Encoding and decoding of pulse positions of tracks of an audio signal

Information

  • Patent Grant
  • 9595263
  • Patent Number
    9,595,263
  • Date Filed
    Wednesday, August 14, 2013
    11 years ago
  • Date Issued
    Tuesday, March 14, 2017
    7 years ago
Abstract
An apparatus for decoding an encoded audio signal is provided. The apparatus includes a pulse information decoder and a signal decoder. The pulse information decoder is adapted to decode a plurality of pulse positions, wherein each one of the pulse positions indicates a position of one of the pulses of the track, wherein the pulse information decoder is configured to decode the plurality of pulse positions by using a track positions number, a total pulses number, and one state number. The signal decoder is adapted to decode the encoded audio signal by generating a synthesized audio signal using the plurality of pulse positions and a plurality of predictive filter coefficients.
Description
BACKGROUND OF THE INVENTION

The present invention relates to the field of audio processing and audio coding, in particular to encoding and decoding of pulse positions of tracks in an audio signal.


Audio processing and/or coding has advanced in many ways. In audio coding, linear predictive coders play an important role. When encoding an audio signal, e.g. an audio signal comprising speech, linear predictive encoders usually encode a representation of the spectral envelope of the audio signal. To this end, linear predictive encoders may determine predictive filter coefficients to represent the spectral envelope of sound in encoded form. The filter coefficients may then be used by a linear predictive decoder to decode the encoded audio signal by generating a synthesized audio signal using the predictive filter coefficients.


Important examples for linear predictive coders are ACELP coders (ACELP=Algebraic Code-Exited Linear Prediction coders). ACELP coders are widely used, for example, in USAC (USAC=Unified Speech and Audio Coding) and may have further application fields, for example in LD-USAC (Low Delay Unified Speech and Audio Coding).


ACELP encoders usually encode an audio signal by determining predictive filter coefficients. To achieve better encoding, ACELP encoders determine a residual signal, also referred to as target signal, based on the audio signal to be encoded, and based on the already determined predictive filter coefficients. The residual signal may, for example, be a difference signal representing a difference between the audio signal to be encoded and the signal portions that are encoded by the predictive filter coefficients, and, possibly, by adaptive filter coefficients resulting from a pitch analysis. The ACELP encoder then aims to encode the residual signal. For this, the encoder encodes algebraic codebook parameters, which are used to encode the residual signal.


To encode the residual signal, algebraic codebooks are used. Usually, algebraic codebooks comprise a plurality of tracks, for example, four tracks each comprising 16 track positions. In such a configuration, a total of 4·16=64 sample positions can be represented by a respective algebraic codebook, for example, corresponding to the number of samples of a subframe of the audio signal to be encoded.


The tracks of the codebook may be interleaved such that track 0 of the codebook may represent samples 0, 4, 8, . . . , 60 of the subframe, such that track 1 of the codebook may represent samples 1, 5, 9, . . . , 61 of the subframe, such that track 2 of the codebook may represent samples 2, 6, 10, . . . , 62 of the subframe, and such that track 3 of the codebook may represent samples 3, 7, 11, . . . , 63 of the subframe. Each track may have a fixed number of pulses. Or, the number of pulses per track may vary, e.g. depending on other conditions. A pulse may, for example, be positive or negative, e.g. may be represented by +1 (positive pulse) or 0 (negative pulse).


For encoding the residual signal, when encoding, a codebook configuration may be chosen, that best represents the remaining signal portions of the residual signal. For this, the available pulses may be positioned at suitable track positions that reflect best the signal portions to be encoded. Moreover, it may be specified, whether a corresponding pulse is positive or negative.


On a decoder side, an ACELP decoder would at first decode the algebraic codebook parameters. The ACELP decoder may also decode the adaptive codebook parameters. To determine the algebraic codebook parameters, the ACELP decoder may determine the plurality of pulse positions for each track of an algebraic codebook. Moreover, the ACELP decoder may also decode, whether a pulse at a track position is a positive or a negative pulse. Furthermore, the ACELP decoder may also decode the adaptive codebook parameters. Based on this information, the ACELP decoder usually generates an excitation signal. The ACELP decoder then applies the predictive filter coefficients on the excitation signal to generate a synthesized audio signal to obtain the decoded audio signal.


In ACELP, pulses on a track are generally encoded as follows. If the track is of length 16 and if the number of pulses on this track is one, then we can encode the pulse position by its position (4 bits) and sign (1 bit), totaling 5 bits. If the track is of length 16 and the number of pulses is two, then the first pulse is encoded by its position (4 bits) and sign (1 bit). For the second pulse we need to encode the position only (4 bits), since we can choose that the sign of the second pulse is positive if it is to the left of the first pulse, negative if it is to the right of the first pulse and the same sign as the first pulse if it is at the same position as the first pulse. In total, we therefore need 9 bits to encode 2 pulses. In comparison to encoding the pulse positions separately, by 5 bits each, we thus save 1 bit for every pair of pulses.


Encoding a larger number of pulses than 2, we can encode pulses pair-wise and if the number of pulses is odd, encode the last pulse separately. Then, for example, for a track of 5 pulses, we would need 9+9+5=23 bits. If we have 4 tracks, then 4×23=92 bits would be necessitated for encoding a subframe of length 64 with 4 tracks and 5 pulses per track. However, it would be very appreciated, if the number of bits could furthermore be reduced.


It would be very appreciated, if an apparatus for encoding and a respective apparatus for decoding with improved encoding or decoding concepts would be provided, which have means to encode or decode pulse information in an improved way using fewer bits for pulse information representation, as this would, for example, reduce the transmission rate for transmitting a respectively encoded audio signal, and as furthermore, this would, for example, reduce the storage needed to store a respectively encoded audio signal.


SUMMARY

According to an embodiment, an apparatus for decoding an encoded audio signal, wherein one or more tracks are associated with the encoded audio signal, each one of the tracks having a plurality of track positions and a plurality of pulses, may have: a pulse information decoder for decoding a plurality of pulse positions, wherein each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track, and wherein the pulse information decoder is configured to decode the plurality of pulse positions by using a track positions number indicating a total number of the track positions of at least one of the tracks, a total pulses number indicating a total number of the pulses of at least one of the tracks, and one state number; and a signal decoder for decoding the encoded audio signal by generating a synthesized audio signal using the plurality of pulse positions and a plurality of predictive filter coefficients being associated with the encoded audio signal, wherein the pulse information decoder is furthermore adapted to decode a plurality of pulse signs using the track positions number, the total pulses number and the state number, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses, and wherein the signal decoder is adapted to decode the encoded audio signal by generating a synthesized audio signal furthermore using the plurality of pulse signs.


According to another embodiment, an apparatus for encoding an audio signal may have: a signal processor for determining a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and the plurality of predictive filter coefficients; and a pulse information encoder for encoding a plurality of pulse positions relating to one or more tracks, to encode the audio signal, the one or more tracks being associated with the residual signal, each one of the tracks having a plurality of track positions and a plurality of pulses, wherein each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track, wherein the pulse information encoder is configured to encode the plurality of pulse positions by generating a state number, such that the pulse positions can be decoded only based on the state number, a track positions number indicating a total number of the track positions of at least one of the tracks, and a total pulses number indicating a total number of the pulses of at least one of the tracks, wherein the pulse information encoder is configured to add an integer value to an intermediate number for each pulse at a track position for each track position of one of the tracks, to obtain the state number.


According to another embodiment, a method for decoding an encoded audio signal, wherein one or more tracks are associated with the encoded audio signal, each one of the tracks having a plurality of track positions and a plurality of pulses, may have the steps of: decoding a plurality of pulse positions, wherein each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track, and wherein the plurality of pulse positions are decoded by using a track positions number indicating a total number of the track positions of at least one of the tracks, a total pulses number indicating a total number of the pulses of at least one of the tracks, and one state number, decoding a plurality of pulse signs using the track positions number, the total pulses number and the state number, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses, and decoding the encoded audio signal by generating a synthesized audio signal using the plurality of pulse positions and a plurality of predictive filter coefficients being associated with the encoded audio signal, wherein decoding the encoded audio signal is conducted by generating a synthesized audio signal furthermore using the plurality of pulse signs.


According to another embodiment, a method for encoding an audio signal may have the steps of: determining a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and the plurality of predictive filter coefficients; and encoding a plurality of pulse positions relating to one or more tracks, to encode the audio signal, the one or more tracks being associated with the residual signal, each one of the tracks having a plurality of track positions and a plurality of pulses, wherein each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track, wherein the plurality of pulse positions are encoded by generating a state number, such that the pulse positions can be decoded only based on the state number, a track positions number indicating a total number of the track positions of at least one of the tracks, and a total pulses number indicating a total number of the pulses of at least one of the tracks, wherein encoding a plurality of pulse positions is conducted by adding an integer value to an intermediate number for each pulse at a track position for each track position of one of the tracks, to obtain the state number.


