End connector for coaxial cable

Information

  • Patent Grant
  • 7887366
  • Patent Number
    7,887,366
  • Date Filed
    Friday, July 31, 2009
    15 years ago
  • Date Issued
    Tuesday, February 15, 2011
    13 years ago
Abstract
A connector for attaching a cable to a terminal includes a connector body with a hex head fastener rotatably attached at one end of the body. A compressible gasket or clamp sleeve is positioned along the connector body for engaging and sealing about a portion of the jacket of the cable received within the connector.
Description
FIELD OF THE INVENTION

The present invention generally relates to connectors for cables. More particularly, the present invention relates to an end for coaxial cable for use as an F type connector for cable TV and satellite TV.


BACKGROUND OF THE INVENTION

Electrical transmission cables, such as coaxial cables used for video satellite or cable television transmission, typically use a connector for attaching the cable to an input or output terminal such as a television jack or wall outlet. Most cable connectors generally include a connector body that is fashioned to connect to one end of the cable typically by crimping or compressing the connector body about the cable, and will have a threaded nut or frictional attachment member at an opposite end for connection to the terminal. In the past, problems have existed in the use of such conventional cable connectors. For example, it is often difficult to achieve a sufficiently tight and even crimping of the connector body about the cable in order to attach and seal the connector body fully about the cable. The crimped connection must be sufficient to lock the connector to the cable and provide a stable mechanical connection between the cable and the terminal, as well as prevent water or other materials from leaking through the crimped portion of the connector body.


Recently developed connectors have been designed with sealing rings, etc., to provide a more consistent seal between the connector body and the cable jacket. However, such newer types of connectors often require special tools for use and can be difficult and expensive to manufacture.


Accordingly, it can be seen that a need exists for an improved end connector for transmission cables that address the foregoing and other related and unrelated problems in the art.


SUMMARY OF INVENTION

Briefly described, the present invention is directed to a connector for electrical transmission cables and other similar wiring materials. Specifically, the present invention relates to an improved end connector for a coaxial cable for electrically connecting the coaxial cable to a terminal.


In one aspect, the present invention relates to an end connector having a connector body and a hex head for connecting the cable to a terminal (such as an input or output terminal or jack for a video transmission system). The connector body includes an inner tube and an outer fitting tube that are fitted or matched together in a telescoped, overlapping, or press-fit manner so as to engage the hex head; which is held in an axial locking engagement therewith, but generally is still permitted to spin freely with respect to the connector body. The end connector further includes a compression ring, a clamp sleeve, and a cylindrical connector end block. After a coaxial cable is inserted into the present invention, a crimping tool crimps the connector body, causing the clamp sleeve to be inverted as the cable jacket passes over a barb or tip head portion of the inner tube to engage and hold the coaxial cable within the connector body to prevent the cable from being pulled out from the connector body and to form a seal against moisture and debris passing into the connector.


Alternatively, in another aspect, the present invention is directed to an end connector that has a hex head for connecting to a terminal, an inner tube and a connector body, a clamp sleeve, and an end tube with end blocks. The inner tube and connector body generally are matched or fitted together to engage and hold the hex head axially to the connector body while still allowing the hex head to spin or rotate freely. After a coaxial cable is inserted into the open end of the connector body with its jacket passing over and being engaged by the barb of the inner tube, a crimping tool moves the connector body axially against the clamp sleeve to cause the clamp sleeve to invert and seal about the portion of the cable jacket engaged on the barb or tip head to hold and prevent the cable from being pulled out of the connector body and to form a water and moisture seal within the connector.


In still a further embodiment of the connector, the connector includes a connector body or outer fitting sleeve defining a generally C-shaped recess or channel terminating at a front end or ledge so as to define a slot along the outer wall of the connector body. An inner post or sleeve extends through the connector body and defines a passage in which a center conductor of the coaxial cable is received. A hex nut typically is rotatably mounted between the second, distal ends of the connector body and inner sleeve for connecting the cable to a terminal. A shell is received over and is axially movable along the outer wall of the connector body. The shell includes a first open end and a distal or second end spaced therefrom, and defines a central passage or opening through which the cable initially is received into the connector.


