The technical field may generally relate to controlling surgical instruments, and in particular, controlling and calibrating end effectors of surgical instruments.
Various aspects are directed to surgical instruments, and controlling and calibrating end effectors of surgical instruments.
For example, ultrasonic surgical devices are finding increasingly widespread applications in surgical procedures by virtue of their unique performance characteristics. Depending upon specific device configurations and operational parameters, ultrasonic surgical devices can provide substantially simultaneous transection of tissue and homeostasis by coagulation, desirably minimizing patient trauma. An ultrasonic surgical device may comprise a handpiece containing an ultrasonic transducer, and an instrument coupled to the ultrasonic transducer having a distally mounted end effector (e.g., an ultrasonic blade and a clamp arm, where the clamp arm may comprise a non-stick tissue pad) to cut and seal tissue. In some cases, the instrument may be permanently affixed to the handpiece. In other cases, the instrument may be detachable from the handpiece, as in the case of a disposable instrument or an instrument that is interchangeable between different handpieces. The end effector transmits ultrasonic energy to tissue brought into contact with the end effector to realize cutting and sealing action. Ultrasonic surgical devices of this nature can be configured for open surgical use, laparoscopic, or endoscopic surgical procedures including robotic-assisted procedures.
Ultrasonic energy cuts and coagulates tissue using temperatures lower than those used in electro surgical procedures. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue by the ultrasonic blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. A surgeon can control the cutting speed and coagulation by the force applied to the tissue by the end effector, the time over which the force is applied and the selected excursion level of the end effector.
In one aspect, a method for controlling an end effector may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may also include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may additionally include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
One or more of the following features may be included. The first tube may be an inner tube and the second tube may be an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube. The method may further include detecting the signal using a Hall-effect sensor and a magnet positioned on the first tube. The method may also include moving a magnet positioned on the first tube relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector. The method may additionally include adjusting the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor. Moreover, the method may include adjusting the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade. Furthermore, the method may include adjusting the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
In one or more implementations, the method may include determining a type of tissue between the clamp arm and the ultrasonic blade based on the signal. The method may also include adjusting the power output to the ultrasonic blade of the end effector based on the type of tissue. The method may additionally include, in response to determining that the type of tissue between the clamp and the ultrasonic blade is a small vessel, reducing the power output to the ultrasonic blade of the end effector by an amount less than for a large vessel. Moreover, the method may include in response to determining that the type of tissue between the clamp and the ultrasonic blade is a large vessel, reducing the power output to the ultrasonic blade of the end effector by an amount more than for a small vessel.
In one aspect, an apparatus for controlling an end effector may include a sensor configured to detect a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The apparatus may also include a processor configured to determine a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The apparatus may further include a transducer configured to adjust a power output to the ultrasonic blade of the end effector based on the clamp arm position.
One or more of the following features may be included. The first tube may be an inner tube and the second tube may be an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube. The apparatus may further include a magnet positioned on the first tube wherein the sensor is a Hall-effect sensor used to detect the signal based on a position of the magnet. The magnet may be positioned on the first tube moves relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector. The transducer may be an ultrasonic transducer configured to adjust the power output to the ultrasonic blade of the end effector based on a voltage change in a Hall-effect sensor. The apparatus may also include a proportional-integral controller configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
In one aspect, a method for calibrating an apparatus for controlling an end effector may include detecting a first signal corresponding to a fully open position of a clamp arm and a ultrasonic blade of the end effector. The method may also include detecting a second signal corresponding to an intermediate position of the clamp arm and the ultrasonic blade of the end effector, the intermediate position resulting from clamping a rigid body between the clamp arm and the ultrasonic blade. The method may additionally include detecting a third signal corresponding to a fully closed position of the clamp arm and the ultrasonic blade of the end effector. The method may further include determining a best fit curve to represent signal strength as a function of sensor displacement based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body. Moreover, the method may include creating a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.
