The present invention generally relates to the field of sub-pixel rendering techniques used with matrix digital displays. More specifically, the present invention generally relates to a method for improving an amount of resources required when rendering ClearType® text on a background displayed on a matrix digital display.
To date, the state-of-the-art methods for improving the definition of text graphics, including Microsoft ClearType® technology, increase the potential display resolution of text on a color matrix digital display device by using conventional sub-pixel rendering techniques. The improvement of the on-screen reading experience resulting from the sub-pixel rendering methods has enabled the emergence of new product categories, such as electronic books (e-books). The improved rendering techniques have also benefited the display of existing spreadsheets, word processing documents, and Internet content, which display text using fonts which have been rendered for color matrix displays.
There are several types of sub-pixel rendering techniques in use today. One type is known as “anti-aliasing.” Anti-aliasing was developed to make blocky letters easier for the human eye to resolve. Another text-rendering technique uses Microsoft's ClearType® technology. The ClearType® technology uses a filtering technique to enhance the resolution and readability of text rendered on displays that contain a repeating pattern of addressable colored sub-pixels. These two techniques are described in further detail below.
A single pixel of a typical digital color matrix display device, such as a liquid crystal device (LCD) display or a plasma display panel (PDP) display is composed of three in-line “sub-pixels”: one red, one green, and one blue (RGB). The sub-pixel triad forms a single pixel. The linear array of color sub-pixels translates to a horizontal resolution of three times the maximum horizontal resolution that could be achieved for the display. Therefore, addressing the actual sub-pixels individually and ignoring their different colors can provide as much as three times the horizontal resolution from the existing digital matrix display panels than if single pixel addressing were used. Sub-pixel rendering works because human eyes perceive changes in luminance with greater resolution than changes in color.
When a white line is presented on a color matrix display, what is really being displayed is a line of sub-pixel triads of red, green, and blue. The human eye does not perceive these closely spaced colors individually because the vision system does not see color changes at high resolution. Accordingly, the human eye mixes the three primary colors in combination to form intermediates. However, the eye can register the three primary colors when single sub-pixels of the primary color signals are exclusively illuminated in a multi-pixel area. All other combinations of the primary color signals are perceived as intermediate (secondary and tertiary) color signals. The combination of all three color signals in the proper intensity is perceived as white, and the absence of all color signals is perceived as black.
A conventional method for controlling the sub-pixels is through rendering. Rendering can map pixels of a font/letter onto sub-pixels in a particular sequence in order to achieve optimum resolution for the font. For example,
The technique known as “anti-aliasing” was developed to make blocky letters easier to resolve. Using this technique,
The Microsoft ClearType® technology improves on the anti-aliasing technique described above. Actual pixels of an LCD are tall rectangles of red, green and blue, and hardware associated with LCD can generally address the individual components of a pixel separately. Therefore, if software treats RGB as a single unit, an image of all red pixels will be offset one-third pixel to the left of an image of all green pixels, and an image of all blue pixels will be offset one-third pixel to the right. In order to draw a font using the ClearType® technology, the font is first drawn three times as wide as normal, while using anti-aliasing to smooth sloped edges. Then, a low-pass filter is applied to the font to avoid color fringing. The process for controlling color fringing takes into account the background color the font is going to be drawn on. The ClearType® Microsoft technology uses a three-tap finite impulse response (FIR) filter. Using this filter, the RGB components of the font are sampled alternately to produce a final image at nearly triple the apparent horizontal resolution of an ordinarily anti-aliased font. Further information regarding Microsoft's ClearType® can be found in Betrisey, C., Blinn, J. F., Dresevic, B., Hill, B., Hitchcock, G., Keely, B., Mitchell, D. P., Platt, J. C., Whitted, T., “Displaced Filtering for Patterned Displays,” Proc. Society for Information Display Symposium, pp. 296-299 (2000). The entire contents of the article are hereby incorporated herein by reference.
Both the anti-aliasing and ClearType technologies are generally used in conjunction with TrueType fonts. TrueType fonts were developed by Apple, and the technology includes the use of a rasterizer along with the actual TrueType font itself. The rasterizer is a piece of software that is embedded in an operating system. The rasterizer gathers information on the size, color, orientation, and location of all the TrueType fonts displayed in the operating system, and converts that information into a bitmap that can be understood by a graphics card and a display device. Thus, the rasterizer is essentially an interpreter that understands mathematical data supplied by a given font, and translates the data into a form that is capable of being rendered by a display device.