A shoulder portion is formed at an intermediate point along an inner wall of the shell so as to define a slotted recess between the shoulder portion of the outer shell and the front end or ledge portion of the connector body. A stepped edge further is formed adjacent the shoulder portion and defines a surface that is adapted to engage the outer jacket of the cable. A soft, pliable gasket generally is received in the slotted recess, and is compressible axially as the sleeve is moved along the connector body. As the gasket is compressed, it forms a seat against which a portion of the cable jacket bears as it bulges outwardly as the cable jacket is pressed axially against the end of the shoulder or front end of the C-shaped recess of the connector body by the forward sliding movement of the stepped edge of the outer sleeve along the connector body.


Other advantages and uses for the present invention will be more clearly understood by reference to the following description and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partial sectional view of one example embodiment of an end connector according to the present invention.



FIG. 2 is a partial section view of the end connector shown in FIG. 1 illustrating the end connector crimped without a coaxial cable.



FIG. 3 is a partial section view of the end connector show in FIGS. 1 and 2 illustrating the end connector crimped to an end of a coaxial cable.



FIG. 4 is a partial sectional view of another embodiment of the end connector according to the present invention.



FIG. 5 is a partial section view of the end connector shown in FIG. 4 illustrating the end connector crimped without a coaxial cable.



FIG. 6 is a partial section view of the end connector shown in FIGS. 4 and 5, illustrating the end connector crimped to an end of a coaxial cable.



FIG. 7 is a partial sectional view of yet another embodiment of the end connector according to the present invention.



FIG. 8 is a partial sectional view of the end connector of FIG. 7 with the cable inserted therein prior to crimping.



FIG. 9 is a partial sectional view of the end connector of FIGS. 7 and 8, illustrating the end connector being crimped to the coaxial cable.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1, 2, and 3 illustrate one example embodiment of an end connector 10 according to the principles of the present invention, with the connector being shown in a pre-installed form and in an engaged form, after crimping both with and without a coaxial cable. The end connector 10 typically is comprised of a connector body 11, an inner tube 20, an outer fitting tube 30, a hex head 40, a clamp sleeve 50, a compression ring 60, and a sealing member such as an O-ring 70.


As shown in FIG. 1, the connector body 11 generally includes a substantially cylindrical tube or sleeve 12 defining an internal passage for receipt of an end of the cable therein and including a first open end 13, an end block 14 defining a second open, inlet end 16, having a groove 17 formed thereabout. The inner tube 20 is extended through the body 11 and engages the hex head 40 of the connector as shown in FIGS. 1-3. The inner tube 20 includes a clamp end 21 at a first end adjacent the hex head 40; a first shoulder 22, a second shoulder 23, and a third shoulder 24; a sleeve 25; and a barb or tip head 26 at its opposite end, adjacent the inlet end 16 of the connector body 11. The outer fitting tube 30 of the connector is received within the connector body, in an alignment surrounding the inner tube and projecting outwardly from the connector body between the first end 13 of the connector body and the hex head 40. The outer fitting tube further includes a fitting shoulder 31 that engages the second and third shoulders 23 and 24 of the innertube 20, and a sleeve 32 extending rearwardly from shoulder 31 to a distal end 33.


As shown in FIG. 1, the hex head 40 is rotatably mounted to the connector body 11, positioned at the outlet end thereof for connection of the end connector to a terminal or input/output jack. The hex head generally comprises a hex-nut type fastener and includes a clamp ring 41, a head shaped body 42 and a fitting neck 43, with screw threads 44 extending through the body 42 for threadably engaging a terminal or input/output jack to connect the cable thereto.


As further illustrated in FIG. 1, the clamp sleeve 50 is positioned within a cavity or space 46 defined between the distal end 33 of the outer fitting tube 30 and the end block 14 of the sleeve 12. The clamp sleeve 50 has a first clamp head 51, a second clamp head 52, and a sleeve body 53. Compression ring 60 generally is mounted adjacent the first clamp head 51, so as to provide a bearing surface against which the clamp sleeve 50 is compressed, and can have an inner diameter approximately equal or less than the inner diameter of clamp sleeve 50.