In one aspect, an apparatus for controlling an end effector comprising a clamp arm is disclosed. The apparatus includes a sensor configured to generate signals in response to movement of a first tube relative to a second tube, the first tube driving movement of the clamp arm of the end effector; and a control circuit configured to receive a first signal, a second signal, and a third signal from the sensor, generate a fit curve based on the first signal, the second signal, and the third signal, receive a fourth signal from the sensor, and generate a conclusion associated with a relative position of the clamp arm based on the fourth signal and the generated fit curve. The first signal, the second signal, and the third signal are associated with positions of the clamp arm of the end effector as it moves. The fourth signal is associated with a current position of the clamp arm of the end effector as it moves.
In one aspect, an apparatus for controlling an end effector comprising a clamp arm and an ultrasonic blade is disclosed. The apparatus comprises a sensor configured to generate signals in response to movement of a first tube relative to a second tube, the first tube driving movement of the clamp arm of the end effector, and a control circuit configured to receive a first signal, a second signal, and a third signal from the sensor, generate a fit curve based on the first signal, the second signal, and the third signal, receive a fourth signal from the sensor, generate a conclusion associated with a relative position of the clamp arm based on the fourth signal and the generated fit curve, determine an impedance of the ultrasonic blade in contact with tissue, and determine a type of the tissue based on the impedance. The first signal, the second signal, and the third signal are associated with positions of the clamp arm of the end effector as it moves. The fourth signal is associated with a current position of the clamp arm of the end effector as it moves.
In one aspect, a computer-implemented method of controlling an end effector comprising a clamp arm and an ultrasonic blade is disclosed. The method includes receiving, via a control circuit, a first signal, a second signal, and a third signal from a sensor configured to generate signals in response to movement of a first tube of the end effector relative to a second tube of the end effector, the first tube driving movement of the clamp arm of the end effector, generating, via the control circuit, a fit curve based on the first signal, the second signal, and the third signal, receiving, via the control circuit, a fourth signal from the sensor, generating, via the control circuit, a conclusion associated with a relative position of the clamp arm based on the fourth signal and the generated fit curve, determining, via the control circuit, a thickness of a tissue based on the generated conclusion, determining, via the control circuit, an impedance of the ultrasonic blade in contact with the tissue, and determining, via the control circuit, a type of the tissue based on the impedance. The first signal, the second signal, and the third signal are associated with positions of the clamp arm of the end effector as it moves. The fourth signal is associated with a current position of the clamp arm of the end effector as it moves.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
Various aspects described herein are directed to surgical instruments comprising distally positioned, articulatable jaw assemblies. The jaw assemblies may be utilized in lieu of or in addition to shaft articulation. For example, the jaw assemblies may be utilized to grasp tissue and move it towards an ultrasonic blade, RF electrodes or other component for treating tissue.
In one aspect, a surgical instrument may comprise an end effector with an ultrasonic blade extending distally therefrom. The jaw assembly may be articulatable and may pivot about at least two axes. A first axis, or wrist pivot axis, may be substantially perpendicular to a longitudinal axis of the instrument shaft. The jaw assembly may pivot about the wrist pivot axis from a first position where the jaw assembly is substantially parallel to the ultrasonic blade to a second position where the jaw assembly is not substantially parallel to the ultrasonic blade. In addition, the jaw assembly may comprise first and second jaw members that are pivotable about a second axis or jaw pivot axis. The jaw pivot axis may be substantially perpendicular to the wrist pivot axis. In some aspects, the jaw pivot axis itself may pivot as the jaw assembly pivots about the wrist pivot axis. The first and second jaw members may be pivotably relative to one another about the jaw pivot axis such that the first and second jaw members may “open” and “close.” Additionally, in some aspects, the first and second jaw members are also pivotable about the jaw pivot axis together such that the direction of the first and second jaw members may change.
