End-capped poly(ester amide) copolymers

Information

  • Patent Grant
  • 9067000
  • Patent Number
    9,067,000
  • Date Filed
    Monday, November 18, 2013
    11 years ago
  • Date Issued
    Tuesday, June 30, 2015
    9 years ago
Abstract
This invention relates to poly(ester amide)s (PEAs) comprising inactivated terminal amino and carboxyl groups, methods of synthesizing the inactivated PEAs and uses for them in the treatment of vascular diseases.
Description
FIELD

This invention generally relates to end-capped poly(ester amide) copolymers useful in the manufacture or coating of an implantable medical device.


BACKGROUND

Poly(ester amide)s (PEA)s are useful as polymeric carriers of bioactive substances when coated on implantable medical devices such as stents to reduce restenosis and other problems associated with the treatment of atherosclerosis (see, e.g., U.S. Pat. No. 6,503,538, B1).


PEAs can be made by condensation polymerization of a diamino compound with a diester dicarboxylic acid (Scheme I). In Scheme I, the dicarboxylic acids are converted to an active di-p-nitrophenyl derivative to facilitate the polymerization.


When the dicarboxylic acid and the diamino subunits are used stoichiometrically, the PEA formed has one terminal carboxylic acid group and one terminal amino group. When the dicarboxylic acid and the diamino subunits are not used in a 1:1 ratio, the PEA formed can have excess terminal carboxylic acid groups if more of the dicarboxylic acid subunit is used or excess terminal amino groups if more of the diamino subunit is used.




embedded image


Reactive end groups in PEAs can be problematic. First, since active amino and active carboxyl end groups are present, polymerization can continue. Second, if the PEA formed is combined with a drug that possesses an functional group capable of reacting with a carboxyl (activated or unactivated) or amino group, it is possible that the drug will react and covalently attach to the PEA, essentially rendering the drug unavailable for therapeutic use.


What is needed are PEAs in which the end groups are rendered inactive so as to avoid the above problem and any other than might arise because of the presence of the active terminal functional groups. The present invention provide such PEAs and methods for preparing them.


SUMMARY

Thus, an aspect of the present invention is a poly(ester amide) (PEA) comprising inactivated terminal amino groups and inactivated terminal carboxyl groups wherein the inactivated terminal amino groups are end-capped and the inactivated terminal carboxyl groups are either the free acid, a salt thereof or are end-capped.


In an aspect of this invention, at least 50% of the terminal amino groups have been inactivated and at least 50% of the terminal carboxyl groups have been inactivated.


In an aspect of this invention, at least 90% of the terminal amino groups have been inactivated and at least 90% of the terminal carboxyl groups have been inactivated.


In an aspect of this invention, at least 99% of the terminal amino groups have been inactivated and at least 99% of the terminal carboxyl groups have been inactivated.


In an aspect of this invention, the terminal amino groups or the terminal carboxyl groups are inactivated by reaction with a bioactive agent.


An aspect of this invention is a method of inactivating a poly(ester amide) (PEA), comprising end-capping terminal amino groups by reaction with a first chemical agent and end-capping terminal carboxyl groups with a second chemical agent.


In an aspect of this invention, the first chemical agent or the second chemical agent in the above method is a bioactive agent.


In aspect of this invention is a coating for an implantable medical device comprising the PEA of claim 1.


In an aspect of this invention, the coating further comprising a biocompatible polymer or a biobeneficial or a bioactive agent or any combination thereof.


In an aspect of this invention, in the above coating the implantable medical device is a stent.


In an aspect of this invention, in the above coating, the implantable medical device is a stent.


An aspect of this invention is an implantable medical device formed of a material comprising a PEA of claim 1.


In an aspect of this invention, with regard to the above implantable medical device, the material further comprises a bioactive agent.


In an aspect of this invention with regard to the above coating and the above implantable medical device, the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutase mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl(4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propylrapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethylrapamycin, and 40-O-tetrazole-rapamycin, ABT-578, clobetasol, progenitor cell capturing antibody, prohealing drugs, prodrugs thereof, co-drugs thereof, and a combination thereof.