Additionally, the O-ring 70 is positioned between the body of the hex head and the first shoulder portion 22 of the inner tube 20 to provide a water/moisture seal between the hex head and inner tube. The inner tube shoulder 24 also can be tightly fitted against the outer tube fitting shoulder 31, as shown in FIG. 1, such that both the inner tube head 21 and the outer tube shoulder 31 can create a blockage or stop on both sides of the hex head clamp ring 41 and the o-ring 70. The hex head clamp ring 41 thus generally is prevented from axially disengaging from the connector body, while being loosely fitted to the inner second shoulder 23 so that the hex head 40 can be turned freely with respect to the connector body 11.


It is typical that the inner tube 20 and the outer fitting tube 30 can be made from brass or other similar highly conductive material; while the end connector body 10 and the hex head 40 can be made from brass, aluminum, zinc or alloys thereof, or other similar high strength materials. The clamp sleeve 50 typically can be made from various flexible and/or deformable plastic materials, aluminum, or other similar resilient or flexible materials; while the O-ring 70 generally is made from rubber or plastic.


During the installation of the end connector 10 according to the present embodiment, a coaxial cable 100 (FIG. 3) generally is prepared in such fashion that the center conductor 110 of the cable is exposed, with the cable insulation 120, braid 130, and jacket 140 being stripped or otherwise removed therefrom. The center conductor typically is left with a hex head length longer than that of the hex head so as to extend substantially through, and possibly out of the outlet of the hex head as shown in FIG. 3. The coaxial cable insulation 120 further has a head and shoulder length that generally extends further through the connector body than the ends of the coaxial cable braid 130 and jacket 140 (See FIG. 3).


The prepared coaxial cable end is pushed into the open inlet end 16 (FIGS. 1 and 2) of the connector body 11 of the end connector 10 and the connector body 11 is crimped thereabout. FIG. 3 shows a view of the after-crimped end connector with the coaxial cable 100 attached thereto. As a result of crimping, as indicated in FIG. 2, the outer fitting tube 30 generally is pushed longitudinally into the connector body 10 so that the end edge of he cable insulation is tightly fitted against both the outer fitting tube shoulder 31, extending inner tube 20, and the sleeve 32 of the connector body 11.


During such movement, the clamp sleeve 50 is also engaged and pushed inwardly against the compression ring 60 by the end block 14. As a result, the clamp sleeve 50 generally is forced to change shape, causing the first clamp head 51 portion to be raised radially outwardly toward and along the contacting surface of the compression ring 60, while at the same time the second clamp head 52 portion is raised raidially outwardly toward and along the contacting surface of the end block 12, as indicated in FIG. 2.


Eventually, the clamp sleeve is substantially inverted, as shown in FIGS. 2 and 3, with one or both of the first clamp head portions 51/52 then becoming folded or projected about the cable jacket 140 (FIG. 3) and braid 130 on both sides of the tip head or barb 26 on which the cable jacket 140 is engaged to help secure/clamp the cable and reinforce the mechanical strength of the connection. The clamp sleeve 50 further can be notched or weakened adjacent the clamp head portions to facilitate the inversion or reversal of the clamp sleeve during crimping. After the crimping process, the clamp sleeve 50 is thus formed with a substantially reversed “U” shape and is tightly clamped about the portion of the cable jacket 140 and braid 130 engaged and projecting over the tip head. This clamping engagement can help prevent the coaxial cable 100 being pulled out from the end connector and helps form a seal against outside water/moisture and debris. The O-ring 70 also helps to prevent water/moisture and debris passing into the connector from the front or hex head end of the connector.



FIGS. 4, 5, and 6 illustrate another example embodiment of the end connector 200 in a pre-installed form and its forms after crimping with and without a coaxial cable. In this embodiment, the end connector 200 generally is comprised of a connector body 210, an inner tube 220, an end tube 230, a hex head 240, a clamp sleeve 250, and a sealing ring such as an O-ring 260.


As shown in FIG. 4, the connector body 210 of this embodiment generally includes a fitting shoulder 211 defining a first end, a cylindrical sleeve or tube 212 defining an internal passage for the cable, an end sleeve portion 213 defining a second or open inlet end 214, and a shoulder or ledge portion 216 defining a recess 217 about the inlet end 214. The inner tube 220 extends through the sleeve 212 and has a clamp end 221 projecting through and past the fitting shoulder 211, a first shoulder 222, a second shoulder 223, a third shoulder 224, and a sleeve 225 having a tip head or barb 226 at its open end and defining a central passage 227. End tube 230 generally has a smaller diameter than the connector body 210 and projects outwardly from the end sleeve 213 of the body 212. The end tube 230 is moveable into the recess 217 of the connector body and defines an open inlet for insertion of the cable therein. The end tube 230 includes a tubular sleeve or body 231, a first end edge 232, a second end edge 233, and a groove 234.