Reference will now be made in detail to several aspects, including aspects showing example implementations of manual and robotic surgical instruments with end effectors comprising ultrasonic and/or electro surgical elements. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict example aspects of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example aspects of the structures and methods illustrated herein may be employed without departing from the principles described herein.
In various aspects, the generator 20 comprises several functional elements, such as modules and/or blocks. Different functional elements or modules may be configured for driving different kinds of surgical devices. For example, an ultrasonic generator module 21 may drive an ultrasonic device, such as the ultrasonic surgical instrument 10. In some example aspects, the generator 20 also comprises an electrosurgery/RF generator module 23 for driving an electrosurgical device (or an electro surgical aspect of the ultrasonic surgical instrument 10). In the example aspect illustrated in
In one aspect, the electrosurgical/RF generator module 23 may be configured to deliver a subtherapeutic RF signal to implement a tissue impedance measurement module. In one aspect, the electrosurgical/RF generator module 23 comprises a bipolar radio frequency generator. In one aspect, the electrosurgical/RF generator module 23 may be configured to monitor electrical impedance Z, of tissue T and to control the characteristics of time and power level based on the tissue T by way of a return electrode provided on a clamp member of the end effector assembly 26. Accordingly, the electrosurgical/RF generator module 23 may be configured for subtherapeutic purposes for measuring the impedance or other electrical characteristics of the tissue T. Techniques and circuit configurations for measuring the impedance or other electrical characteristics of tissue Tare discussed in more detail in commonly assigned U.S. Patent Publication No. 2011/0015631, titled “Electrosurgical Generator for Ultrasonic Surgical Instrument,” the disclosure of which is herein incorporated by reference in its entirety.
A suitable ultrasonic generator module 21 may be configured to functionally operate in a manner similar to the GEN300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio as is disclosed in one or more of the following U.S. patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (Method for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); U.S. Pat. No. 6,537,291 (Method for Detecting a Loose Blade in a Hand Piece Connected to an Ultrasonic Surgical System); U.S. Pat. No. 6,662,127 (Method for Detecting Presence of a Blade in an Ultrasonic System); U.S. Pat. No. 6,977,495 (Detection Circuitry for Surgical Handpiece System); U.S. Pat. No. 7,077,853 (Method for Calculating Transducer Capacitance to Determine Transducer Temperature); U.S. Pat. No. 7,179,271 (Method for Driving an Ultrasonic System to Improve Acquisition of Ultrasonic Blade Resonance Frequency at Startup); and U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).
It will be appreciated that in various aspects, the generator 20 may be configured to operate in several modes. In one mode, the generator 20 may be configured such that the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be operated independently.
For example, the ultrasonic generator module 21 may be activated to apply ultrasonic energy to the end effector assembly 26 and subsequently, either therapeutic sub-therapeutic RF energy may be applied to the end effector assembly 26 by the electrosurgical/RF generator module 23. As previously discussed, the sub-therapeutic electrosurgical/RF energy may be applied to tissue clamped between claim elements of the end effector assembly 26 to measure tissue impedance to control the activation, or modify the activation, of the ultrasonic generator module 21. Tissue impedance feedback from the application of the sub-therapeutic energy also may be employed to activate a therapeutic level of the electrosurgical/RF generator module 23 to seal the tissue (e.g., vessel) clamped between claim elements of the end effector assembly 26.
In another aspect, the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be activated simultaneously. In one example, the ultrasonic generator module 21 is simultaneously activated with a sub-therapeutic RF energy level to measure tissue impedance simultaneously while the ultrasonic blade of the end effector assembly 26 cuts and coagulates the tissue (or vessel) clamped between the clamp elements of the end effector assembly 26. Such feedback may be employed, for example, to modify the drive output of the ultrasonic generator module 21. In another example, the ultrasonic generator module 21 may be driven simultaneously with electrosurgical/RF generator module 23 such that the ultrasonic blade portion of the end effector assembly 26 is employed for cutting the damaged tissue while the electrosurgical/RF energy is applied to electrode portions of the end effector clamp assembly 26 for sealing the tissue (or vessel).
