Thus, referring to FIG. 4, in general, in accordance with some implementations, a technique 400 includes encrypting (block 404) plaintext to provide a set of projective coordinates that represents a point of an abelian variety curve and represents ciphertext. The technique 400 includes encoding (block 408) the projective coordinates with metadata, which is associated with the ciphertext.


Referring to FIG. 5, in accordance with example implementations, a machine readable non-transitory storage medium 500 stores machine readable instructions 510 that, when executed by a machine, cause the machine to receive data representing projective coordinates of a point of an abelian variety function and process the first data to extract ciphertext and an attribute associated with the ciphertext.


In accordance with example implementations, an apparatus 600 includes a processor 610 and a memory 620 to store instructions 624 that, when executed by the processor 610, cause the processor 610 to determine an elliptic curve point representing ciphertext; and encode metadata into coordinates representing the elliptic curve point to represent an attribute associated with the ciphertext.


While the present disclosure has been described with respect to a limited number of implementations, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations

Claims
  • 1. A method comprising: encrypting plaintext to provide projective coordinates that represent a point of an abelian variety curve and represent ciphertext; andencoding the projective coordinates with metadata that represents an attribute of the ciphertext other than the plaintext, wherein encoding the projective coordinates with the metadata comprises encoding the projective coordinates to represent a version of a key associated with the ciphertext.
  • 2. The method of claim 1; wherein encrypting the plaintext comprises encrypting the plaintext based on an elliptic curve function.
  • 3. The method of claim 1, wherein: the projective coordinates comprise a first coordinate, a second coordinate and a third coordinate;the point of the abelian variety curve has a corresponding first coordinate and a second coordinate;the first coordinate of the abelian variety curve is a function of the first coordinate of the projective coordinates and the third coordinate of the projective coordinates;the second coordinate of the abelian variety curve is a function of the second coordinate of the projective coordinates and the third coordinate of the projective coordinates; andencoding the projective coordinates comprises determining a value of the third coordinate of the projective coordinates based on the attribute of the ciphertext.
  • 4. The method of claim 3, wherein: the first coordinate of the abelian variety curve is a quotient of the first coordinate of the projective coordinates divided by the third coordinate of the projective coordinates.
  • 5. The method of claim 3, wherein: the first coordinate of the abelian variety curve is a linear function of the first coordinate of the projective coordinates and the third coordinate of the projective coordinates.
  • 6. The method of claim 3, wherein: the first coordinate of the abelian variety curve is a nonlinear function of the first coordinate of the projective coordinates and the third coordinate of the projective coordinates.
  • 7. The method of claim 1, wherein the abelian variety curve comprises an elliptic curve; andencrypting the plaintext comprises encrypting the plaintext based on the elliptic curve.
  • 8. The method of claim 1, wherein the abelian variety curve comprises a hyperelliptic curve; andencrypting the plaintext comprises encrypting the plaintext based on the hyperelliptic curve.
  • 9. The method of claim 1, wherein encrypting the plaintext comprises performing format preserving encryption.
  • 10. The method of claim 1, wherein: encoding the projective coordinates with the metadata further comprises encoding the projective coordinates to represent a version of a digital certificate associated with the ciphertext.
  • 11. The method of claim 1, wherein: encoding the projective coordinates with the metadata further comprises encoding the projective coordinates to represent a path to a key associated with the ciphertext.
  • 12. A machine readable non-transitory storage medium to store instructions that, when executed by a machine, cause the machine to: receive first data representing projective coordinates of a point of an abelian variety curve;process the projective coordinates to extract ciphertext and further extract an attribute of the ciphertext; andencode the projective coordinates with metadata that represents an attribute of the ciphertext other than plaintext, wherein the projective coordinates are encoded with the metadata to represent a version of a digital certificate associated with the ciphertext.
  • 13. The machine readable non-transitory storage medium of claim 12, wherein the instructions, when executed by the machine, further cause the machine to: transform the projective coordinates into affine coordinates that represent the ciphertext.
  • 14. The machine readable non-transitory storage medium of claim 13, wherein the instructions, when executed by the machine, further cause the machine to: divide a first coordinate of the projective coordinates by a second coordinate of the projective coordinates to provide a coordinate of the affine coordinates.