An aspect of this invention is a method of treating or preventing a disorder in a patient in need thereof comprising implanting in the patient an implantable device comprising the coating of claim 12, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.







DETAILED DESCRIPTION

As used herein, “poly(ester amide)” or “PEA” refers to a polymer formed by the condensation reaction of a diacid having the general structure




embedded image



with a diaminodiester having the general structure




embedded image



and optionally with a diamine having the general structure NH2—Y—NH2 to afford a compound having the general structure




embedded image



wherein m is an integer, n is 0 or an integer; X, Y, Z1 and Z2 are independently branched or straight chain alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heteroalicyclic or any combinations thereof and any of which may be optionally substituted. A nonlimiting example of such a PEA is shown in Scheme 1 above. Other exemplary PEAs are described in, e.g., U.S. Pat. No. 6,503,538 B1.


In the synthesis of PEAs it is often desirable to activate the carboxyl groups of the dicarboxy monomer to facilitate the condensation with the diamines. This is most often accomplished by a reaction that substitutes for the hydrogen of the free carboxylic acid (—C(O)OH) or the alkyl group of an inactive ester such as a methyl or ethyl ester (—C(O)OCH3), —C(O)OCH2CH3) an entity that has the property of being a good leaving group. Thus, the carboxyl groups can be activated by any number of methods well-known to those skilled in the art. All such methods as well as any that might be devised in the future are within the scope of this invention. Among these activating functionalities are, without limitation, mononitrophenyl compounds such as p-nitrophenyl, m-nitrophenyl or o-nitrophenyl, dinitrophenyl compounds, trinitrophenyl compounds, and phenyl groups bearing one, two, or three cyano, halogen, keto, ester, or sulfone groups.


The amino groups of the diamine monomer used in the synthesis of the PEA generally need no further activation, they are sufficiently active in their own right.


As used herein, a “terminal amino group” and a “terminal carboxyl group” refer to the groups at the end of PEA chains as exemplified in Scheme I).


As used herein “end-capping” refers to the reaction of a terminal amino group and/or a terminal carboxyl group with one or more moiety(ies) that alters the chemical properties of the terminal group, rendering it less likely to spontaneously react with other functionalized compounds with which they may come in contact such as, in particular for the purposes of this invention, bioactive agents. The thus-altered amino or carboxyl group can be referred to as “inactivated.” For the purposes of this invention, “end-capping” a terminal carboxyl group includes simply hydrolyzing or otherwise substituting an activating moiety on the carboxyl group with an hydrogen atom to form the free acid (—C(O)OH) or a salt thereof.


The end-capped PEA may optionally contain in its polymeric matrix one or more biocompatible polymers (that may be biodegradable, bioabsorbable, non-biodegradable, or non-bioabsorbable) other than a PEA, a biobeneficial material, a bioactive agent or any combination of these. As such, the composition can be used to coat an implantable device or to form the implantable device itself, such as, without limitation, a stent.


End-Capping Amino Groups

The amino active groups on the PEA can be end-capped first. The end-capping process is a separate reaction done after the polymerization. The PEA may, or may not be purified before the amino endcapping reaction.


In one embodiment, the active amino group can be end-capped by alkylation of the amino group, forming a quaternary ammonium group:

PEA-NH2+RX→PEA-NR3+X

wherein X═Br, Cl, I and R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms


Scheme II

In another embodiment, the active amino group can be end-capped by reaction with an acid chloride to form an amide:




embedded image



wherein X═Br, Cl, I and R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms


The active amino group can be subjected to reductive amination with an aldehyde in the presence of a reducing agent, e.g., NaCNBH3 and NaBH4:




embedded image



wherein R=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms


In still a further embodiment, the active amino group can be rendered inactive by reaction with a diazo compound in the presence of a Lewis acid such as BF3, forming an alkylated amino group:

PEA-NH2+CR2N2+BF3→PEA-N(CR2)2

wherein R=hydrogen or any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms


Scheme V

In some other embodiments, diazotization of the amine can be used to inactivate an active primary amino group. One example of such diazotization is shown below:

PEA-CH2—CH2—NH2+NaNO2+aq.HCl→PEA-CH═CH2


Scheme VI

Active primary amino groups can be rendered inactive by oxidation, forming a —NO2 group:

PEA-CH2—CH2—NH2+oxidizing agent→PEA-NO2


Scheme VII

Alternatively, an active amino group on the PEA can react with an anhydride, an epoxide, isocyanate, or isothiocyanate respectively to inactivate the active amino group:




embedded image



In Scheme VIII, R is an alkyl moiety, which can be saturated or unsaturated, linear or branched alkyl or a cycloalkyl or an aryl moiety. Preferably, R is an alkyl or cycloalkyl with 2-12 carbons.


An active amino group on the PEA may also be inactivated by Michael addition to an α,β-unsaturated ester, ketone, aldehyde or another unsaturated electron-withdrawing group, e.g., —CN:




embedded image



wherein R=hydrogen, any primary or secondary alkyl radical having 2 to 12 carbon atoms, or OR′, wherein R′=any primary or secondary alkyl radical having, e.g., 2 to 12 carbon atoms


End-Capping Carboxyl Groups

The carboxyl groups or activated carboxyl groups on the PEA can be inactivated by reaction with a primary amine, a secondary amine, heterocyclic amine, a thiol, alcohol, malonate anion, carbanion, or other nucleophilic group. For example, PEA with a p-nitrophenyl carboxyl end group can be inactivated as follows:




embedded image



wherein R=any carbon alkyl, or unsaturated, linear or branched, with, e.g. 2 to 12 carbon atoms; R1, R2═H or any alkyl radical having, e.g., 2 to 12 carbon atoms or R1, R2 may also be alkyl ether, alkyl hydroxyl such as 2-hydroxyethyl


Alternatively, the p-nitrophenyl carboxyl group on the PEA can be hydrolyzed under acidic or basic conditions so as to form a free carboxylic acid group or carboxylate group (Scheme XI):




embedded image


Or the p-nitrophenol ester may also be reacted with reducing agents such as sodium borohydride or sodium cyanoborohydride to convert the ester to a hydroxyl group.


Other means of inactivating the carboxyl group will become apparent to those skilled in the art based on the disclosures herein. All such inactivating techniques are within the scope of this invention.


Biocompatible Polymer

The biocompatible polymer that can be used with the end-capped PEA in the coatings or medical devices described herein can be any biocompatible polymer known in the art, which can be biodegradable or nondegradable. Representative examples of polymers that can be used to coat an implantable device in accordance with the present invention include, but are not limited to, ethylene vinyl alcohol copolymer (EVOH, EVAL), poly(hydroxyvalerate), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), polycaprolactone, poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), poly(butylene terephthalate-co-PEG-terephthalate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as vinylidene fluoride (without limitation Solef™ or Kynar™), polyvinylidene fluoride (PVDF) or poly(vinylidene-co-hexafluoropropylene) (PVDF-co-HFP), polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.


The biocompatible polymer can provide controlled release of a bioactive agent if such is included in the coating and/or if binding the bioactive agent to a substrate, which can be the surface of an implantable device or a coating thereon. Controlled release and delivery of bioactive agent using a polymeric carrier has been extensively researched in the past several decades (see, for example, Mathiowitz, Ed., Encyclopedia of Controlled Drug Delivery, C.H.I.P.S., 1999). For example, PLA based drug delivery systems have provided controlled release of many therapeutic drugs with various degrees of success (see, for example, U.S. Pat. No. 5,581,387 to Labrie, et al.). The release rate of the bioactive agent can be controlled by, for example, selection of a particular type of biocompatible polymer, which can provide a desired release profile of the bioactive agent. The release profile of the bioactive agent can be further controlled by selecting the molecular weight of the biocompatible polymer and/or the ratio of the biocompatible polymer to the bioactive agent. Additional ways to control the release of the bioactive agent are specifically designing the polymer coating construct, conjugating the active agent onto the polymeric backbone, designing a micro-phase-separated PEA where the agent resides in the more mobile segment, and designing a PEA in which the bioactive has an appropriate level of solubility. One of ordinary skill in the art can readily select a carrier system using a biocompatible polymer to provide a controlled release of the bioactive agent. Examples of the controlled release carrier system can come from the examples provided above; however, other possibilities not provided are also achievable.