When the generator 20 is activated via the triggering mechanism, electrical energy is continuously applied by the generator 20 to a transducer stack or assembly of the acoustic assembly. In another aspect, electrical energy is intermittently applied (e.g., pulsed) by the generator 20. A phaselocked loop in the control system of the generator 20 may monitor feedback from the acoustic assembly. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 20 to match the resonant frequency of the selected longitudinal mode of vibration of the acoustic assembly. In addition, a second feedback loop in the control system 25 maintains the electrical current supplied to the acoustic assembly at a pre-selected constant level in order to achieve substantially constant excursion at the end effector 18 of the acoustic assembly. In yet another aspect, a third feedback loop in the control system 25 monitors impedance between electrodes located in the end effector assembly 26. Although
In ultrasonic operation mode, the electrical signal supplied to the acoustic assembly may cause the distal end of the end effector 18, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz. According to various aspects, the ultrasonic blade 22 may vibrate in the range of about 54 kHz to 56 kHz, for example, at about 55.5 kHz. In other aspects, the ultrasonic blade 22 may vibrate at other frequencies including, for example, about 31 kHz or about 80 kHz. The excursion of the vibrations at the ultrasonic blade can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly of the acoustic assembly by the generator 20. As noted above, the triggering mechanism of the generator 20 allows a user to activate the generator 20 so that electrical energy may be continuously or intermittently supplied to the acoustic assembly. The generator 20 also has a power line for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 20 can also be powered by a direct current (DC) source, such as a battery. The generator 20 can comprise any suitable generator, such as Model No. GEN04, and/or Model No. GEN11 available from Ethicon Endo-Surgery, Inc.
In one example aspect, the trigger 32 comprises an elongated trigger hook 36, which defines an aperture 38 between the elongated trigger hook 36 and the trigger 32. The aperture 38 is suitably sized to receive one or multiple fingers of the user therethrough. The trigger 32 also may comprise a resilient portion 32a molded over the trigger 32 substrate. The overmolded resilient portion 32a is formed to provide a more comfortable contact surface for control of the trigger 32 in outward direction 33b. In one example aspect, the overmolded resilient portion 32a may be provided over a portion of the elongated trigger hook 36. The proximal surface of the elongated trigger hook 32 remains uncoated or coated with a non-resilient substrate to enable the user to easily slide their fingers in and out of the aperture 38. In another aspect, the geometry of the trigger forms a fully closed loop which defines an aperture suitably sized to receive one or multiple fingers of the user therethrough. The fully closed loop trigger also may comprise a resilient portion molded over the trigger substrate.
In one example aspect, the fixed handle 34 comprises a proximal contact surface 40 and a grip anchor or saddle surface 42. The saddle surface 42 rests on the web where the thumb and the index finger are joined on the hand. The proximal contact surface 40 has a pistol grip contour that receives the palm of the hand in a normal pistol grip with no rings or apertures. The profile curve of the proximal contact surface 40 may be contoured to accommodate or receive the palm of the hand. A stabilization tail 44 is located towards a more proximal portion of the handle assembly 12. The stabilization tail 44 may be in contact with the uppermost web portion of the hand located between the thumb and the index finger to stabilize the handle assembly 12 and make the handle assembly 12 more controllable.
