Embodiments within the scope of this disclosure relate, generally, to apparatuses, systems, and methods for fitting tubulars or pipes as spreader bars onto a shackle or lifting sling. This is accomplished through the use of an “end cap” fitting, which keeps the tubular in a compressive state and allows the tubular to be quickly and easily attached and disconnected from the lifting system without material alteration.
The use of spreader bar systems for lifting tubulars is well-known in the art. Examples of such spreader bar systems include, e.g., U.S. Pat. No. 4,397,493 to Khachaturian, et al., and U.S. Pat. No. 5,603,544 to Bishop, et al. The advantage of these systems is that they allow the force of a single-point lifting system, such as a shackle or hook, to be divided into multiple lifting points, thus avoiding the material stress and safety concerns associated with lifting a heavy load by a single point.
In order to adapt the shackle and spreader bar systems for various dimensions and weights, it is common to utilize an “end cap” system (also known as a compression cap system) for attaching spreader bars to the shackle. In this system, the spreader bar is fitted between two “end caps,” which contain multiple orifices for connecting to both the lifting mechanism above and the load below. This allows for quick swapping of various sizes and weights of spreader bar as necessitated by the lift.
However, there are still several drawbacks to the state of the art in spreader bar lifting. Assembly of the end cap requires precise alignment of the end cap with the spreader bar, and often requires a tubular spreader bar to be physically altered (e.g., through spot welds or attachment holes) which can weaken the spreader bar's tolerance for metallurgical stresses.
Additionally, the process of determining the correct end cap fitting for use with a given load and span of weight to be lifted can often be time-consuming and prone to error when calculated by workers in the field. This can lead to an increased stress on the equipment and the risk of lift failure.
A need therefore exists for an end cap system in which both the method of selecting a properly rated and sized end cap and the physical method of fixing the end cap to a selected spreader bar are simplified to allow field personnel to more quickly and reliably rig-up lifting systems. Embodiments disclosed in the present invention meet these needs.
In the detailed description of various, example embodiments within the scope of the present disclosure, reference is made to the accompanying drawings, in which:
One or more embodiments are described below with reference to the above-listed Figures.
Before describing selected, example embodiments of the present disclosure in detail, it is to be understood that the present invention is not limited to the particular embodiments described herein. The disclosure and description herein is illustrative and explanatory of one or more example embodiments and variations thereof, and it will be appreciated by those skilled in the art that various changes in the design, organization, order of operation, means of operation, equipment structures and location, methodology, and use of mechanical equivalents may be made without departing from the spirit of the invention.
As well, it should be understood the drawings are intended to illustrate and disclose presently example embodiments to one of skill in the art, but are not intended to be manufacturing level drawings or renditions of final products, and may include simplified conceptual views as desired for easier and quicker understanding or explanation. As well, the relative size and arrangement of the components may differ from that shown and still operate within the spirit of the invention.
Moreover, it will be understood that various directions such as “upper,” “lower,” “bottom,” “top,” “left,” “right,” and so forth are made only with respect to explanation in conjunction with the drawings, and that the components may be oriented differently, for instance, during transportation and manufacturing as well as operation. Because many varying and different embodiments may be made within the scope of the concept(s) herein taught, and because many modifications may be made in the embodiments described herein, it is to be understood that the details herein are to be interpreted as illustrative and non-limiting.
Referring now to
Referring now to
Load plate 30 faces a first end of spreader bar 2, which is compressed against load plate 30 and extends through a pipe retainer, also known as receptacle, 40, which extends from load plate 30 in the opposite longitudinal direction from load lug, also known as lifting lug, 20. In this embodiment, pipe retainer 40 is a hollow cylinder through which spreader bar 2 can be fitted. Pipe retainer 40 also comprises two apertures 42, 44 (not visible) through which two retaining bolts, also known as pinch bolts, 43, 45 (45 not visible) extend to compress against spreader bar 2. Retaining bolts 43, 45, allow the use of intact pipe for spreader bar 2, rather than pipe which has had holes torched through it, thereby compromising the material stress properties thereof.