Another embodiment may have a computer program implementing the inventive methods when being executed on a computer or signal processor.


According to embodiments, it is assumed that one state number is available for an apparatus for decoding. It is furthermore assumed that a track positions number, indicating the total number of track positions of at least one of the tracks associated with the encoded audio signal, and a total pulses number, indicating the number of pulses of at least one of the tracks, is available for a decoding apparatus of the present invention. Advantageously, the track positions number and the total pulses number is available for each track associated with an encoded audio signal.


For example, having 4 tracks with 5 pulses, each can attain roughly 6.6×10^21 states, which can, according to embodiments, be encoded by 73 bits, which is approximately 21% more efficient than the encoding of the above-described state-of-the-art encoder using 92 bits.


At first, a concept is provided how to encode a plurality of pulse positions of a track of an audio signal in an efficient way. In the following, the concept is extended to allow to encode not only the position of the pulses of a track, but also whether the pulse is positive or negative. Furthermore, the concept is then extended to allow to encode pulse information for a plurality of tracks in an efficient manner. The concepts are correspondingly applicable on a decoder side.


In addition, the embodiments are, moreover, based on the finding, that, if the encoding strategy uses a pre-determined number of bits, such that any configuration with the same number of pulses on each track necessitates the same number of bits. If the number of bits available is fixed, it is then possible directly to choose how many pulses can be encoded with the given amount of bits thus enabling encoding with a pre-determined quality. Moreover, with this approach, it is not necessitated to try different amounts of pulses until the desired bit-rate is achieved, but we can directly choose the right amount of pulses, thereby reducing complexity.


Based on the above assumptions, the plurality of pulse positions of a track of an audio signal frame may be encoded and/or decoded.


While the present invention can be employed for encoding or decoding any kind of audio signals, for example, speech signals or music signals, the present invention is particularly useful for encoding or decoding speech signals.


In another embodiment, the pulse information decoder is furthermore adapted to decode a plurality of pulse signs using the track positions number, the total pulses number and the state number, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses. The signal decoder may be adapted to decode the encoded audio signal by generating a synthesized audio signal furthermore using the plurality of pulse signs.


According to a further embodiment, wherein the one or more tracks may comprise at least a last track and one or more other tracks, the pulse information decoder may be adapted to generate a first substrate number and a second substrate number from the state number. The pulse information decoder may be configured to decode a first group of the pulse positions based on the first substrate number, and the pulse information decoder may furthermore be configured to decode a second group of the pulse positions based on the second substrate number. The second group of the pulse positions may only consist of pulse positions indicating track positions of the last track. The first group of the pulse positions only consists of pulse positions indicating track positions of the one or more other tracks.


According to another embodiment, the pulse information decoder may be configured to separate the state number into the first substrate number and the second substrate number by dividing the state number by f(pk, N) to obtain an integer part and a remainder as a division result, wherein the integer part is the first substrate number and wherein the remainder is the second substrate number, wherein pk indicates for each one of the one or more tracks the number of pulses, and wherein N indicates for each one of the one or more tracks the number of track positions. Here, f(pk, N) is a function that returns the number of states that can be achieved in a track of length N with pk pulses.


In another embodiment, the pulse information decoder may be adapted to conduct a test comparing the state number or an updated state number with a threshold value.


The pulse information decoder may be adapted to conduct the test by comparing, whether the state number or an updated state number is greater than, greater than or equal to, smaller than, or smaller than or equal to the threshold value, and wherein the analyzing unit is furthermore adapted to update the state number or an updated state number depending on the result of the test.


In an embodiment, the pulse information decoder may be configured to compare the state number or the updated state number with the threshold value for each track position of one of the plurality of tracks.


According to an embodiment, the pulse information decoder may be configured to divide one of the tracks into a first track partition, comprising at least one track position of the plurality of track positions, and into a second track partition, comprising the remaining other track positions of the plurality of track positions. The pulse information decoder may be configured to generate a first substrate number and a second substrate number based on the state number. Moreover, the pulse information decoder may be configured to decode a first group of pulse positions associated with the first track partition based on the first substrate number. Furthermore, the pulse information decoder may be configured to decode a second group of pulse positions associated with the second track partition based on the second substrate number.


According to an embodiment, an apparatus for encoding an audio signal is provided. The apparatus comprises a signal processor adapted to determine a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and the plurality of predictive filter coefficients. Moreover, the apparatus comprises a pulse information encoder adapted to encode a plurality of pulse positions relating to one or more tracks to encode the audio signal, the one or more tracks being associated with the residual signal. Each one of the tracks has a plurality of track positions and a plurality of pulses. Each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track. The pulse information encoder is configured to encode the plurality of pulse positions by generating a state number, such that the pulse positions can be decoded only based on the state number, a track positions number indicating a total number of the track positions of at least one of the tracks, and a total pulses number indicating a total number of the pulses of at least one of the tracks.


According to another embodiment, the pulse information encoder may be adapted to encode a plurality of pulse signs, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses. The pulse information encoder may furthermore be configured to encode the plurality of pulse signs by generating the state number, such that the pulse signs can be decoded only based on the state number, the track positions number indicating a total number of the track positions of at least one of the tracks, and the total pulses number.


In an embodiment, the pulse information encoder is adapted to add an integer value to an intermediate number for each pulse at a track position for each track position of one of the tracks, to obtain the state number.


According to another embodiment, the pulse information encoder may be configured to divide one of the tracks into a first track partition, comprising at least one track position of the plurality of track positions, and into a second track partition, comprising the remaining other track positions of the plurality of track positions. Moreover, the pulse information encoder may be configured to encode a first substrate number associated with the first partition. Furthermore, the pulse information encoder may be configured to encode a second substrate number associated with the second partition. Moreover, the pulse information encoder may be configured to combine the first substrate number and the second substrate number to obtain the state number.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:



FIG. 1 illustrates an apparatus for decoding an encoded audio signal according to an embodiment,



FIG. 2 illustrates an apparatus for encoding an audio signal according to an embodiment,



FIG. 3 illustrates all possible configurations, for a track having two unsigned pulses and three track positions,



FIG. 4 illustrates all possible configurations, for a track having one signed pulse and two track positions,



FIG. 5 illustrates all possible configurations, for a track having two signed pulses and two track positions,



FIG. 6 is a flow chart illustrating an embodiment, depicting the processing steps conducted by a pulse information decoder according to an embodiment, and



FIG. 7 is a flow chart illustrating an embodiment, the flow chart depicting the processing steps conducted by a pulse information encoder according to an embodiment.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates an apparatus for decoding an encoded audio signal, wherein one or more tracks are associated with the encoded audio signal, each one of the tracks having a plurality of track positions and a plurality of pulses.


The apparatus comprises a pulse information decoder 110 and a signal decoder 120. The pulse information decoder 110 is adapted to decode a plurality of pulse positions. Each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track.


The pulse information decoder 110 is configured to decode the plurality of pulse positions by using a track positions number indicating a total number of the track positions of at least one of the tracks, a total pulses number indicating a total number of the pulses of at least one of the tracks, and one state number.


The signal decoder 120 is adapted to decode the encoded audio signal by generating a synthesized audio signal using the plurality of pulse positions and a plurality of predictive filter coefficients being associated with the encoded audio signal.


The state number is a number that may have been encoded by an encoder according the embodiments that will be described below. The state number, e.g. comprises information about a plurality of pulse positions in a compact representation, e.g. a representation that necessitates few bits, and that can be decoded, when the information about the track positions number and the total pulses number is available at the decoder.


In an embodiment, the track positions number and/or the total pulses number of one or of each track of the audio signal may be available at the decoder, because the track positions number and/or the total pulses number is a static value that doesn't change and is known by the receiver. For example, the track positions number may be 16 for each track and the total pulses number may be 4.


In another embodiment, the track positions number and/or the total pulses number of one or of each track of the audio signal may be explicitly transmitted to the apparatus for decoding, e.g. by the apparatus for encoding.


In a further embodiment, the decoder may determine the track positions number and/or the total pulses number of one or of each track of the audio signal by analyzing other parameters that do not explicitly state the track positions number and/or the total pulses number, but from which the track positions number and/or the total pulses number can be derived.


In other embodiments, the decoder may analyze other data available to derive the track positions number and/or the total pulses number of one or of each track of the audio signal.


In further embodiment, the pulse information decoder may be adapted to also decode, whether a pulse is a positive pulse or a negative pulse.


In another embodiment, the pulse information decoder may furthermore be adapted to decode pulse information which comprises information about pulses for a plurality of tracks. Pulse information may, for example, be information about the position of the pulses in a track and/or information whether a pulse is a positive pulse or a negative pulse.



FIG. 2 illustrates an apparatus for encoding an audio signal, comprising a signal processor 210 and a pulse information encoder 220.


The signal processor 210 is adapted to determine a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and the plurality of predictive filter coefficients.