In one example aspect, the switch assembly 28 may comprise a toggle switch 30. The toggle switch 30 may be implemented as a single component with a central pivot 304 located within inside the handle assembly 12 to eliminate the possibility of simultaneous activation. In one example aspect, the toggle switch 30 comprises a first projecting knob 30a and a second projecting knob 30b to set the power setting of the ultrasonic transducer 16 between a minimum power level (e.g., MIN) and a maximum power level (e.g., MAX). In another aspect, the rocker switch may pivot between a standard setting and a special setting. The special setting may allow one or more special programs, processes, or algorithms and described herein to be implemented by the device. The toggle switch 30 rotates about the central pivot as the first projecting knob 30a and the second projecting knob 30b are actuated The one or more projecting knobs 30a, 30b are coupled to one or more arms that move through a small arc and cause electrical contacts to close or open an electric circuit to electrically energize or de-energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b. The toggle switch 30 is coupled to the generator 20 to control the activation of the ultrasonic transducer 16. The toggle switch 30 comprises one or more electrical power setting switches to activate the ultrasonic transducer 16 to set one or more power settings for the ultrasonic transducer 16. The forces required to activate the toggle switch 30 are directed substantially toward the saddle point 42, thus avoiding any tendency of the instrument to rotate in the hand when the toggle switch 30 is activated.
In one example aspect, the first and second projecting knobs 30a, 30b are located on the distal end of the handle assembly 12 such that they can be easily accessible by the user to activate the power with minimal, or substantially no, repositioning of the hand grip, making it suitable to maintain control and keep attention focused on the surgical site (e.g., a monitor in a laparoscopic procedure) while activating the toggle switch 30. The projecting knobs 30a, 30b may be configured to wrap around the side of the handle assembly 12 to some extent to be more easily accessible by variable finger lengths and to allow greater freedom of access to activation in awkward positions or for shorter fingers. In the illustrated aspect, the first projecting knob 30a comprises a plurality of tactile elements 30c, e.g., textured projections or “bumps” in the illustrated aspect, to allow the user to differentiate the first projecting knob 30a from the second projecting knob 30b. It will be appreciated by those skilled in the art that several ergonomic features may be incorporated into the handle assembly 12. Such ergonomic features are described in U.S. Pat. App. Pub. No. 2009/0105750 entitled “Ergonomic Surgical Instruments” which is incorporated by reference herein in its entirety.
In one example aspect, the toggle switch 30 may be operated by the hand of the user. The user may easily access the first and second projecting knobs 30a, 30b at any point while also avoiding inadvertent or unintentional activation at any time. The toggle switch 30 may readily be operated with a finger to control the power to the ultrasonic assembly 16 and/or to the ultrasonic assembly 16. For example, the index finger may be employed to activate the first contact portion 30a to tum on the ultrasonic assembly 16 to a maximum (MAX) power level. The index finger may be employed to activate the second contact portion 30b to tum on the ultrasonic assembly 16 to a minimum (MIN) power level. In another aspect, the rocker switch may pivot the instrument 10 between a standard setting and a special setting. The special setting may allow one or more special programs to be implemented by the instrument 10. The toggle switch 30 may be operated without the user having to look at the first or second projecting knob 30a, 30b. For example, the first projecting knob 30a or the second projecting knob 30b may comprise a texture or projections to tactilely differentiate between the first and second projecting knobs 30a, 30b without looking.
In one example aspect, the distal rotation assembly 13 is rotatable without limitation in either direction about a longitudinal axis “T.” The distal rotation assembly 13 is mechanically engaged to the elongated shaft assembly 14. The distal rotation assembly 13 is located on a distal end of the handle assembly 12. The distal rotation assembly 13 comprises a cylindrical hub 46 and a rotation knob 48 formed over the hub 46. The hub 46 mechanically engages the elongated shaft assembly 14. The rotation knob 48 may comprise fluted polymeric features and may be engaged by a finger (e.g., an index finger) to rotate the elongated shaft assembly 14. The hub 46 may comprise a material molded over the primary structure to form the rotation knob 48. The rotation knob 48 may be overmolded over the hub 46. The hub 46 comprises an end cap portion 46a that is exposed at the distal end. The end cap portion 46a of the hub 46 may contact the surface of a trocar during laparoscopic procedures. The hub 46 may be formed of a hard durable plastic such as polycarbonate to alleviate any friction that may occur between the end cap portion 46a and the trocar. The rotation knob 48 may comprise “scallops” or flutes formed of raised ribs 48a and concave portions 48b located between the ribs 48a to provide a more precise rotational grip. In one example aspect, the rotation knob 48 may comprise a plurality of flutes (e.g., three or more flutes). In other aspects, any suitable number of flutes may be employed. The rotation knob 48 may be formed of a softer polymeric material overmolded onto the hard plastic material. For example, the rotation knob 48 may be formed of pliable, resilient, flexible polymeric materials including Versaflex® TPE alloys made by GLS Corporation, for example. This softer overmolded material may provide a greater grip and more precise control of the movement of the rotation knob 48. It will be appreciated that any materials that provide adequate resistance to sterilization, are biocompatible, and provide adequate frictional resistance to surgical gloves may be employed to form the rotation knob 48.