  • 15. The machine readable non-transitory storage medium of claim 12, wherein the instructions, when executed by the machine, further cause the machine to: determine the attribute based on a relationship of a first coordinate of the projective coordinates to a second coordinate of the projective coordinates.
  • 16. An apparatus comprising: a processor; anda memory to store instructions that, when executed by the processor, cause the processor to: determine an elliptic curve point representing ciphertext;encode metadata into coordinates representing the elliptic curve point to represent an attribute of the ciphertext; andencode the coordinates with the metadata to represent a path to a key associated with the ciphertext.
  • 17. The apparatus of claim 16, wherein the instructions, when executed by the processor, further cause the processor to: encode the coordinates to represent a version of the key associated with the ciphertext.
  • 18. The apparatus of claim 17, wherein the path comprises a Uniform Resource Locator (URL) address.
  • 19. The apparatus of claim 17, wherein: the ciphertext has a first size; andplaintext corresponding to the ciphertext has a second size that is the same as the first size.
  • 20. The apparatus of claim 16, wherein the instructions, when executed by the processor, further cause the processor to: encode the coordinates to represent a version of a digital certificate associated with the ciphertext.
US Referenced Citations (105)
Number Name Date Kind
5577124 Anshel Nov 1996 A
6141420 Vanstone Oct 2000 A
6243467 Reiter Jun 2001 B1
6307935 Crandall Oct 2001 B1
6480606 Kurumatani Nov 2002 B1
6490352 Schroeppel Dec 2002 B1
6876745 Kurumatani Apr 2005 B1
6947557 Megiddo Sep 2005 B1
6959382 Kinnis Oct 2005 B1
7162033 Coron Jan 2007 B1
7200225 Schroeppel Apr 2007 B1
7499544 Jao Mar 2009 B2
8078869 Adams Dec 2011 B2
8358779 Sun Jan 2013 B1
8369517 Venelli Feb 2013 B2
8566247 Nagel Oct 2013 B1
8619977 Douguet Dec 2013 B2
8731187 Lauter May 2014 B2
8855317 Rong Oct 2014 B2
8862879 Lerner Oct 2014 B2
9137025 Lambert Sep 2015 B2
9596263 Brooker et al. Mar 2017 B1
9660978 Truskovsky May 2017 B1
10263997 Roth Apr 2019 B2
10374809 Dasarakothapalli Aug 2019 B1
20020051545 Ogilvie May 2002 A1
20020099663 Yoshino Jul 2002 A1
20020108041 Watanabe Aug 2002 A1
20020129242 Abbott Sep 2002 A1
20020178371 Kaminaga Nov 2002 A1
20030081785 Boneh May 2003 A1
20030084292 Pierce May 2003 A1
20030179885 Gentry Sep 2003 A1
20030189731 Chang Oct 2003 A1
20040034771 Edgett Feb 2004 A1
20040247114 Joye Dec 2004 A1
20050094806 Jao May 2005 A1
20050267926 Al-Khoraidly Dec 2005 A1
20060015754 Drehmel Jan 2006 A1
20060056619 Billet Mar 2006 A1
20060093137 Izu May 2006 A1
20060104447 Lauter May 2006 A1
20060120528 Weng Jun 2006 A1
20070121933 Futa May 2007 A1
20070127721 Atallah Jun 2007 A1
20070248224 Buskey Oct 2007 A1
20080049937 Pauker Feb 2008 A1
20080084997 Lauter Apr 2008 A1
20080260143 Ibrahim Oct 2008 A1
20080288788 Krig Nov 2008 A1
20090034720 Baek Feb 2009 A1
20090144557 Sutton Jun 2009 A1
20090180611 Douguet Jul 2009 A1
20090185677 Bugbee Jul 2009 A1
20100040225 Venelli Feb 2010 A1
20100195821 Fischer Aug 2010 A1
20100215174 Orlando Aug 2010 A1
20100223186 Hogan Sep 2010 A1
20100310066 Joye Dec 2010 A1
20100322422 Al-Gahtani Dec 2010 A1
20110058675 Brueck Mar 2011 A1
20110170684 Lauter Jul 2011 A1
20120008780 Al-Somani Jan 2012 A1
20120023329 Yamamoto Jan 2012 A1
20120166807 Shear Jun 2012 A1
20120213361 Lim Aug 2012 A1
20120237030 Ghouti Sep 2012 A1
20120254997 Norrman Oct 2012 A1
20120297189 Hayton Nov 2012 A1
20130081143 Hayashi Mar 2013 A1
20130121487 Lorberbaum May 2013 A1
20130202104 Ghouti Aug 2013 A1
20130326602 Chen Dec 2013 A1
20140064491 Ghouti Mar 2014 A1
20140105381 Al-Somani Apr 2014 A1
20140129824 Paris May 2014 A1
20140380054 Roth Dec 2014 A1
20150318865 Rotge Nov 2015 A1
20150379286 Nordback Dec 2015 A1
20160149703 Al-Somani May 2016 A1
20160218860 Murray Jul 2016 A1
20160241389 Le Saint Aug 2016 A1
20160328543 Hoogerbrugge Nov 2016 A1
20160352518 Ford Dec 2016 A1
20170006392 Pedersen Jan 2017 A1
20170063528 Seo Mar 2017 A1
20170063853 Lim Mar 2017 A1
20170083716 Sun Mar 2017 A1
20170126642 Basin et al. May 2017 A1
20170201384 Ignatchenko Jul 2017 A1
20180034786 Srinivasan Feb 2018 A1
20180063105 Poon Mar 2018 A1
20180083933 Mullen Mar 2018 A1
20180139041 Choi May 2018 A1
20180176017 Rodriguez Jun 2018 A1
20180254893 Saxena Sep 2018 A1
20180302400 Covdy Oct 2018 A1
20180330079 Gray Nov 2018 A1
20180359227 Trantham Dec 2018 A1
20180375663 Le Saint Dec 2018 A1
20190005262 Surla Jan 2019 A1
20190034643 Kludy Jan 2019 A1
20190087587 Li Mar 2019 A1
20190132129 Martin May 2019 A1
20200259648 Koziel Aug 2020 A1
Foreign Referenced Citations (1)
Number Date Country
106936770 Jul 2017 CN
Non-Patent Literature Citations (2)
Entry
Mihir Bellare, Message-Recovery Attacks on Feistel-Based Format Preserving Encryption, CCS'16, Vienna, Austria, Oct. 24-28, 2016, 24 pages; http://dx.doi.org/10.1145/2976749.2978390.
Tragos,Elias; “Securing the Internet of Things—Security and Privacy in a Hyperconnected World”; ResearchGate, Bulding the Hyperconnected Society; published before Apr. 7, 2016, 32 pp.
Related Publications (1)
Number Date Country
20190132129 A1 May 2019 US