Similar to the hex head 40 (FIG. 1) hex head 240 (FIG. 4) is a hex nut type fastener and includes a clamp ring 241, a hex shaped body 242, and a fitting neck 243, with screw threads 244 extending through the body 242 for the attachment of the connector to a terminal. As shown in FIG. 4, second and third inner tube shoulders 223 and 224 are fitted against and engaged by the body shoulder 211. Both the inner tube head 221 and the body shoulder 211 thus can create a blockage or stop on both sides of the hex head clamp ring 241 and the O-ring 260, with the hex head clamp ring 241 being loosely fitted about the inner second shoulder 223 so that the hex head 240 can be turned freely.


As additionally shown in FIG. 4, the clamp sleeve 250 is positioned with the recess 217 between the end tube 230 and the shoulder 216 of the connector body, and includes a first clamp head 251, a second clamp head 252, and a sleeve body 253. O-ring 260 generally can be positioned between the hex head body 242 and the first shoulder 222 of the inner tube 220, as indicated in FIG. 4, to provide a water/moisture seal adjacent the hex head end of the connector 200.


It is typical that the inner tube 220 and the end tube 230 can be made from brass or other similar highly conductive material, while the end connector body 210 and the hex head 240 can be made from brass, aluminum, zinc or alloys thereof, or other similar high strength materials; and with the clamp sleeve 250 generally being made from various flexible and/or deformable plastics, aluminum, or other similar resilient or flexible materials. The O-ring 260 generally is made from rubber or plastic.


During end connector installations, the coaxial cable 100 is prepared in substantially the same fashion as discussed above with respect to FIG. 3. After the prepared coaxial cable end has been pushed into the open inlet end of the end connector, as indicated in FIGS. 5 and 6, a crimp tool is used to press or crimp the end connector about the cable end. FIGS. 5 and 6 show the final view of an after-crimped end connector, both without (FIG. 5) and with (FIG. 6) a coaxial cable 100 therein. During crimping, the end tube 230 will be urged or pushed into the connector body 210, typically into a position tightly fitting against the connector body end sleeve 213. The clamp sleeve 250 also is engaged and pushed inwardly against shoulder 216 by the movement of the end tube 230. As a result, as shown in FIGS. 5 and 6, the clamp sleeve 250 is forced to change shape, with the first clamp head portion 251 being urged or raised radially outwardly toward and along the contacting surface of the compression ring 260, while at the same time the second clamp head portion 252 is urged or raised radially outwardly toward and along the contacting surface of the end tube 230.


Eventually, the clamp sleeve is substantially inverted, with the first and/or second clamp head portions 251/252 then becoming enveloped or folded about the portions of the cable jacket 140 (FIG. 6) and braid 130 that are engaged by the tip head or barb to help secure/clamp the cable and reinforce the mechanical strength of the connection. The clamp sleeve 250 further can be notched or weakened adjacent the claim head portions to facilitate the inversion or reversal of the clamp sleeve during crimping. After the crimping process, the clamp sleeve 250 is thus formed with a substantially reversed “U” shape and generally is tightly clamped about the cable jacket 140 and braid 130 over the tip head. This clamping engagement can help prevent the coaxial cable 100 being pulled out from the end connector and can help form a seal against the passage of water/moisture and debris therein.