The pulse information encoder 220 is adapted to encode a plurality of pulse positions relating to one or more tracks to encode the audio signal. The one or more tracks are associated with the residual signal generated by the signal processor 210. Each one of the tracks has a plurality of track positions and a plurality of pulses. Moreover, each one of the pulse positions indicates one of the track positions of one of the tracks to indicate a position of one of the pulses of the track.


The pulse information encoder 220 is configured to encode the plurality of pulse positions by generating a state number, such that the pulse positions can be decoded only based on the state number, a track positions number indicating a total number of the track positions of at least one of the tracks, and a total pulses number indicating a total number of the pulses of at least one of the tracks.


In the following, the basic concepts of embodiments of the present invention relating to the encoding of the pulse positions and possibly pulse sign (positive pulse or negative pulse) by generating a state number are presented.


The encoding principles of embodiments of the present invention are based on the finding that if a state enumeration of all possible configurations of k pulses in a track with n track positions is considered, it is sufficient to encode the actual state of the pulses of a track. Encoding such a state by as little bits as possible provides the desirable compact encoding. By this, a concept of state enumeration is presented, wherein each constellation of pulse positions, and possibly also pulse signs, represents one state and each state is uniquely enumerated.



FIG. 3 illustrates this for a simple case, where all possible configurations are depicted, when a track having two pulses and three track positions is considered. Two pulses may be located at the same track position. In the example of FIG. 3, the sign of the pulses (e.g. whether the pulse is positive or negative) is not considered, e.g. in such an example, all pulses may, for example, be considered to be positive.


In FIG. 3, all possible states for two undirected pulses located in a track with three track positions (in FIG. 3: track positions 1, 2 and 3) are illustrated. There are only six different possible states (in FIG. 3 enumerated from 0 to 5) that describe, how the pulses may be distributed in the track. By this, it is sufficient to use a state number in the range 0 to 5 to describe the actual configuration present. For example, if the state number in the example of FIG. 3 has the value (4), and if the decoder is aware of the encoding scheme, the decoder can conclude that state number=4 means, that the track has one pulse at track position 0 and another pulse at track position 2. By this, in the example of FIG. 3, three bits are sufficient to encode the state number to identify one of the six different states of the example of FIG. 3.



FIG. 4 illustrates a case depicting all possible states for one directed pulse located in a track with two track positions (in FIG. 4: track positions 1 and 2). In FIG. 4, the sign of the pulses (e.g. whether the pulse is positive or negative) is considered. There are four different possible states (in FIG. 4 enumerated from 0 to 3) that describe, how the pulse may be distributed in track and also its sign (positive or negative). It is sufficient to use a state number in the range 0 to 3 to describe the actual configuration present. For example, if the state number in the example of FIG. 4 has the value (2), and if the decoder is aware of the encoding scheme, the decoder can conclude that state number=2 means, that the track has one pulse at track position 1, and that the pulse is a positive pulse.



FIG. 5 illustrates a still further case, where all possible configurations are depicted, when a track having two pulses and two track positions is considered. Pulses may be located at the same track position. In the example shown in FIG. 5, the sign of the pulses (e.g. whether the pulse is positive or negative) is considered. It is assumed that pulses at the same track position have the same sign (e.g. the tracks at the same track position are either all positive or are all negative).


In FIG. 5, all possible states for two signed pulses (e.g. pulses that are either positive or negative) located in a track with two track positions (in FIG. 5: track positions 1 and 2) are illustrated. There are only eight different possible states (in FIG. 5 enumerated from 0 to 7) that describe, how the pulses may be distributed in the track. By this, it is sufficient to use a state number in the range 0 to 7 to describe the actual configuration. For example, if the state number in the example of FIG. 5 has the value (3), and if the decoder is aware of the encoding scheme, the decoder can conclude that state number=3 means, that the track has one pulse at track position 0 which is positive and another pulse at track position 1 which is negative. By this, in the example of FIG. 5, three bits are sufficient to encode the state number to identify one of the eight different states of the example of FIG. 5.


In ACELP, the residual signal may be encoded by a fixed number of signed pulses. As described above, the pulses may, for example, be distributed in four interlacing tracks, such that track 0 contains positions mod(n,4)==0, track=1 contains positions mod(n,4)==1, and so on. Each track may have a predefined number of signed unit pulses, which may overlap, but when they overlap, the pulses have the same sign.


By encoding pulses, a mapping from the pulse positions and their signs, into a representation that uses the smallest possible amount of bits should be achieved. In addition, the pulse coding should have a bit consumption that is fixed, that is, any pulse constellation has the same number of bits.


Each track is first independently encoded and then the states of each track are combined to one number, which represents the state of the whole subframe. This approach gives the mathematically optimal bit-consumption, given that all states have equal probability, and the bit consumption is fixed.


The concept of state enumeration may also be explained using a compact representation of the different state constellations:


Let the residual signal, which we want to code, be xn. Assuming that four interleaved tracks, e.g. of an algebraic codebook, are considered, then the first track has samples x0, x4, x8 . . . xN-4, the second track has samples x1, x5, x9 . . . xN-3, etc. Suppose, the first track is quantized with one signed unit pulse and that T=8, whereby the length of the track is 2 (T=length (samples) of the residual signal to be encoded). If T=8, and if 4 tracks are used to encode the residual signal, each one of the 4 tracks has 2 track positions. For example, the first track may be considered, that has two track positions x0 and x4. The pulse of the first track can then appear in any of the following constellations:





















x0
+1
−1
0
0



x4
0
0
+1
−1










There are four different states for this configuration.


Similarly, if there would be two pulses in the first track, the first track having two track positions x0 and x4, the pulses could then be assigned in the following constellations:






















x0
+2
−2
+1
+1
−1
−1
0
0


x4
0
0
+1
−1
+1
−1
+2
−2









Thereby this configuration has 8 states.


If the length of the residual signal is extended to T=12, then each of the 4 tracks has 3 track positions. The first track gets one more sample and has now track positions x0, x4 and x8, such that we have:






















x0, x4
2 pulses
1 pulse
1 pulse
0 pulses
0 pulses




8 states
4 states
4 states
1 state
1 state



x8
0
+1
−1
+2
−2










The above table means that there are 8 different states for x0 and x4, if x8=0 (x8 has no pulse); 4 different states for x0 and x4, if x8=1 (x8 has a positive pulse); 4 different states for x0 and x4, if x8=−1 (x8 has a negative pulse); 1 state for x0 and x4, if x8=2 (x8 has two positive pulses); and 1 state for x0 and x4, if x8=−2 (x8 has two negative pulses).


Here, the number of states for the first row has been obtained from the two previous tables. By addition of the number of states in the first row, we see that this configuration has 18 states.


In the T=12 example, 5 bits are sufficient to encode all the 18 different possible states. The encoder then, for example, selects the state number from the range [0, . . . , 17] to specify one of the 18 configurations. If the decoder is aware of the encoding scheme, e.g. if it is aware, which state number represents which configuration, it can decode the pulse positions and pulse signs for a track.


Below, suitable encoding methods and corresponding decoding methods according to embodiments will be provided. According to embodiments, an apparatus for encoding is provided which is configured to execute one of the encoding methods presented below. Moreover, according to further embodiments, an apparatus for decoding is provided which is configured to execute one of the decoding methods presented below.


In embodiments, to generate the state number or to decode the state number, the number of possible configurations for N track positions having p pulses may be calculated.


Pulses may be signed, and a recursive formula may be employed, which calculates the number of states f(p, N) for a track having N track positions and p signed pulses (the pulses may be positive or negative, but pulses at the same track position have the same sign), wherein the recursive formula f(p, N) is defined by:










f


(

p
,
N

)


=




k
=
0

p




f


(

k
,

N
-
1


)




f


(


p
-
k

,
1

)








Formula





1







The initial conditions are







f


(

p
,
1

)


=

{





2




for





p


1





1




for





p

=
0









and






f


(

p
,
0

)



=
0







since a single position with one or more pulses necessitates one bit (two states) for the sign. The recursion formula is for summation of all different constellations.


Namely, given p pulses, the current position can have qN=0 to p pulses, whereby the remaining N−1 positions have p−qN pulses. The number of states at the current position and the remaining N−1 positions are multiplied to obtain the number of states with these combinations of pulses and combinations are summed to obtain the total number of states.


In embodiments, the recursive function may be calculated by an iterative algorithm, wherein the recursion is replaced by iteration.


As the evaluation of f(p, N) is numerically relatively complex for real time applications, according to some embodiments, a table look-up may be employed to calculate f(p,N). According to some embodiments, the table may have been computed off-line.


In the following, further concepts are provided for encoding and decoding the state number:


Let f(p, N) denote the number of possible configurations for a track having N track positions and p signed pulses.


The pulse information encoder can now analyze the track: If the first position in the track does not have a pulse, then the remaining N−1 positions have p signed pulses, and to describe this constellation, we need only f(p, N−1) states.


