This patent document contains material that is subject to copyright protection. Facsimile reproduction is allowed of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records as allowed by U.S. patent law, but otherwise all copyright rights are reserved.
1. Field of the Invention
This present invention relates to motor vehicles.
2. Description of the Prior Art
U.S. Pat. No. 7,338,061 Bullis 2008 provided a wheel system that makes a narrow car stable, thus enabling major improvements in aerodynamic efficiency. Using this wheel system with a tandem seating arrangement, a car concept resulted that was about half as wide as a conventional car. Therefore, frontal area would be much reduced, thus reducing one factor that determines air drag force. Very efficient shapes were then disclosed in patent application Ser. No. ______ 2007, Bullis which resulted in a large reduction in the drag coefficient, which is a second factor that determines air drag force. The resulting car would eliminate much of the fuel efficiency problem that comes from driving cars at highway speeds. The narrow car with tandem seating was discussed with inclusion of protective structure built into the sides of the vehicle. Entry from the top of the vehicle was shown. However, it seemed that side entry would be needed to make the car popular. This new car concept was so big a change from traditional automotive practice, it seemed like a good opportunity to avoid the traditional, but unsafe, side door systems.
At the same time, it was seen to be very important to take advantage of car safety developments where front and rear crumple zones, where structure prevented crash effects from reaching occupants, yet allowed for significant energy absorption. Amazingly, unless cars are quite wide, the pre-disposition of the auto industry to side-by-side seating leaves little side space for such protective crumple zones. Side doors cause further vulnerability to side impacts. It is not clear that air-bags are of much use in making up for these defects in design.
The Isetta is a known automobile where the front opens to allow two persons to step up and sit on a fixed seat. In this car the driver and passenger sit side-by-side just behind the combination front door and windshield.
The preferred embodiment is a wheeled vehicle for tandem seating of motorists that has an elevated aerodynamic shell that is held above the wheels at a height that allows significant air flow under the vehicle. Protective side structure is uninterrupted for purposes of allowing entry through side openings. A rear access ramp system provides walk in entry to the vehicle shell from the rear. This ramp lowers from the bottom of the rear part of this shell. Seats are movable such that a walkway is made clear for motorists to walk to a position ahead of their respective seats, from which position they would then be able to move their seats to the necessary position for riding in the car. A roof top can be opened to enable motorists to walk, nearly erect, into the vehicle.
There are various end access arrangements that are based on this concept.
FIG. 1—Rear entry vehicle with hatches open.
FIG. 2—Side view showing hatch actions.
FIG. 3—Vehicle arranged for high speed travel.
FIG. 4—Seating arranged to allow access from rear.
FIG. 5—Front access variation.
FIG. 6—Vehicle with aerodynamic shell removed to show seats moved for access.
FIG. 7—Placeholders showing motorist positions on seats arranged for riding.
FIG. 8—Aerodynamic shell with opening parts.
FIG. 9—Rear side access.
FIG. 10—Top hinging variation.
FIG. 11—Integrated wheel variation.
The embodiment design is part of a project to adapt airship research to the automotive field. Airship research carried out prior to WWII provides a high performance aerodynamic body shape that is here used as a carriage to enclose persons riding in the automobile. Wind tunnel tests were carried out in those years producing air drag force measurement data that can be used to design this high efficiency automobile. This data is especially complete for the USS Akron shape, even including drag force data for the model at a variety of pitch angles. For vehicle speeds of interest the drag force can be quite accurately determined, especially for data from one of the models (1933 Freeman) that is approximately the same as the intended automobile.
This airship is a highly refined version of the general shape known as a body of revolution having its axis aligned with the car's travel direction. To make such a form large enough to give adequate head room for a large person, a width is needed that is somewhat more than half the width of an ordinary car. Rather than work to make this car thinner, it was decided to take advantage of the side space to make a product that would be as safe as possible. Building in a strong protective side structure was thus seen as an important design objective. However, this protection would be significantly degraded by cutting it to make side door openings.
There are obvious limits to car length, but there is more flexibility here than there is in car width if aerodynamic drag is a primary concern. Thus, the fore and aft crumple zones can be made significantly large, and there is still some opportunity to provide for access through such zones, while retaining substantial crumple zone protection.
Returning to the preferred embodiment,