As shown in FIGS. 7-9, in still another embodiment of the present invention, the connector 310 can include a cylindrical shell 311 defining an internal passage 312 for receipt of a cable 100 (FIGS. 8-9) therein, the shell 311 including a first, open inlet end 313 having a stepped edge 314 formed inwardly of the open inlet end 313 of the shell 311, a second end 315, and a shoulder portion 316. An inner tube 320 is extended through the passage 312 between a hex head nut 340, positioned at the opposite end of the connector, and an intermediate point along the passage. The inner tube 320 includes a first or proximal end 321, positioned adjacent the hex head nut, a first shoulder 322, a second shoulder 323, and a sleeve portion 324, terminating at a tapered, open, second or distal end 326. A connector body or outer fitting sleeve 330 surrounds the inner tube and projects rearwardly from a first end 331 adjacent the hex head 340 and forms a shoulder 332, defining a short, substantially C-shaped open ended recess or channel 333 that terminates at a front end or ledge 334 formed at a second end thereof. The first end 331 of the connector body 330 includes a sloped surface or bump 336 that helps to block moisture and debris from entering adjacent the hex head 340, with a groove or recess 337 additionally formed in the connector body adjacent the bump 336 to help reduce compression forces acting thereon during crimping. As shown in FIG. 7, the ledge 334 generally can be of a reduced profile so as to define a slot or groove 338 about the front or second end of the connector body or outer fitting sleeve.


The hex head 340 includes a clamp ring 341, a hex shaped body 342, and a fitting neck 343, with screw threads for attachment to a cable outlet. An O-ring 370 (FIGS. 7-9) further generally is engaged between the clamp ring 341 of the hex head 340 and proximal end 321 of the inner tube for sealing the hex head end of the connector. The proximal end 321 of the inner tube and the shoulder of the connector body 331 thus create a stop on both sides of the hex head clamp ring 341 and the O-ring 370. The hex head clamp ring 341 further generally is loosely fitted about the inner tube shoulder 320 so that the hex head 340 can be turned freely with respect to the rest of the connector.


As indicated in FIGS. 7 and 8, a soft, pliable gasket 350 will be positioned inside the internal passage 312 of the cylindrical outer shell 311. The gasket 350 generally can be formed from a compressible material such as a plastic, nylon, foams or other similar materials and can have a substantially cylindrical configuration with an outwardly projecting center portion 351 and flat substantially axially extending side portions 352 defining a concave recess 353. During crimping of the connector 310 to the cable, the inner tube and outer fitting tube portions of the connector are urged rearwardly against the cable in the direction of arrow 355, as indicated in FIG. 9, while the outer shell 311 is urged axially in the direction of arrow 355′. As it is moved forwardly, the stepped edge 314 of the shell urges the cable jacket toward and against the end of the recess 332 defined by the connector body. The movement of the shell 311 also tends to push the gasket 350 axially and along the slot or groove 338 formed about the front end or ledge 334 of the connector body 330, while the opposite side of the gasket is pressed forwardly by the shoulder portion 316 of the cylindrical outer shell 311.


As further indicated in FIG. 9, the cable jacket is urged axially by the inward movement of both the outer shell 311 and inner tube portion 320, causing it to bulge outwardly as it is pressed against the shoulder portion 381 of the end of the outer fitting tube, while the gasket 350 will deform and move into the slot or groove 338 between the ledge 334 of the connector body and the cylindrical outer shell 311, narrowing the recess 353 of the gasket 350. As a result, a receiving area or seat 357 is formed by the gasket into which a portion of the outer jacket of the cable projects as the outer jacket is caused to buckle outwardly as it is squeezed axially in the direction of arrows 355 and 355′ by the sliding movement of the outer shell 311 and inner post/connector body 320/330.


Accordingly, during installation of the connector 310 on a coaxial cable 100, as indicated in FIGS. 8 and 9, the outer shell 311 will be slid or urged axially forwardly in the direction of arrow 355′, sliding along the connector body or outer fitting sleeve 330 toward the hex nut 340, while the inner tube 320 and connector body are moved axially toward the cable. As the outer shell 311 and inner tube/connector body 320/330 are squeezed together, the outer jacket 140 of the cable is urged against the shoulder 331 at the end of the recess 333 formed in the outer fitting sleeve or connector body 330. At the same time, the gasket 350 is compressed axially against the shoulder of the outer fitting tube.