Otherwise, if the first position has one or more pulses, the pulse information encoder can define that the overall state is greater than f(p, N−1).


Then, at the pulse information decoder, the pulse information decoder, can, for example, start with the last position and compare the state with a threshold value, e.g. with f(p, N−1). If it is greater, then the pulse information decoder can determine that the last position has at least one pulse. The pulse information decoder can then update the state to obtain an updated state number by subtracting f(p, N−1) from the state and reduce the number of remaining pulses by one.


Otherwise, if there is no pulse at the last position, the pulse information decoder can reduce the number of remaining positions by one. Repeating this procedure until there are no pulses left, would provide the unsigned positions of pulses.


To also take the signs of the pulses into account, the pulse information encoder may encode the pulses in the lowest bit of the state. In an alternative embodiment, the pulse information encoder may encode the sign in the highest remaining bit of the state. It is advantageous, however, to encode the pulse sign in the lowest bit, as this is easier to handle with respect to integer computations.


If, in the pulse information decoder, the first pulse of a given position is found, the sign of the pulse is determined by the last bit. Then, the remaining state is shifted one step right to obtain an updated state number.


In an embodiment, a pulse information decoder is configured to apply the following decoding algorithm. In this decoding algorithm, in a step-by-step approach, for each track position, e.g. one after the other, the state number or the updated state number is compared with a threshold value, e.g. with f(p, k−1).


According to an embodiment, a pulse information decoder algorithm is provided:
















For each position in track, k=N to 1



   While state s >= f(p,k − 1)



      Put a pulse at k



      Set s := s − f(p,k − 1)



      If this is the first pulse at k



         If lowest bit of s is set, set sign to minus



         Otherwise, set sign to plus



         Shift state right one step s := s/2



      Reduce the number of remaining pulses p := p − 1









Regarding the pulse information, according to an embodiment, a pulse information encoder is configured to apply the following encoding algorithm. The pulse information encoder does the same steps as the pulse information decoder, but in reverse order.


According to an embodiment, a pulse information encoder algorithm is provided:














Set number of found pulses to zero, p:=0 and state to zero, s:=0


For each position in track, k=1 to N


   For each pulse at this position


      If the current pulse is the last one on this position


         Shift state left one step s := s * 2


         If sign is minus, set the lowest bit to one, s := s + 1


         Otherwise set the lowest bit to zero (i.e. do nothing)


      Update the state s := s+ f(p,k − 1)


      Increase the number of found pulses p:=p+1









Encoding the state number by using this algorithm, the pulse information encoder adds an integer value to an intermediate number (e.g. an intermediate state number), e.g. the state number before the algorithm is completed, for each pulse at a track position for each track position of one of the tracks, to obtain (the value of) the state number.


The approach for encoding and decoding of pulse information, e.g. pulse positions and pulse signs, may be referred to as “step-by-step encoding” and “step-by-step decoding”, as the track positions are considered by the encoding and decoding methods one after the other, step-by-step.



FIG. 6 is a flow chart illustrating an embodiment, depicting the processing steps conducted by a pulse information decoder according to an embodiment.


In step 610 the current track position k is set to N. Here, N represents the number of track positions of a track, wherein the track positions are enumerated from 1 to N.


In step 620, it is tested, whether k is greater than or equal to 1, i.e. whether track positions remain that have not been considered. If k is not greater than or equal to 1, all track positions have been considered and the process ends.


Otherwise it is tested in step 630, whether the state is greater than or equal to f(p, k−1). If this is the case, at least one pulse is present at position k. If this is not the case, no (further) pulse is present at track position k and the process continues at 640, where k is reduced by 1, such that the next track position will be considered.


If, however, the state is greater than or equal to f(p, k−1), the process continues with step 642, a pulse is put at track position k, and then, in step 644, the state is updated by reducing the state by f(p, k−1). Then, in step 650, it is tested, whether the current pulse is the first discovered pulse at track position k. If this is not the case, the number of remaining pulses is reduced by 1 in step 680, and the process continues in step 630.


If, however this is the first discovered pulse at track position k, the process continues with step 660, where it is tested, whether the lowest bit of s is set. If this is the case, the sign of the pulses at this track position is set to minus (step 662), otherwise, the sign of the pulses at this track position is set to plus (step 664). In both cases, the state is then shifted one step right in step 670 (s:=s/2). Then, also, the number of remaining pulses is reduced by one (step 680) and the process continues at step 630.



FIG. 7 is a flow chart illustrating an embodiment, the flow chart depicting the processing steps conducted by a pulse information encoder according to an embodiment.


In step 710, the number of found pulses p is set to 0, the state s is set to 0 and the considered track position k is set to 1.


In step 720, it is tested, whether k is smaller than or equal to N, i.e. whether track positions remain that have not been considered (here, N means: number of track positions of a track). If k is not smaller than or equal to N, all track positions have been considered and the process ends.


Otherwise it is tested in step 730, whether at least one pulse is present at position k. If this is not the case, the process continues at 740, where k is increased by 1, such that the next track position will be considered.


However, if at least one pulse is present at track position k, it is tested in step 750, whether the currently considered pulse is the last pulse at track position k. If this is not the case, then, in step 770, the state s is updated by adding f(p, k−1) to the state s, the number of found pulses p is increased by 1, and the process continues with step 780.


If the currently considered pulse is the last pulse at track position k, then after step 750, the process continues with step 755 and the state is shifted one step left (s:=s*2). Then, it is tested in step 760, whether the sign of the pulse is minus. If this is the case, the lowest bit of s is set to 1 (step 762); otherwise, the lowest bit of s is set to 0 (or nothing is done) (step 764). Then, in both cases, step 770 is conducted, where the state s is updated by adding f(p, k−1) to the state s, the number of found pulses p is increased by 1, and the process continues with step 780.


In step 780, it is tested, whether there is another pulse at position k. If this is the case, the process continues with step 750; otherwise, the process continues with step 740.


In the following, a concept is provided for generating a joint state number encoding the state of a plurality of tracks.


Unfortunately, in many cases the range of possible states of a single track is not a multiple of 2 and the binary representation of each state is thus inefficient. For example, if the number of possible states is 5, then we need 3 bits to represent it with a binary number. However, if we have four tracks, each with 5 states, then we have 5×5×5×5=625 states for the whole sub-frame which can be represented by 10 bits (instead of 4×3=12 bits). This corresponds to 2.5 bits per track instead of 3 and we thus obtain a 0.5 bit saving per track or equivalently, 2 bits per subframe (20% of total bit consumption). It is therefore important to combine the states of each track to one joint state, since by this, the inefficiency of the binary representation can be reduced. Note that the same approach could be used to any numbers that are transmitted. For example, since each sub-frame may have a state representing the positions of the pulses, and each frame may, for example. have four sub-frames, these states could be combined to one joint state number.


Given that a sub-frame has, for example, 4 tracks, the bit consumption can be reduced to improve efficiency by jointly encoding the states of each track. For example, given that each track has pk pulses and each track is of length N, e.g. has N track positions, then the state of each track is in the range 0 to f(pk, N)−1. The states of each track sk can then be combined to a joint state s of the subframe with the formula (assuming we have 4 tracks per sub-frame)

s=[[s0f(p0,N)+s1]f(p1,N)+s2]f(p2,N)+s3.  Formula 2


The states of each track can then be determined in the decoder by dividing the joint state by f(pk, N), whereby the remainder is the state of the last track and the integer part is the joint state of the remaining tracks. If the number of tracks is other than 4, we can readily add or reduce the number of terms in the above equation appropriately.


Note, that when the number of pulses per track is large, then the number of possible states becomes large. For example, with 6 pulses per track with four tracks and a track length N=16, then the state is an 83-bit number, which exceeds the maximum length of binary numbers on regular CPUs. It follows that some extra steps have to be made to evaluate the above formula using standard methods with very long integers.


Observe also that this approach is equal to arithmetic coding of the track states, when the state probabilities are assumed to be equal.


Above, a step-by-step approach has been presented for encoding and decoding pulses information of a track, e.g. the positions, and possibly signs, of pulses of a track. Other embodiments provide another approach, which will be referred to as “split-and-conquer” approach.


A pulse information encoder being configured to apply the split-and-conquer approach, divides a track into two track partitions x1 and x2, which could be considered as two vectors, wherein x=[x1 x2]. The basic idea is to encode both vectors x1 and x2 separately, and then to combine the two with the formula










s


(
x
)


=


s


(

x
1

)


+


f


(


p
1

,

N
1


)




s


(

x
2

)



+




k
=
0



p
1

-
1





f


(

k
,

N
1


)




f


(


p
-
k

,

N
-

N
1



)









Formula





3







In the above equation, it should be noted that s(x1) and s(x2) are the states of vectors x1 and x2, when the number of pulses are already known, that is, when the vectors have, respectively, p1 and p2=p−p1 pulses. To take into account all the states that have 0 to p1−1 pulses in vector x1, we have to add the summation term in the above equation.