A presently preferred biocompatible polymer is a polyester, such as PLA, PLGA, PGA, PHA, poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly((3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), and a combination thereof, and polycaprolactone (PCL).


Bioactive Agents

The end-capped PEA described herein can form a coating on an implantable medical device or can form the device itself where one or more bioactive agents are contained in the polymeric matrix. The bioactive agent(s) can be any which has a therapeutic, prophylactic or diagnostic effect. These agents can have, without limitation, anti-proliferative, anti-inflammmatory, antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant or cystostatic properties. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), methyl rapamycin (ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, paclitaxel and, docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of antiplatelet, anticoagulant, antifibrin and antithrombin compounds include, again without limitation, sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl(4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non-steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, bioactive RGD, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. Other active agents which are currently available or that may be developed in the future are equally applicable.


The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the tissues being delivered to; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.


Biobeneficial Material

The biobeneficial material that can be used with the end-capped PEA to form a coating on or an implantable medical device per se as described herein can be a polymeric material or non-polymeric material. The biobeneficial material is preferably flexible, biocompatible and biodegradable. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.


Generally, a biobeneficial material has a relatively low glass transition temperature (Tg). In some embodiments, the Tg is below human body temperature. This attribute renders the biobeneficial material relatively soft as compared to the biocompatible polymer and allows a layer of coating containing the biobeneficial material to fill any surface damages that may arise when an implantable medical device is coated with a layer comprising the biocompatible polymer. For example, during radial expansion of the stent, a more rigid biocompatible polymer can crack or have surface fractures. A softer biobeneficial material can fill in the crack and fractures.


Another attribute of a biobeneficial material is hydrophilicity. The hydrophilicity of the biobeneficial agent contributes to the overall hydrophilicity of the coating containing the agent. Generally, the higher the hydrophilicity of a coating, the higher the drug release rate from that coating and the higher the degradation rate of the coating.


Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, poly (ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, and combinations thereof.


In a preferred embodiment, the biobeneficial material is a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEG/PBT, e.g., PolyActive™). PolyActive™ includes AB, ABA and BAB copolymers where A is PEG and B is PBT.


Examples of Implantable Medical Devices

As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.


Method of Use

In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable medical device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will be retained on the device during delivery and expansion and then will be released at a desired rate and for a predetermined duration at the site of implantation. Preferably at present, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, without limitation, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by atherosclerosis, abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.


EXAMPLES

The following examples are for illustrative purposes only and are not intended nor should they be construed as limiting the scope of this invention in any manner.


Example 1
Preparation of co-poly-{[N,N′-sebacoyl-bis-(L-leucine)-1,6-hexylene diester]-[N,N′-sebacoyl-L-lysine benzyl ester]}

Dry triethylamine (61.6 ml, 0.44 mole) is added to a mixture of di-p-toluenesulfonic acid salt of bis-(L-leucine)-1,6-hexylene diester (120.4 g, 0.18 mole), di-p-toluenesulfonic acid salt of L-lysine benzyl ester (11.61 g, 0.02 mole), and di-p-nitrophenyl sebacinate (88.88 g, 0.2 mole) in dry DMF (110 ml). The mixture is stirred and heated at 80° C. for 12 hours.


Example 2

The active amino end groups on the PEA prepared in Example 1 can be endcapped as follows: While stirring, the DMF/PEA solution of Example 1 is cooled to 0° C. Triethylamine (0.0057 mole) is added and acetyl chloride (0.448 g, 0.0057 mole) is added dropwise to the mixture. Stirring is continued for 12 hours while the solution is allowed to equilibrate to room temperature. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.