In addition, as further indicated in FIG. 9, the stepped edge 314 of the outer sleeve 311 tends to bite into and bear against the jacket to urge the jacket axially along the connector and can additionally help hold the jacket, and thus the cable, within the connector. The outer jacket of the cable thus is caused to buckle outwardly against the pliable gasket, which is being squeezed axially so that the buckled portion of the outer jacket presses and seats tightly against the gasket, while the gasket 350 seals around the buckled portion of the cable jacket to help attach the connector to the cable and resist removal of the cable out of the connector by hand. Still further, as shown in FIG. 7, spaced grooves 360 can be formed in the outer shell 311 adjacent the inlet end 313 thereof. The grooves define edges or teeth 361 that tend to engage the jacket of the cable during crimping. As a result, the grooves/teeth 360/361 enhance the pulling force exerted by the connector on the cable during crimping to help securely lock the connector to the cable and to help provide a substantially water-resistant seal about the jacket of the cable adjacent the rear end of the connector.


It will be further understood by those skilled in the art that while the present invention has been described above with reference to preferred embodiments, numerous variations, modifications, and additions can be made thereto, including combining the various disclosed embodiments in whole or in part, without departing from the spirit and scope of the present invention as set forth in the following claims.

Claims
  • 1. A connector for a cable, comprising: a connector body having a first, open end and a second end;an inner sleeve extending at least partially through said connector body and defining a central passage through which a conductor portion of the cable is received and a channel between said connector body and said sleeve;a fastener rotatably mounted adjacent said second end of said connector body;a shell received about and slideable along said connector body, said shell having a first end, a second end, and a shoulder formed along an intermediate portion thereof and defining a reduced inner diameter portion adjacent said first end of said shell, said shoulder having a shoulder surface that is parallel with a surface on said first open end; anda pliable gasket received within said channel and adapted to engage and compress about a jacket portion of the cable that is received within said channel between said connector body and said shell as said shell is moved axially along said connector body.
  • 2. The connector of claim 1 and wherein said inner tube comprises a first end received within said fastener and a second end formed with a barb for engaging the jacket of the cable as the cable is urged along said connector body.
  • 3. The connector of claim 1 and wherein said inner sleeve comprises a first end defining a barb over which the jacket of the cable is received and engaged, and a second end rotatably connected to said fastener, and wherein said connector body further comprises an inlet at said open end, through which the cable jacket is received upon axial movement of said shell and gasket along said connector body during crimping.
  • 4. The connector of claim 1 and wherein said gasket comprises a deformable, flexible material.
  • 5. The connector of claim 1 and wherein said first end of said shell defines an open inlet through which the cable is received and includes an inwardly tapered edge for helping guide the cable therein.
  • 6. The connector of claim 5 and further comprising a groove formed about said shell adjacent said firs end of said shell.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. continuation application Ser. No. 12/203,251, filed Sep. 3, 2008 now U.S. Pat. No. 7,568,945, which is a continuation application of divisional application Ser. No. 11/833,083 filed Aug. 2, 2007, and now issued as U.S. Pat. No. 7,422,479, which is a divisional application of U.S. patent application Ser. No. 11/426,398 filed Jun. 26, 2006, and now issued as U.S. Pat. No. 7,354,307, which in turn claims the benefit of U.S. Provisional Patent Applications Ser. Nos. 60/791,624, filed Apr. 13, 2006, and 60/694,333, filed Jun. 27, 2005, the disclosures of each of which being incorporated herein by reference in their entireties.