The above algorithm/formula can be applied to encode the pulses of interlaced tracks by applying the following two pre-processing steps. Firstly, let the vectors Xtrack k consists of all samples on track k and merge these vectors by defining x=[xtrack 1, xtrack 2, xtrack 3, xtrack 4]. Observe that this is merely a re-ordering of samples such that all samples from track 1 are placed in the first group and so on.


Secondly, note that the number of pulses per track is usually a fixed number. It follows that if track 1 has p1 pulses, then the number of states on track 1 is f(k,N1)=0 for all values k≠p1. This is just another way of saying that there are no states for track 1 which do not have p1 pulses. Formally, we can then define the number-of-states formula as:











For





a





complete





track






x

track





k







with






p
k






pulses

,





the





number





of





states





is






(

N
=

N

track





k



)









f


(

p
,
N

)


=

{






f


(

p
,
N

)






for





p

=

p
k






0




for





p



p
k










Otherwise

,



for





N

>

1






f


(

p
,
N

)




=





k
=
0

p




f


(

k
,

N
1


)




f


(


p
-
k

,

N
-

N
1



)







And





for





N


=


1


:







f


(

p
,
1

)



=

{



2




for





p


1





1




for





p

=
0.














Formula





4







By the re-ordering of samples and using the above definition for the number of states (Formula 4), we can calculate the joint state of all tracks by Formula 3. Note that since the number of states contains mostly zeros, the summation in Formula 3 is zero, when merging the state of tracks. Therefore merging two tracks is identical to Formula 2. Similarly, we can readily show that the merging all four tracks (or five) also gives identical results with both approaches.


According to an embodiment, re-ordering can be used as a pre-processing step to the encoder. In another embodiment, the re-ordering can be integrated into the encoder. Similarly, according to an embodiment, re-ordering can be used as a post-processing step to the decoder. In another embodiment, the re-ordering can be integrated into the decoder.


If the number of pulses on a track is not fixed, we can readily modify the number of states formula appropriately, and still use the same encoding algorithm.


Observe that the approach presented in the section “Combining track data” and the above method give equal results if the order of merging tracks is appropriately chosen. Likewise, also the step-by-step and divide-and-conquer approaches give equal results. We can therefore independently choose which approach to use in the decoder and encoder, according to which is more practical to implement or which approach best fits the computational constraints of the platform.


According to an embodiment, a pulse information encoder algorithm is provided, that can be described in pseudo-code by












function state = encode(x)
















1.
if length of x is 1








a.
if x has no pulses








i.
state = 0


ii.
return








b.
else (x has at least one pulse)








i.
if the pulse(s) in x is positive









state = 0



return








ii.
else (pulse(s) in x is negative)









state = 1



return








iii.
end








c.
end








2.
else (that is, when length of x is > 1)








a.
split x into two vectors x1 and x2 of length N1 and N2



respectively


b.
determine state of vector x1 by s1 = encode(x1)


c.
determine state of vector x2 by s2 = encode(x2)


d.
let p be the number of pulses in x and p1 the number of pulses



in x1


e.
set n0 = 0


f.
for k from 0 to p1−1








i.
set n0 := n0 + f(k,N1)*f(p−k,N2)








g.
end


h.
calculate state as s := s1 + f(p1,N1)*s2 + n0


i.
return








3.
end









Employing such an encoding algorithm, according to an embodiment, the pulse information encoder is configured to divide one of the tracks into a first track partition and into a second track partition. The pulse information encoder is configured to encode a first substrate number associated with the first partition. Furthermore, the pulse information encoder is configured to encode a second substrate number associated with the second partition. Moreover, the pulse information encoder is configured to combine the first substrate number and the second substrate number to obtain the state number.


Similarly, according to an embodiment, a the pulse information decoder algorithm is provided that can be described in pseudo-code by:












function x = decode(s, p, N)
















1.
if number of pulses p is 0








a.
return vector x full of zeros








2.
else








a.
if len is 1








i.
if s == 0








1.
Vector x has p positive pulses at its first position








ii.
else








1.
Vector x has p negative pulses at its first position








iii.
end








b.
else








i.
Choose partition lengths N1 and N2


ii.
Set n0 := 0 and p1 := 0


iii.
While n0 + f(p1,N1)*f(p−p1) < s








1.
set p1 := p1+1


2.
set n0 := n0 + f(p1,N1)*f(p−p1)








iv.
end


v.
set s := s − n0 and p2 := p − p1


vi.
set s1 :=s / f(p1,N1) and the remainder into s2


vii.
decode first partition x1 = decode(s1, p1, N1)


viii.
decode second partition x2 = decode(s2, p2, N2)


ix.
merge partitions x1 and x2 in to x








c.
end








3.
end









In an embodiment realizing the split-and-conquer approach, a pulse information decoder is configured to generate a first substrate number and a second substrate number based on the state number. The pulse information decoder is configured to decode a first group of pulse positions of a first partition of one of the tracks based on the first substrate number. Moreover, the pulse information decoder is configured to decode a second group of pulse positions of a second partition of the one of the tracks based on the second substrate number.


Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus.


Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed.


Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.


Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier.


Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier or a non-transitory storage medium.


In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.


A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein.


A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet or over a radio channel.


A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein.


A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.


In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are performed by any hardware apparatus.