Example 3

The active amino endgroups on the PEA prepared in Example 1 can also be endcapped as follows: Ethyl acrylate (0.571 g, 0.0057 mole) is added to the DMF/PEA solution of Example 1. Phosphoric acid (0.011 g, 0.000114 mole) is added as an acid catalyst. With stirring, the solution is heated to 100° C. and stirred for 60 minutes. The solution is diluted with ethanol (300 ml), and poured into one liter of deionized water. The precipitated polymer is collected, extracted with two, one liter portions of phosphate buffer (0.1M, pH 7), a final, one liter portion of deionized water, isolated by suction filtration, and vacuum dried at 40° C.


Example 4

A medical article with two layers can be fabricated to comprise everolimus by preparing a first composition and a second composition, wherein the first composition is a layer containing a bioactive agent which includes a matrix of the PEA of Example 2 and a bioactive agent, and the second composition is a topcoat layer comprising the PEA of Example 2. The first composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 and about 0.33% (w/w) everolimus in absolute ethanol, sprayed onto a surface of a bare, 12 mm VISION™ stent (Guidant Corp.) and dried to form a coating. An exemplary coating technique involves spray coating with a 0.014 fan nozzle, a feed pressure of about 0.2 atm, and an atomization pressure of about 1.3 atm; applying about 20 μg of wet coating per pass; drying the coating at about 62° C. for about 10 seconds between passes and baking the coating at about 50° C. for about 1 hour after the final pass to form a dry agent layer. The layer containing a bioactive agent would be comprised of about 336 μg of the PEA of Example 2 and about 56 μg of everolimus. The second composition can be prepared by mixing about 2% (w/w) of the PEA of Example 2 in absolute ethanol. The solution is then applied over the dried agent layer using the same coating technique above. The topcoat would contain about 400 μg of the PEA of Example 2. The total weight of the stent coating would be about 792 μg.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A polymer of formula: PEA-Inactivated Terminal Amino GrouporInactivated Terminal Carboxyl Group-PEA;wherein PEA comprises formula I:
  • 2. A coating for an implantable medical device comprising the polymer of claim 1.
  • 3. The coating of claim 2, wherein the implantable medical device is a stent.
US Referenced Citations (314)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
3773737 Goodman et al. Nov 1973 A
3849514 Gray, Jr. et al. Nov 1974 A
4226243 Shalaby et al. Oct 1980 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4529792 Barrows Jul 1985 A
4611051 Hayes et al. Sep 1986 A
4656242 Swan et al. Apr 1987 A
4733665 Palmaz Mar 1988 A
4800882 Gianturco Jan 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4977901 Ofstead Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5100992 Cohn et al. Mar 1992 A
5112457 Marchant May 1992 A
5133742 Pinchuk Jul 1992 A
5163952 Froix Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5219980 Swidler Jun 1993 A
5258020 Froix Nov 1993 A
5272012 Opolski Dec 1993 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330768 Park et al. Jul 1994 A
5380299 Fearnot et al. Jan 1995 A
5417981 Endo et al. May 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5516881 Lee et al. May 1996 A
5569463 Helmus et al. Oct 1996 A
5578073 Haimovich et al. Nov 1996 A
5581387 Cahill Dec 1996 A
5584877 Miyake et al. Dec 1996 A
5605696 Eury et al. Feb 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5711958 Cohn et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5746998 Torchilin et al. May 1998 A
5759205 Valentini Jun 1998 A
5776184 Tuch Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5820917 Tuch Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5858746 Hubbell et al. Jan 1999 A
5861387 Labrie et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876433 Lunn Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5910564 Gruning et al. Jun 1999 A
5914387 Roby et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5955509 Webber et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5997517 Whitbourne Dec 1999 A
6010530 Goicoechea Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6080488 Hostettler et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6099562 Ding et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6129761 Hubbell Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159978 Myers et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6172167 Stapert et al. Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6203551 Wu Mar 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6365172 Barrows Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387379 Goldberg et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6419692 Yang et al. Jul 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6482834 Spada et al. Nov 2002 B2