US Referenced Citations (215)
Number Name Date Kind
1793803 Hurley et al. Feb 1931 A
2258737 Browne Oct 1941 A
2762021 Battey, Jr. et al. Sep 1956 A
3184706 Atkins May 1965 A
3275913 Blanchard Sep 1966 A
3355698 Keller Nov 1967 A
3373243 Janowiak et al. Mar 1968 A
3406373 Forney, Jr. Oct 1968 A
3448430 Kelly Jun 1969 A
3475545 Stark et al. Oct 1969 A
3498647 Schroder Mar 1970 A
3517373 Jamon Jun 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3629792 Dorrell Dec 1971 A
3633150 Swartz Jan 1972 A
3668612 Nepovim Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3976352 Spinner Aug 1976 A
3985418 Spinner Oct 1976 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4059330 Shirey Nov 1977 A
4126372 Hashimoto et al. Nov 1978 A
4156554 Aujla May 1979 A
4168921 Blanchard Sep 1979 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4250348 Kitagawa Feb 1981 A
4280749 Hemmer Jul 1981 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4373767 Cairns Feb 1983 A
4400050 Hayward Aug 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4444453 Kirby et al. Apr 1984 A
4484792 Tengler et al. Nov 1984 A
4515427 Smit May 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4583811 McMills Apr 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4614390 Baker Sep 1986 A
4645281 Burger Feb 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4660921 Hauver Apr 1987 A
4668043 Saba et al. May 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4691976 Cowen Sep 1987 A
4698027 Vandame Oct 1987 A
4703987 Gallusser et al. Nov 1987 A
4717355 Mattis Jan 1988 A
4720271 Grange Jan 1988 A
4738009 Down Apr 1988 A
4746305 Nomura May 1988 A
4747786 Hayashi et al. May 1988 A
4755152 Elliot et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4806116 Ackerman Feb 1989 A
4813886 Roos et al. Mar 1989 A
4834675 Samshisen May 1989 A
4834676 Tackett May 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5037328 Karlovich Aug 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gayer Nov 1991 A
5073129 Szegda Dec 1991 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5141451 Down Aug 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5181161 Hirose et al. Jan 1993 A
5195906 Szegda Mar 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5295864 Birch et al. Mar 1994 A
5316494 Flanagan et al. May 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5393244 Szegda Feb 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5494454 Johnsen Feb 1996 A
5501616 Holliday Mar 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5557073 Truesdale et al. Sep 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5598132 Stabile Jan 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632651 Szegda May 1997 A
5651699 Holliday Jul 1997 A
5667405 Holliday Sep 1997 A
5863220 Holliday Jan 1999 A
5879191 Burris Mar 1999 A
5888094 Kubota et al. Mar 1999 A
5975951 Burris et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6032358 Wild Mar 2000 A
6042422 Youtsey Mar 2000 A
6089913 Holliday Jul 2000 A
6146197 Holliday et al. Nov 2000 A
6153830 Montena Nov 2000 A
6163830 Nguyen et al. Dec 2000 A
6179656 Wong Jan 2001 B1
D437826 Montena Feb 2001 S
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6241553 Hsia Jun 2001 B1
6261126 Stirling Jul 2001 B1
6267621 Pitschi et al. Jul 2001 B1
D458904 Montena Jun 2002 S
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
D462327 Montena Sep 2002 S
D468696 Montena Jan 2003 S
6530807 Rodrigues et al. Mar 2003 B2
6558194 Montena May 2003 B2
6592403 Koolman Jul 2003 B2
6676446 Montena Jan 2004 B2
6767247 Rodrigues Jul 2004 B2
6767248 Hung Jul 2004 B1
6780052 Montena et al. Aug 2004 B2
6783394 Holliday Aug 2004 B1
6817896 Derenthal Nov 2004 B2
6817897 Chee Nov 2004 B2
6830479 Holliday Dec 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6994588 Montena Feb 2006 B2
7018235 Burris et al. Mar 2006 B1
D519076 Fox Apr 2006 S
D519451 Fox Apr 2006 S
7021965 Montena Apr 2006 B1
7029304 Montena Apr 2006 B2
7044785 Harwath May 2006 B2
7063565 Ward Jun 2006 B2
7182639 Burris Feb 2007 B2
7354307 Chee et al. Apr 2008 B2
7364462 Holland Apr 2008 B2
20040102089 Chee May 2004 A1
20060128217 Burris Jun 2006 A1
20060172571 Montena Aug 2006 A1
20060292926 Chee et al. Dec 2006 A1
20080020635 Chee et al. Jan 2008 A1
Foreign Referenced Citations (7)
Number Date Country
0116157 Aug 1984 EP
0167738 Aug 1984 EP
0265276 Apr 1988 EP
1087228 Oct 1967 GB
1270846 Apr 1972 GB
2019665 Oct 1979 GB
2079549 Oct 1982 GB
Related Publications (1)
Number Date Country
20090291589 A1 Nov 2009 US
Provisional Applications (2)
Number Date Country
60791624 Apr 2006 US
60694333 Jun 2005 US
Divisions (1)
Number Date Country
Parent 11426398 Jun 2006 US
Child 11833083 US
Continuations (2)
Number Date Country
Parent 12203251 Sep 2008 US
Child 12533278 US
Parent 11833083 Aug 2007 US
Child 12203251 US