While this invention has been described in terms of several advantageous embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. An apparatus for decoding an encoded audio signal, wherein one or more tracks are associated with the encoded audio signal, each one of the tracks comprising a plurality of track positions and a plurality of pulses, wherein the apparatus comprises: a pulse information decoder for decoding a plurality of pulse positions, wherein each one of the pulse positions is one of the track positions, where one of the pulses is located, and wherein the pulse information decoder is configured to decode the plurality of pulse positions by only using one track position number, one total pulse number and one state number, wherein the track position number indicates a total number of the track positions of at least one of the tracks, and wherein the total pulse number indicates a total number of the pulses of at least one of the tracks; anda signal decoder for decoding the encoded audio signal by generating a synthesized audio signal using the plurality of pulse positions and a plurality of predictive filter coefficients being associated with the encoded audio signal,wherein at least one of the pulse information decoder and the signal decoder comprises a hardware implementation,wherein the pulse information decoder is furthermore adapted to decode a plurality of pulse signs by only using the track position number, the total pulse number and the state number, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses, andwherein the signal decoder is adapted to decode the encoded audio signal by generating a synthesized audio signal furthermore using the plurality of pulse signs.
  • 2. An apparatus according to claim 1, wherein at least a last track and one or more other tracks are associated with the encoded audio signal, and wherein the pulse information decoder is adapted to generate a first substrate number and a second substrate number from the state number,wherein the pulse information decoder is configured to decode a first group of the pulse positions based on the first substrate number, andwherein the pulse information decoder is configured to decode a second group of the pulse positions based on the second substrate number,wherein the second group of the pulse positions only comprises pulse positions indicating track positions of the last track, andwherein the first group of the pulse positions only comprises pulse positions indicating track positions of the one or more other tracks.
  • 3. An apparatus according to claim 2, wherein the pulse information decoder is configured to generate the first substrate number and the second substrate number by dividing the state number by f(pk, N) to acquire an integer part and a remainder as a division result, wherein the integer part is the first substrate number and wherein the remainder is the second substrate number, wherein pk indicates for each one of the one or more tracks the number of pulses, and wherein N indicates for each one of the one or more tracks the number of track positions.
  • 4. An apparatus according to claim 1, wherein the pulse information decoder is adapted to conduct a test comparing the state number or an updated state number with a threshold value.
  • 5. An apparatus according to claim 4, wherein the pulse information decoder is adapted to conduct the test by comparing, whether the state number or an updated state number is greater than, greater than or equal to, smaller than, or smaller than or equal to the threshold value, and wherein the pulse information decoder is furthermore adapted to update the state number or an updated state number depending on the result of the test.
  • 6. An apparatus according to claim 5, wherein the pulse information decoder is configured to compare the state number or the updated state number with the threshold value for each track position of one of the plurality of tracks.
  • 7. An apparatus according to claim 1, wherein the pulse information decoder is configured to divide one of the tracks into a first track partition, comprising at least two track positions of the plurality of track positions and into a second track partition comprising at least two other track positions of the plurality of track positions,wherein the pulse information decoder is configured to generate a first substrate number and a second substrate number based on the state number,wherein the pulse information decoder is configured to decode a first group of pulse positions associated with the first track partition based on the first substrate number, andwherein the pulse information decoder is configured to decode a second group of pulse positions associated with the second track partition based on the second substrate number.
  • 8. An apparatus for encoding an audio signal, comprising: a signal processor for determining a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and based on the plurality of predictive filter coefficients; anda pulse information encoder for encoding a plurality of pulse positions relating to one or more tracks, to encode the audio signal, the one or more tracks being associated with the residual signal, each one of the tracks comprising a plurality of track positions and a plurality of pulses, wherein each one of the pulse positions is one of the track positions, where one of the pulses is located, wherein the pulse information encoder is configured to encode the plurality of pulse positions by generating one state number, such that the pulse positions are decodable only based on the state number, one track position number, and one total pulse number, wherein the track position number indicates a total number of the track positions of at least one of the tracks, and wherein the total pulse number indicates a total number of the pulses of at least one of the tracks,wherein at least one of the signal processor and the pulse information encoder comprises a hardware implementation,wherein the pulse information encoder is configured to determine the state number depending on an intermediate sum,wherein, for each pulse at a track position for each track position of one of the tracks, the pulse information encoder is configured to add an integer value to the intermediate sum, to update the intermediate sum.
  • 9. An apparatus for encoding according to claim 8, wherein the pulse information encoder is adapted to encode a plurality of pulse signs, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses, wherein the pulse information encoder is configured to encode the plurality of pulse signs by generating the state number, such that the pulse signs can be decoded only based on the state number, the track position number indicating a total number of the track positions of at least one of the tracks, and the total pulse number.
  • 10. An apparatus according to claim 8, wherein the pulse information encoder is configured to add the integer value to the intermediate number for each pulse at a track position for each track position of one of the tracks, to acquire the state number, wherein the integer value is defined by f(p, k−1), wherein p indicates a number of found pulses, wherein k indicates a track position, and wherein f(p, N) indicates the number of possible configurations for a track comprising N track positions and p signed pulses.
  • 11. An apparatus according to claim 8, wherein the pulse information encoder is configured to divide one of the tracks into a first track partition, comprising at least two track positions of the plurality of track positions, and into a second track partition, comprising at least two other track positions of the plurality of track positions,wherein the pulse information encoder is configured to encode a first substrate number associated with the first partition,wherein the pulse information encoder is configured to encode a second substrate number associated with the second partition, andwherein the pulse information encoder is configured to combine the first substrate number and the second substrate number to acquire the state number.
  • 12. Method for decoding an encoded audio signal, wherein one or more tracks are associated with the encoded audio signal, each one of the tracks comprising a plurality of track positions and a plurality of pulses, wherein the method comprises: decoding a plurality of pulse positions, wherein each one of the pulse positions is one of the track positions, where one of the pulses is located, and wherein the plurality of pulse positions are decoded by only using one track position number, one total pulse number and one state number, wherein the track position number indicates a total number of the track positions of at least one of the tracks, and wherein the total pulse number indicates a total number of the pulses of at least one of the tracks,decoding a plurality of pulse signs by only using the track position number, the total pulse number and the state number, wherein each one of the pulse signs indicates a sign of one of the plurality of pulses, anddecoding the encoded audio signal by generating a synthesized audio signal using only the plurality of pulse positions and a plurality of predictive filter coefficients being associated with the encoded audio signal,wherein decoding the encoded audio signal is conducted by generating a synthesized audio signal furthermore using the plurality of pulse signs.
  • 13. Method for encoding an audio signal, comprising: determining a plurality of predictive filter coefficients being associated with the audio signal, for generating a residual signal based on the audio signal and based on the plurality of predictive filter coefficients; andencoding a plurality of pulse positions relating to one or more tracks, to encode the audio signal, the one or more tracks being associated with the residual signal, each one of the tracks comprising a plurality of track positions and a plurality of pulses, wherein each one of the pulse positions is one of the track positions, where one of the pulses is located, wherein the plurality of pulse positions are encoded by generating one state number, such that the pulse positions can be decoded only based on the state number, one track position number, and one total pulse number, wherein the track position number indicates a total number of the track positions of at least one of the tracks, and wherein the total pulse number indicates a total number of the pulses of at least one of the tracks,wherein determining the state number depending on an intermediate sum,wherein, for each pulse at a track position for each track position of one of the tracks, an integer value is added to the intermediate sum, to update the intermediate sum.
  • 14. A non-transitory computer readable medium comprising a computer program implementing the method of claim 12 when being executed on a computer or signal processor.
  • 15. A non-transitory computer readable medium comprising a computer program implementing the method of claim 13 when being executed on a computer or signal processor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of copending International Application No. PCT/EP2012/052294, filed Feb. 10, 2012, which is incorporated herein by reference in its entirety, and additionally claims priority from U.S. Application No. 61/442,632, filed Feb. 14, 2011, which is also incorporated herein by reference in its entirety.