6494862 Ray et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6572644 Moein Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6605154 Villareal Aug 2003 B1
6616765 Hossaony et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6666880 Chiu et al. Dec 2003 B1
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6695920 Pacetti et al. Feb 2004 B1
6703040 Katsarava et al. Mar 2004 B2
6706013 Bhat et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6749626 Bhat et al. Jun 2004 B1
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6830747 Lang et al. Dec 2004 B2
6926919 Hossainy et al. Aug 2005 B1
7056591 Pacetti et al. Jun 2006 B1
7063884 Hossainy et al. Jun 2006 B2
7166680 Desnoyer et al. Jan 2007 B2
7220816 Pacetti et al. May 2007 B2
7390497 DesNoyer et al. Jun 2008 B2
7435788 Pacetti et al. Oct 2008 B2
7820732 Tang et al. Oct 2010 B2
7879356 Cohn et al. Feb 2011 B2
8192752 Tang et al. Jun 2012 B2
20010007083 Roorda Jul 2001 A1
20010009662 Cohn et al. Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010018469 Chen et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030027940 Lang et al. Feb 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030105518 Dutta Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20050106204 Hossainy et al. May 2005 A1
20050208091 Pacetti Sep 2005 A1
20050265960 Pacetti et al. Dec 2005 A1
20050271700 Desnoyer et al. Dec 2005 A1
Foreign Referenced Citations (70)
Number Date Country
42 24 401 Jan 1994 DE
0 514 406 Nov 1992 EP
0 604 022 Jun 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
EP 0 301 856 Feb 1989 SU
EP 0 396 429 Nov 1990 SU
WO 9112846 Sep 1991 WO
WO 9409760 May 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9938546 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 04000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
Non-Patent Literature Citations (41)
Entry
U.S. Appl. No. 10/816,072, filed Mar. 31, 2004, Dugan et al.
Anonymous, Cardiologists Draw-Up The Dream Stent, Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), http://www.dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003 (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?req=1061848017752, printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Chandrasekar et al., Coronary Artery Endothelial Protection After Local Delivery of 17β-Estradiol During Balloon Angioplasty in a Porcine Model: A Potential New Pharmacologic Approach to Improve Endothelial Function, J. of Am. College of Cardiology, vol. 38, No. 5, (2001) pp. 1570-1576.
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
De Lezo et al., Intracoronary Ultrasound Assessment of Directional Coronary Atherectomy: Immediate and Follow-Up Findings, JACC vol. 21, No. 2, (1993) pp. 298-307.
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Huang et al., Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999).
Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α,ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Levy et al., Strategies For Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Matsumaru et al., Embolic Materials For Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Moreno et al., Macrophage Infiltration Predicts Restenosis After Coronary Intervention in Patients with Unstable Angina, Circulation, vol. 94, No. 12, (1996) pp. 3098-3102.
Nordrehaug et al., A novel biocompatible coating applied to coronary stents, EPO Heart Journal 14, p. 321 (p. 1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Oikawa et al., Mechanisms of Acute Gain and Late Lumen Loss After Atherectomy in Different Preintervention Arterial Remodeling Patterns, The Am. J. of Cardilogy, vol. 89, (2002) pp. 505-510.
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Pechar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991).
Scully et al., Effect of a heparan sulphate with high affinity for antithrombin III upon inactivation of thrombin and coagulaton Factor Xa, Biochem J. 262, (1989) pp. 651-658.
Search Report for PCT/US2005/037326, filed Oct. 18, 2005, mailed Apr. 6, 2006, 14 pgs.
Shigeno, Prevention of Cerebrovascular Spasm By Bosentan, Novel Endothelin Receptor; Chemical Abstract 125:212307 (1996).
van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Virmani et al., Lessons From Sudden Coronary Death a Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions, Arterioscler Thromb Vasc Biol. (2000) pp. 1262-1275.
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).
Related Publications (1)
Number Date Country
20140107148 A1 Apr 2014 US
Continuations (1)
Number Date Country
Parent 12409129 Mar 2009 US
Child 14083226 US
Continuation in Parts (1)
Number Date Country
Parent 10975247 Oct 2004 US
Child 12409129 US