The actual fonts themselves contain data that describes the outline of each character in the typeface. The fonts may also include data that corresponds to hinting codes. Hinting is a process that makes a font that has been scaled down to a small size look its best. Instead of simply relying on a vector outline, the hinting codes ensure that the characters line up well with the pixels of the display device so that the font looks as smooth and legible as possible. The process of improving the resolution of any given font, including a TrueType font, may also include the use of anti-aliasing or the use of ClearType® technology.
Recently, many applications that are used in conjunction with graphical user interfaces use a technology referred to as alpha blending to create the effect of transparency. This is useful when creating graphical effects that include combining a semi-translucent foreground with a background color to create an in-between blend. For example, in a graphical user interface (GUI), it may be desirable to superimpose a semi-translucent window over a window having a solid background. In this case, the information in both the semi-translucent window and the background window would be apparent to a user of the GUI.
In the foregoing, the use of the colors red, green, and blue have been discussed in conjunction with displaying fonts on the display device. However, in the case of bitmaps, alpha values may be used in order to combine at least two distinct bitmaps in order to create a blended composite image. Therefore, in addition to the RGB components that represent an object's hue (its color), an additional A, or alpha, component is used to represent the bitmap's opacity (its capacity to obstruct the transmission of light). The technique of using an A component in conjunction with RGB is often referred to ARGB. When A equals 1, the object obstructs all light from shining through it; when A equals 0.25, that is an opacity of 25 percent, then 75 percent of light striking the object passes through it. Therefore, when A equals 0, total transparency is achieved.
Blending in ARGB mode allows source and destination pixel values to be combined in various ways. The blend of the source and destination pixels is a linear combination of their ARGB components. That is, source blending the factors (βA,βR,βG,βB) and destination blending factors (γA,γR,γG,γB) are defined as multipliers of the source and destination colors (AS, RS, GS, BS) and (AD, RD, GD, BD), and these weighted colors are added to get the blended ARGB value.
Therefore, when blending two separate bitmaps to create one composite bitmap for display in a GUI, first the foreground bitmap is rendered and stored in memory, and then the background bitmap is rendered and stored in memory. These two bitmaps are then blended together, pixel by pixel, to create a composite image that is displayed on the GUI.
Unfortunately, it is difficult to render TrueType fonts on ARGB bitmaps. In particular, when ARGB bitmaps include a combination of a translucent or semi-translucent foreground with a background having a given color, where it is desirable to use the TrueType font on the foreground. The computation required to display a TrueType font on a foreground necessitates taking into consideration the color of the background. This is because rendering TrueType fonts, without significant color fringing, requires certain information about the properties of the background the fonts are rendered on. However, until a foreground ARGB is combined with a background ARGB, the actual background is simply unknown. And even if the background were known, then the computation required to render the TrueType font would require a potentially large amount of computational time. It would be better if this computational burden could be used by an operating system, implementing a GUI, for other purposes.
The exemplary embodiments of the present invention substantially eliminate the requirement of taking into consideration a background ARGB when a foreground ARGB is combined with the background ARGB to create a composite image that may be displayed on a display device. This is very useful when the foreground ARGB includes TrueType fonts that have been visually improved using Microsoft's ClearType® technology, or any other font improving technology that takes into consideration a background color when visual improvement is processed. In particular, the exemplary embodiments of the present invention are useful in reducing color fringing, even if the background ARGB is not taken into consideration before a foreground ARGB including TrueType fonts is combined therewith to create a composite image for display on a display device.
According to one exemplary embodiment of the present invention, a method includes determining a color of text; rendering the text on a background that contrasts with the text; and determining an alpha value based on a pixel scan of the background having the text rendered thereon, wherein the determined alpha value is usable with substantially all text rendered on background graphics for display on a display device.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The description of the exemplary embodiments of the present invention discloses apparatus and methods for displaying graphic information using a graphical user interface (GUI) implemented with a computer type system. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments of the present invention. However, it will be apparent to those of ordinary skill in the art that the present invention may be practiced without the disclosed specific details. In other instances, well known circuits and instructions are not described in detail in order not to obscure the present invention unnecessarily.
Also illustrated in
A display 58 is shown coupled to the 110 circuit 52 and is used to display images generated by the CPU 53 in accordance with the exemplary embodiments of the present invention. Any known variety of displays may be used in conjunction with the computer 50; however, it may be desirable to use an LCD with the exemplary embodiments of the present invention. A cursor-control device, or mouse 57, is also shown coupled to the computer 50 through the I/O circuit 52 contained within the enclosure 51. The mouse 57 permits a user to select various command modes, modify graphic data, and input other user data utilizing switches and/or buttons commonly implemented with mouse-type input devices.