Extending downward from pipe retainer 40 and normally to load plate 30 is leg plate 46, which terminates at foot plate 50. Leg plate 46 and foot plate 50 allow the end cap 10 to be easily mounted to spreader bar 2 in parallel with another end cap 11 (see
Additionally, end cap 10 comprises two alignment references. Alignment aperture 35 is located through load plate 30 and serves to align two end caps (e.g., end caps 10 and 11 as depicted in
In the present embodiment, angle reference 37 is depicted as a second aperture, however, it may be appreciated that other embodiments may include a simple surface reference (e.g., a reflector), or alternatively, a protruding physical stop. Any feature which serves to visually or physically mark the minimum effective angle (depicted as □ in
Referring now to
While all of the embodiments thus shown are directed to two-point lifts, it can be appreciated that the principles of the invention can also apply to more elaborate lifting systems.
Continuing with
Turning now to
In this embodiment, upper and lower shackles 106 and 108 are connected to mounting plate 120 via two different means. Upper shackle 106 is connected to swivel ring 126, which is connected to mounting plate 120 via a ring bushing 128 seated in an aperture 127. Lower shackle 108 is connected to lifting lug 121, a structure that partially duplicates the structure depicted in the embodiment of
Additionally, as with the embodiment depicted in
Turning now to
Turning now to
The material parameters used in the calculation are as follows: Minimum yield (Fy, 35 ksi), density (ρ, 0.284 Ibf/in3), modulus of elasticity (E, 29,000 ksi), outside diameter (OD, 6.625 in), wall thickness (tw, schedule 40). Additionally, the spreaders in this calculation are presumed to be 9.75 inches in length, making the unbraced insert length (Lsprd) 220.5 in (span minus two spreaders).
From the above material parameters, several secondary parameters can be deduced, such as inside diameter (ID), area of section (Asect), MOI (Ip), section modulus (Sp), radius of gyration (r), and linear weight (□p), using the formulas at the top of
Box 1, two compression load factors are calculated: a slenderness ratio, and a column slenderness ratio separating elastic and inelastic buckling, using the formulas given in Box 1. Depending on which of the two results is greater, the allowable column stress can be calculated using the formulas in Box 2A and Box 2B, while the actual column stress can be calculated using the formula in Box 3.
Meanwhile, the allowable and actual bending load stresses can be calculated using the formulas in Box 4. Then, the allowable and actual combined (Euler) stresses can be calculated utilizing the formulas in Box 5.
Finally, a two-part unity check is performed utilizing the values derived in Box 3, Box 4, and Box 5, and plugging them into the equations of Box 6.
While the exemplar calculations are given for a load of 30 tons having a span of 20 ft, it should be appreciated that these calculations may be performed in advance for any number of specific weights and spans. In addition, other parameters such as diameter, thickness, and weight of the end caps may also vary while still remaining within the scope of the present disclosure. In a method embodiment, the maximum tolerance for a given weights and span is pre-calculated and placed in a chart having weights and spans corresponding to different scales of end cap (e.g., diameter, thickness), for field workers to quickly and reliably select an embodiment of the present invention having dimensions which tolerate the lift stresses of a given task.
While various embodiments usable within the scope of the present disclosure have been described with emphasis, it should be understood that within the scope of the appended claims, the present invention may be practiced other than as specifically described herein.
This disclosure is a continuation and claims the benefit of U.S. patent application Ser. No. 15/053,856 filed on Feb. 26, 2016, which issued on Oct. 18, 2016 as U.S. Pat. No. 9,469,509, the entirety of which is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3911960 | Flimon | Oct 1975 | A |
4215891 | Thiele | Aug 1980 | A |
4397493 | Khachaturian et al. | Aug 1983 | A |
4842315 | Bellow | Jun 1989 | A |
5603544 | Bishop et al. | Feb 1997 | A |
5863085 | Khachaturian | Jan 1999 | A |
6079760 | Khachaturian | Jun 2000 | A |
7222903 | Tardiff | May 2007 | B2 |
7533699 | Cellemme et al. | May 2009 | B1 |
7967352 | Di Martino | Jun 2011 | B2 |
3011391 | Heritier et al. | Sep 2011 | A1 |
8118091 | Baker et al. | Feb 2012 | B2 |
8468877 | Molloy | Jun 2013 | B2 |
9132993 | DiMartino | Sep 2015 | B1 |
20090072561 | Latham | Mar 2009 | A1 |
20120160359 | Baker et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
WO2007102002 | Sep 2007 | WO |
Entry |
---|
Tandemloc, Inc., Spreader Bar End Cap Assembly “End Caps” (AC25C) Type. |
Tandemloc, Inc., Standard Spreader Pipe for Use With AC25C End Eye Caps (AC22P). |
Number | Date | Country | |
---|---|---|---|
20170247228 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15053856 | Feb 2016 | US |
Child | 15249001 | US |