In one example aspect, the handle assembly 12 is formed from two (2) housing portions or shrouds comprising a first portion 12a and a second portion 12b. From the perspective of a user viewing the handle assembly 12 from the distal end towards the proximal end, the first portion 12a is considered the right portion and the second portion 12b is considered the left portion. Each of the first and second portions 12a, 12b includes a plurality of interfaces 69 (
In one example aspect, the elongated shaft assembly 14 comprises a proximal end 50 adapted to mechanically engage the handle assembly 12 and the distal rotation assembly 13; and a distal end 52 adapted to mechanically engage the end effector assembly 26. The elongated shaft assembly 14 comprises an outer tubular sheath 56 and a reciprocating tubular actuating member 58 located within the outer tubular sheath 56. The proximal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the trigger 32 of the handle assembly 12 to move in either direction 60A or 60B in response to the actuation and/or release of the trigger 32. The pivotably moveable trigger 32 may generate reciprocating motion along the longitudinal axis “T.” Such motion may be used, for example, to actuate the jaws or clamping mechanism of the end effector assembly 26. A series of linkages translate the pivotal rotation of the trigger 32 to axial movement of a yoke coupled to an actuation mechanism, which controls the opening and closing of the jaws of the clamping mechanism of the end effector assembly 26. The distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the end effector assembly 26. In the illustrated aspect, the distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to a clamp arm assembly 64, which is pivotable about a pivot point 70 (
In one example aspect, the end effector assembly 26 is attached at the distal end 52 of the elongated shaft assembly 14 and includes a clamp arm assembly 64 and a ultrasonic blade 66. The jaws of the clamping mechanism of the end effector assembly 26 are formed by clamp arm assembly 64 and the ultrasonic blade 66. The ultrasonic blade 66 is ultrasonically actuatable and is acoustically coupled to the ultrasonic transducer 16. The trigger 32 on the handle assembly 12 is ultimately connected to a drive assembly, which together, mechanically cooperate to effect movement of the clamp arm assembly 64. Squeezing the trigger 32 in direction 33a moves the clamp arm assembly 64 in direction 62A from an open position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 are disposed in a spaced relation relative to one another, to a clamped or closed position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 cooperate to grasp tissue therebetween. The clamp arm assembly 64 may comprise a clamp pad 69 to engage tissue between the ultrasonic blade 66 and the clamp arm 64. Releasing the trigger 32 in direction 33b moves the clamp arm assembly 64 in direction 62B from a closed relationship, to an open position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 are disposed in a spaced relation relative to one another.
The proximal portion of the handle assembly 12 comprises a proximal opening 68 to receive the distal end of the ultrasonic assembly 16. The ultrasonic assembly 16 is inserted in the proximal opening 68 and is mechanically engaged to the elongated shaft assembly 14.