US Referenced Citations (157)
Number Name Date Kind
5598506 Wigren et al. Jan 1997 A
5606642 Stautner et al. Feb 1997 A
5684920 Iwakami et al. Nov 1997 A
5727119 Davidson et al. Mar 1998 A
5848391 Bosi et al. Dec 1998 A
5890106 Bosi-Goldberg et al. Mar 1999 A
5953698 Hayata Sep 1999 A
5960389 Jarvinen et al. Sep 1999 A
6070137 Bloebaum et al. May 2000 A
6134518 Cohen et al. Oct 2000 A
6173257 Gao Jan 2001 B1
6236960 Peng et al. May 2001 B1
6532443 Nishiguchi et al. Mar 2003 B1
6587817 Vähätalo et al. Jul 2003 B1
6636829 Benyassine et al. Oct 2003 B1
6636830 Princen et al. Oct 2003 B1
6680972 Liljeryd et al. Jan 2004 B1
6757654 Westerlund et al. Jun 2004 B1
6879955 Rao et al. Apr 2005 B2
6969309 Carpenter Nov 2005 B2
6980143 Linzmeier et al. Dec 2005 B2
7003448 Lauber et al. Feb 2006 B1
7124079 Johansson et al. Oct 2006 B1
7249014 Kannan et al. Jul 2007 B2
7280959 Bessette Oct 2007 B2
7343283 Ashley et al. Mar 2008 B2
7363218 Jabri et al. Apr 2008 B2
7519535 Spindola Apr 2009 B2
7536299 Cheng et al. May 2009 B2
7565286 Gracie et al. Jul 2009 B2
7587312 Kim Sep 2009 B2
7627469 Nettre et al. Dec 2009 B2
7707034 Sun et al. Apr 2010 B2
7711563 Chen May 2010 B2
7788105 Miseki Aug 2010 B2
7801735 Thumpudi et al. Sep 2010 B2
7809556 Goto et al. Oct 2010 B2
7860720 Thumpudi et al. Dec 2010 B2
7873511 Herre et al. Jan 2011 B2
7877253 Krishnan et al. Jan 2011 B2
7917369 Lee et al. Mar 2011 B2
7930171 Chen et al. Apr 2011 B2
7933769 Bessette Apr 2011 B2
7979271 Bessette Jul 2011 B2
7987089 Krishnan et al. Jul 2011 B2
8045572 Li et al. Oct 2011 B1
8078458 Zopf et al. Dec 2011 B2
8121831 Oh et al. Feb 2012 B2
8160274 Bongiovi Apr 2012 B2
8239192 Kovesi et al. Aug 2012 B2
8255207 Vaillancourt et al. Aug 2012 B2
8255213 Yoshida et al. Aug 2012 B2
8363960 Petersohn Jan 2013 B2
8364472 Ehara Jan 2013 B2
8428936 Mittal et al. Apr 2013 B2
8428941 Boehm et al. Apr 2013 B2
8452884 Wang et al. May 2013 B2
8566106 Salami et al. Oct 2013 B2
8630862 Geiger et al. Jan 2014 B2
8630863 Son et al. Jan 2014 B2
8635357 Ebersviller Jan 2014 B2
8825496 Setiawan et al. Sep 2014 B2
8954321 Beack et al. Feb 2015 B1
20020111799 Bernard Aug 2002 A1
20020176353 Atlas et al. Nov 2002 A1
20020184009 Heikkinen Dec 2002 A1
20030009325 Kirchherr et al. Jan 2003 A1
20030033136 Lee Feb 2003 A1
20030046067 Gradl Mar 2003 A1
20030078771 Jung Apr 2003 A1
20030225576 Li et al. Dec 2003 A1
20040010329 Lee et al. Jan 2004 A1
20040093204 Byun May 2004 A1
20040093368 Lee et al. May 2004 A1
20040184537 Geiger et al. Sep 2004 A1
20040193410 Lee Sep 2004 A1
20040220805 Geiger et al. Nov 2004 A1
20040225505 Andersen et al. Nov 2004 A1
20050021338 Graboi et al. Jan 2005 A1
20050065785 Bessette Mar 2005 A1
20050080617 Koshy et al. Apr 2005 A1
20050091044 Ramo et al. Apr 2005 A1
20050096901 Uvliden et al. May 2005 A1
20050130321 Nicholson et al. Jun 2005 A1
20050154584 Jelinek et al. Jul 2005 A1
20050165603 Bessette et al. Jul 2005 A1
20050192798 Vainio et al. Sep 2005 A1
20050240399 Makinen et al. Oct 2005 A1
20050278171 Suppappola et al. Dec 2005 A1
20060095253 Schuller et al. May 2006 A1
20060115171 Geiger et al. Jun 2006 A1
20060116872 Byun et al. Jun 2006 A1
20060173675 Ojanpera et al. Aug 2006 A1
20060206334 Kapoor et al. Sep 2006 A1
20060210180 Geiger et al. Sep 2006 A1
20060271356 Vos Nov 2006 A1
20060293885 Gournay et al. Dec 2006 A1
20070050189 Cruz-Zeno et al. Mar 2007 A1
20070100607 Villemoes May 2007 A1
20070147518 Bessette et al. Jun 2007 A1
20070160218 Jakka et al. Jul 2007 A1
20070171931 Manjunath et al. Jul 2007 A1
20070172047 Coughlan et al. Jul 2007 A1
20070174047 Anderson et al. Jul 2007 A1
20070196022 Geiger et al. Aug 2007 A1
20070225971 Bessette et al. Sep 2007 A1
20070282603 Bessette Dec 2007 A1
20080010064 Takeuchi et al. Jan 2008 A1
20080015852 Kruger et al. Jan 2008 A1
20080027719 Kirshnan et al. Jan 2008 A1
20080046236 Thyssen et al. Feb 2008 A1
20080052068 Aguilar et al. Feb 2008 A1
20080097764 Grill et al. Apr 2008 A1
20080120116 Schnell et al. May 2008 A1
20080147415 Schnell et al. Jun 2008 A1
20080208599 Rosec et al. Aug 2008 A1
20080221905 Schnell et al. Sep 2008 A1
20080249765 Schuijers et al. Oct 2008 A1
20080275580 Andersen Nov 2008 A1
20090024397 Ryu et al. Jan 2009 A1
20090076807 Xu et al. Mar 2009 A1
20090110208 Choo et al. Apr 2009 A1
20090204412 Kovesi et al. Aug 2009 A1
20090226016 Fitz et al. Sep 2009 A1
20090228285 Schnell et al. Sep 2009 A1
20090319283 Schnell et al. Dec 2009 A1
20090326930 Kawashima et al. Dec 2009 A1
20090326931 Ragot et al. Dec 2009 A1
20100017200 Oshikiri et al. Jan 2010 A1
20100017213 Edler et al. Jan 2010 A1
20100049511 Ma Feb 2010 A1
20100063811 Gao et al. Mar 2010 A1
20100063812 Gao Mar 2010 A1
20100070270 Gao Mar 2010 A1
20100106496 Morii et al. Apr 2010 A1
20100138218 Geiger et al. Jun 2010 A1
20100198586 Edler et al. Aug 2010 A1
20100217607 Neuendorf et al. Aug 2010 A1
20100262420 Herre et al. Oct 2010 A1
20100268542 Kim et al. Oct 2010 A1
20110002393 Suzuki et al. Jan 2011 A1
20110007827 Virette et al. Jan 2011 A1
20110106542 Bayer et al. May 2011 A1
20110153333 Bessette Jun 2011 A1
20110173010 Lecomte et al. Jul 2011 A1
20110173011 Geiger et al. Jul 2011 A1
20110178795 Bayer et al. Jul 2011 A1
20110218797 Mittal et al. Sep 2011 A1
20110218799 Mittal et al. Sep 2011 A1
20110218801 Vary et al. Sep 2011 A1
20110257979 Gao Oct 2011 A1
20110270616 Garudadri et al. Nov 2011 A1
20110311058 Oh et al. Dec 2011 A1
20120226505 Lin et al. Sep 2012 A1
20120271644 Bessette et al. Oct 2012 A1
20130332151 Fuchs et al. Dec 2013 A1
20140257824 Taleb et al. Sep 2014 A1
Foreign Referenced Citations (130)
Number Date Country
2007312667 Apr 2008 AU
2730239 Jan 2010 CA
1274456 Nov 2000 CN
1344067 Apr 2002 CN
1381956 Nov 2002 CN
1437747 Aug 2003 CN
1539137 Oct 2004 CN
1539138 Oct 2004 CN
101351840 Oct 2006 CN
101110214 Jan 2008 CN
101366077 Feb 2009 CN
101371295 Feb 2009 CN
101379551 Mar 2009 CN
101388210 Mar 2009 CN
101425292 May 2009 CN
101483043 Jul 2009 CN
101488344 Jul 2009 CN
101743587 Jun 2010 CN
101770775 Jul 2010 CN
102008015702 Aug 2009 DE
0665530 Aug 1995 EP
0673566 Sep 1995 EP
0758123 Feb 1997 EP
0784846 Jul 1997 EP
0843301 May 1998 EP
1120775 Aug 2001 EP
1852851 Jul 2007 EP
1845520 Oct 2007 EP
2107556 Jul 2009 EP
2109098 Oct 2009 EP
2144230 Jan 2010 EP
2911228 Jul 2008 FR
H08263098 Oct 1996 JP
10039898 Feb 1998 JP
H10214100 Aug 1998 JP
H11502318 Feb 1999 JP
H1198090 Apr 1999 JP
2000357000 Dec 2000 JP
2002-118517 Apr 2002 JP
2003501925 Jan 2003 JP
2003506764 Feb 2003 JP
2004513381 Apr 2004 JP
2004514182 May 2004 JP
2005534950 Nov 2005 JP
2006504123 Feb 2006 JP
2007065636 Mar 2007 JP
2007523388 Aug 2007 JP
2007525707 Sep 2007 JP
2007538282 Dec 2007 JP
2008-15281 Jan 2008 JP
2008513822 May 2008 JP
2008261904 Oct 2008 JP
2009508146 Feb 2009 JP
2009075536 Apr 2009 JP
2009522588 Jun 2009 JP
2009-527773 Jul 2009 JP
2010530084 Sep 2010 JP
2010-538314 Dec 2010 JP
2010539528 Dec 2010 JP
2011501511 Jan 2011 JP
2011527444 Oct 2011 JP
1020040043278 May 2004 KR
1020060025203 Mar 2006 KR
1020070088276 Aug 2007 KR
20080032160 Apr 2008 KR
1020100059726 Jun 2010 KR
2169992 Jun 2001 RU
2183034 May 2002 RU
2003118444 Dec 2004 RU
2004138289 Jun 2005 RU
2296377 Mar 2007 RU
2302665 Jul 2007 RU
2312405 Dec 2007 RU
2331933 Aug 2008 RU
2335809 Oct 2008 RU
2008126699 Feb 2010 RU
2009107161 Sep 2010 RU
2009118384 Nov 2010 RU
200830277 Oct 1996 TW
200943279 Oct 1998 TW
201032218 Sep 1999 TW
380246 Jan 2000 TW
469423 Dec 2001 TW
I253057 Apr 2006 TW
200703234 Jan 2007 TW
200729156 Aug 2007 TW
200943792 Oct 2009 TW
I316225 Oct 2009 TW
I 320172 Feb 2010 TW
201009810 Mar 2010 TW
201009812 Mar 2010 TW
I324762 May 2010 TW
201027517 Jul 2010 TW
201040943 Nov 2010 TW
201103009 Jan 2011 TW
9222891 Dec 1992 WO
9510890 Apr 1995 WO
9530222 Nov 1995 WO
9629696 Sep 1996 WO
0031719 Jun 2000 WO
0075919 Dec 2000 WO
02101724 Dec 2002 WO
WO-02101722 Dec 2002 WO
2005041169 May 2005 WO
2005078706 Aug 2005 WO
2005081231 Sep 2005 WO
2005112003 Nov 2005 WO
2006082636 Aug 2006 WO
2006126844 Nov 2006 WO
WO-2007051548 May 2007 WO
WO-2007073604 Jul 2007 WO
WO2007096552 Aug 2007 WO
WO-2008013788 Oct 2008 WO
2008157296 Dec 2008 WO
WO-2009029032 Mar 2009 WO
2009077321 Oct 2009 WO
2009121499 Oct 2009 WO
2010003563 Jan 2010 WO