Using conventional techniques, if the text 72 is TrueType text, or another text other than a plain bitmap, then color fringing around the outline of the text 72 would occur because the color 61 was unknown before the two graphics 60 and 70 were blended together to create the composite graphic 90. As an alternative, to avoid unwanted color fringing, then the text 72 would need to be rerendered by taking into consideration the color 61 of the background graphic 60. In other words, the text 72 would be rendered first on the foreground graphic 70 and rendered again when the foreground graphic 70 is blended with the background graphic 60. This technique is not generally supported by conventional display rendering hardware and software. Moreover, the necessity of re-rendering text based on a background graphic would require a potentially large processing burden on the system.
In accordance with the exemplary embodiments of the present invention, a color of a background graphic must not be known when a foreground graphic is blended with a background graphic to create a composite image. Therefore, potentially unnecessary processing requirements on a computer system when rendering a graphic on a display are substantially eliminated.
Referring to
Unlike the conventional methods for rendering composite ARGB bitmaps, an exemplary embodiment to the present invention does not require information pertaining to the background graphic 60 in order to lessen color fringing that may occur when the background graphic 60 and the foreground graphic 70 are blended together to create the composite graphic 90. In particular, in block B1004, the foreground graphic 70, stored in the frame buffer 40, includes TrueType text 72 that is allocated using a predetermined alpha value (A value), empirically found to minimize color fringing when the foreground graphic 70 is combined with the background graphic 60 to create the composite graphic 90. Once both the foreground graphic 70 and the background graphic 60 are allocated in the frame buffer 40, then these graphics 60 and 70 are combined to create the composite graphic 90 (B1006).
In the case of the exemplary embodiments of the present invention, the combining block B1006 does not require considering the actual color of the background graphic 70 in order to substantially eliminate any color fringing that may occur because TrueType text is used in conjunction with the foreground graphic 70. Finally, the composite graphic 90 is rendered on the display 58 (B1008). Block B1010 represents determination of a process for rendering a graphic on the display 58 in accordance with an exemplary embodiment of the present invention.
In the following description general concepts and formulas are provided. These general concepts and principles may be used to determine A values for TrueType text allocated to foreground graphics that may be used in conjunction with background to create composite graphics for display on display devices.
Based on empirical experimentation, the following formula may be used for determining an alpha value that may be used with any background color and any text color. The formula is as follows:
Alpha=0.299*red+0.57*green+0.114*blue
where
The BackgroundColor variable corresponds to the color of the bitmap graphic cleared in block B1105. The TextColor variable corresponds to the desired color of a text being rendered on the cleared background graphic, before it undergoes processing using the ClearType® technology, or anti-aliasing. Finally, the PixelColor variable corresponds to the text after it is rendered on the cleared background graphic, see block B1106 of
NOTE: if the RedText equals RedBackground then the red color will not be adjusted (to avoid divide by zero errors). This is true for the blue and green components, also.
It may also be necessary to determine a color to combine with the Alpha. It is possible to use the color calculated by the ClearType® algorithm, but this may not produce a satisfactory result, because the Alpha value tends to mute the color, resulting in etched-looking text. Therefore, blending the PixelColor and TrueType color, after the ClearType® has been applied, may produce more readable text. Those of ordinary skill in the art recognize various blending techniques may be used when blending the text color with the TrueType color.
The formula provided is just one example of an equation that may be used to determine an alpha value. The provided equation is a simple linear approximation of the amount that the background color was adjusted towards the text color. There are many such linear and non-linear equations that could be used. For example, the provided formula compensates for the sensitivity of the eye to certain colors, but one could also use a simple average of the red, green and blue colors. The eye also has different sensitivities to different color intensities, so a formula could be used that takes into account different ratios for different magnitudes of the red, green, and blue components of a pixel.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4827253 | Maltz | May 1989 | A |
5351067 | Lumelsky et al. | Sep 1994 | A |
5940080 | Ruehle et al. | Aug 1999 | A |
6023302 | MacInnis et al. | Feb 2000 | A |
6486888 | Fushiki et al. | Nov 2002 | B1 |
6545724 | Gryskiewicz | Apr 2003 | B1 |
6738072 | MacInnis et al. | May 2004 | B1 |
6760028 | Salesin et al. | Jul 2004 | B1 |
20010048764 | Betrisey et al. | Dec 2001 | A1 |
20030184553 | Dawson | Oct 2003 | A1 |
20040151398 | Betrisey et al. | Aug 2004 | A1 |
20040233215 | Dawson | Nov 2004 | A1 |
20050110804 | Hancock et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050253865 A1 | Nov 2005 | US |