2010003491 Jan 2010 WO
WO-2010003491 Jan 2010 WO
WO-2010003532 Jan 2010 WO
WO-2010040522 Apr 2010 WO
2010059374 May 2010 WO
2010081892 Jul 2010 WO
2010093224 Aug 2010 WO
2011006369 Jan 2011 WO
2011048117 Apr 2011 WO
WO-2011048094 Apr 2011 WO
2011147950 Dec 2011 WO
WO2012022881 Feb 2012 WO
Non-Patent Literature Citations (38)
Entry
“Digital Cellular Telecommunications System (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Speech codec speech processing functions; Adaptive Multi-Rate-Wideband (AMR-)WB Speech Codec; Transcoding Functions (3GPP TS 26.190 version 9.0.0”, Technical Specification, European Telecommunications Standards Institute (ETSI) 650, Route Des Lucioles; F-06921 Sophia-Antipolis; France; No. V.9.0.0, Jan. 1, 2012, 54 Pages.
“IEEE Signal Processing Letters”, IEEE Signal Processing Society. vol. 15. ISSN 1070-9908., 2008, 9 Pages.
“Information Technology—MPEG Audio Technologies—Part 3: Unified Speech and Audio Coding”, ISO/IEC JTC 1/SC 29 ISO/IEC DIS 23003-3, Feb. 9, 2011, 233 Pages.
“WD7 of USAC”, International Organisation for Standardisation Organisation Internationale De Normailisation. ISO/IEC JTC1/SC29/WG11. Coding of Moving Pictures and Audio. Dresden, Germany., Apr. 2010, 148 Pages.
3GPP, , “3rd Generation Partnership Project; Technical Specification Group Service and System Aspects. Audio Codec Processing Functions. Extended AMR Wideband Codec; Transcoding functions (Release 6).”, 3GPP Draft; 26.290, V2.0.0 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; Valbonne, France., Sep. 2004, pp. 1-85.
Ashley, J et al., “Wideband Coding of Speech Using a Scalable Pulse Codebook”, 2000 IEEE Speech Coding Proceedings., Sep. 17, 2000, pp. 148-150.
Bessette, B et al., “The Adaptive Multirate Wideband Speech Codec (AMR-WB)”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center. New York. vol. 10, No. 8., Nov. 1, 2002, pp. 620-636.
Bessette, B et al., “Universal Speech/Audio Coding Using Hybrid ACELP/TCX Techniques”, ICASSP 2005 Proceedings. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3,, Jan. 2005, pp. 301-304.
Bessette, B et al., “Wideband Speech and Audio Codec at 16/24/32 Kbit/S Using Hybrid ACELP/TCX Techniques”, 1999 IEEE Speech Coding Proceedings. Porvoo, Finland., Jun. 20, 1999, pp. 7-9.
Ferreira, A et al., “Combined Spectral Envelope Normalization and Subtraction of Sinusoidal Components in the ODFTand MDCT Frequency Domains”, 2001 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics., Oct. 2001, pp. 51-54.
Fischer, et al., “Enumeration Encoding and Decoding Algorithms for Pyramid Cubic Lattice and Trellis Codes”, IEEE Transactions on Information Theory. IEEE Press, USA, vol. 41, No. 6, Part 2., Nov. 1, 1995, pp. 2056-2061.
Hermansky, H et al., “Perceptual linear predictive (PLP) analysis of speech”, J. Acoust. Soc. Amer. 87 (4)., Apr. 1990, pp. 1738-1751.
Hofbauer, K et al., “Estimating Frequency and Amplitude of Sinusoids in Harmonic Signals—A Survey and the Use of Shifted Fourier Transforms”, Graz: Graz University of Technology; Graz University of Music and Dramatic Arts; Diploma Thesis, Apr. 2004, 111 pages.
Lanciani, C et al., “Subband-Domain Filtering of MPEG Audio Signals”, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, AZ, USA., Mar. 15, 1999, pp. 917-920.
Lauber, P et al., “Error Concealment for Compressed Digital Audio”, Presented at the 111th AES Convention. Paper 5460. New York, USA., Sep. 21, 2001, 12 Pages.
Lee, Ick Don et al., “A Voice Activity Detection Algorithm for Communication Systems with Dynamically Varying Background Acoustic Noise”, Dept. of Electrical Engineering, 1998 IEEE, May 18-21, 1998, pp. 1214-1218.
Makinen, J et al., “AMR-WB+: a New Audio Coding Standard for 3rd Generation Mobile Audio Services”, 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, PA, USA., Mar. 18, 2005, 1109-1112.
Motlicek, P et al., “Audio Coding Based on Long Temporal Contexts”, Rapport de recherche de l'IDIAP 06-30, Apr. 2006, pp. 1-10.
Neuendorf, M et al., “A Novel Scheme for Low Bitrate Unified Speech Audio Coding—MPEG RMO”, AES 126th Convention. Convention Paper 7713. Munich, Germany, May 1, 2009, 13 Pages.
Neuendorf, M et al., “Completion of Core Experiment on unification of USAC Windowing and Frame Transitions”, International Organisation for Standardisation Organisation Internationale De Normalisation ISO/IEC JTC1/SC29/WG11. Coding of Moving Pictures and Audio. Kyoto, Japan., Jan. 2010, 52 Pages.
Neuendorf, M et al., “Unified Speech and Audio Coding Scheme for High Quality at Low Bitrates”, ICASSP 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ, USA., Apr. 19, 2009, 4 Pages.
Patwardhan, P et al., “Effect of Voice Quality on Frequency-Warped Modeling of Vowel Spectra”, Speech Communication. vol. 48, No. 8., Aug. 2006, pp. 1009-1023.
Ryan, D et al., “Reflected Simplex Codebooks for Limited Feedback MIMO Beamforming”, IEEE. XP31506379A., Jun. 14-18, 2009, 6 Pages.
Sjoberg, J et al., “RTP Payload Format for the Extended Adaptive Multi-Rate Wideband (AMR-WB+) Audio Codec”, Memo. The Internet Society. Network Working Group. Category: Standards Track., Jan. 2006, pp. 1-38.
Terriberry, T et al., “A Multiply-Free Enumeration of Combinations with Replacement and Sign”, IEEE Signal Processing Letters. vol. 15, 2008, 11 Pages.
Terriberry, T et al., “Pulse Vector Coding”, Retrieved from the internet on Oct. 12, 2012. XP55025946. URL:http://people.xiph.org/˜tterribe/notes/cwrs.html, Dec. 1, 2007, 4 Pages.
Virette, D et al., “Enhanced Pulse Indexing CE for ACELP in USAC”, Organisation Internationale De Normalisation ISO/IEC JTC1/SC29/WG11. MPEG2012/M19305. Coding of Moving Pictures and Audio. Daegu, Korea., Jan. 2011, 13 Pages.
Wang, F et al., “Frequency Domain Adaptive Postfiltering for Enhancement of Noisy Speech”, Speech Communication 12. Elsevier Science Publishers. Amsterdam, North-Holland. vol. 12, No. 1., Mar. 1993, 41-56.
Waterschoot, T et al., “Comparison of Linear Prediction Models for Audio Signals”, EURASIP Journal on Audio, Speech, and Music Processing. vol. 24., Dec. 2008, 27 pages.
Zernicki, T et al., “Report on CE on Improved Tonal Component Coding in eSBR”, International Organisation for Standardisation Organisation Internationale De Normalisation ISO/IEC JTC1/SC29/WG11. Coding of Moving Pictures and Audio. Daegu, South Korea, Jan. 2011, 20 Pages.
A Silence Compression Scheme for G.729 Optimized for Terminals Conforming to Recommendation V.70, ITU-T Recommendation G.729—Annex B, International Telecommunication Union, Nov. 1996, pp. 1-16.
Martin, R., Spectral Subtraction Based on Minimum Statistics, Proceedings of European Signal Processing Conference (EUSIPCO), Edinburg, Scotland, Great Britain, Sep. 1994, pp. 1182-1185.
3GPP, TS 26.290 version 9.0.0 (Jan. 2010), Digital cellular telecommunications system (Phase 2+), Universal Mobile Telecommunications System (UMTS); LTE; Audio codec processing functions; Extended Adaptive Multi-Rate-Wideband (AMR-WB+) codec; Transcoding functions (3GPP TS 26.290 version 9.0.0 release 9), Chapter 5.3, Jan. 2010, pp. 24-39.
Britanak, et al., “A new fast algorithm for the unified forward and inverse MDCT/MDST computation”, Signal Processing, vol. 82, Mar. 2002, pp. 433-459.
Herley, C. et al., “Tilings of the Time-Frequency Plane: Construction of Arbitrary Orthogonal Bases and Fast Tilings Algorithms”, IEEE Transactions on Signal Processing , vol. 41, No. 12, Dec. 1993, pp. 3341-3359.
Lefebvre, R. et al., “High quality coding of wideband audio signals using transform coded excitation (TCX)”, 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 19-22, 1994, pp. I/193 to I/196 (4 pages).
Fuchs, et al., “MDCT-Based Coder for Highly Adaptive Speech and Audio Coding”, 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland, Aug. 24-28, 2009, pp. 1264 - 1268.
Song, et al., “Research on Open Source Encoding Technology for MPEG Unified Speech and Audio Coding”, Journal of the Institute of Electronics Engineers of Korea vol. 50 No. 1, Jan. 2013, pp. 86 - 96.
Related Publications (1)
Number Date Country
20130339036 A1 Dec 2013 US
Provisional Applications (1)
Number Date Country
61442632 Feb 2011 US
Continuations (1)
Number Date Country
Parent PCT/EP2012/052294 Feb 2012 US
Child 13966635 US