In one example aspect, the elongated trigger hook 36 portion of the trigger 32 provides a longer trigger lever with a shorter span and rotation travel. The longer lever of the elongated trigger hook 36 allows the user to employ multiple fingers within the aperture 38 to operate the elongated trigger hook 36 and cause the trigger 32 to pivot in direction 33b to open the jaws of the end effector assembly 26. For example, the user may insert three fingers (e.g., the middle, ring, and little fingers) in the aperture 38. Multiple fingers allows the surgeon to exert higher input forces on the trigger 32 and the elongated trigger hook 326 to activate the end effector assembly 26. The shorter span and rotation travel creates a more comfortable grip when closing or squeezing the trigger 32 in direction 33a or when opening the trigger 32 in the outward opening motion in direction 33b lessening the need to extend the fingers further outward. This substantially lessens hand fatigue and strain associated with the outward opening motion of the trigger 32 in direction 33b. The outward opening motion of the trigger may be spring-assisted by spring element 98 (
For example, during a surgical procedure either the index finger may be used to control the rotation of the elongated shaft assembly 14 to locate the jaws of the end effector assembly 26 in a suitable orientation. The middle and/or the other lower fingers may be used to squeeze the trigger 32 and grasp tissue within the jaws. Once the jaws are located in the desired position and the jaws are clamped against the tissue, the index finger can be used to activate the toggle switch 30 to adjust the power level of the ultrasonic transducer 16 to treat the tissue. Once the tissue has been treated, the user then may release the trigger 32 by pushing outwardly in the distal direction against the elongated trigger hook 36 with the middle and/or lower fingers to open the jaws of the end effector assembly 26. This basic procedure may be performed without the user having to adjust their grip of the handle assembly 12.
As previously discussed, the clamp arm assembly 64 may comprise electrodes electrically coupled to the electrosurgical/RF generator module 23 to receive therapeutic and/or sub-therapeutic energy, where the electrosurgical/RF energy may be applied to the electrodes either simultaneously or non simultaneously with the ultrasonic energy being applied to the ultrasonic blade 66. Such energy activations may be applied in any suitable combinations to achieve a desired tissue effect in cooperation with an algorithm or other control logic.
In one example aspect, an ultrasonic transmission waveguide 78 is disposed inside the reciprocating tubular actuating member 58. The distal end 52 of the ultrasonic transmission waveguide 78 is acoustically coupled (e.g., directly or indirectly mechanically coupled) to the ultrasonic blade 66 and the proximal end 50 of the ultrasonic transmission waveguide 78 is received within the handle assembly 12. The proximal end 50 of the ultrasonic transmission waveguide 78 is adapted to acoustically couple to the distal end of the ultrasonic transducer 16. The ultrasonic transmission waveguide 78 is isolated from the other elements of the elongated shaft assembly 14 by a protective sheath 80 and a plurality of isolation elements 82, such as silicone rings. The outer tubular sheath 56, the reciprocating tubular actuating member 58, and the ultrasonic transmission waveguide 78 are mechanically engaged by a pin 74. The switch assembly 28 comprises the toggle switch 30 and electrical elements 86a,b to electrically energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b.
In one example aspect, the outer tubular sheath 56 isolates the user or the patient from the ultrasonic vibrations of the ultrasonic transmission waveguide 78. The outer tubular sheath 56 generally includes a hub 76. The outer tubular sheath 56 is threaded onto the distal end of the handle assembly 12. The ultrasonic transmission waveguide 78 extends through the opening of the outer tubular sheath 56 and the isolation elements 82 isolate the ultrasonic transmission waveguide 24 from the outer tubular sheath 56. The outer tubular sheath 56 may be attached to the waveguide 78 with the pin 74. The hole to receive the pin 74 in the waveguide 78 may occur nominally at a displacement node. The waveguide 78 may screw or snap into the hand piece handle assembly 12 by a stud. Flat portions on the hub 76 may allow the assembly to be torqued to a required level. In one example aspect, the hub 76 portion of the outer tubular sheath 56 is preferably constructed from plastic and the tubular elongated portion of the outer tubular sheath 56 is fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 78 may comprise polymeric material surrounding it to isolate it from outside contact.
In one example aspect, the distal end of the ultrasonic transmission waveguide 78 may be coupled to the proximal end of the ultrasonic blade 66 by an internal threaded connection, preferably at or near an antinode. It is contemplated that the ultrasonic blade 66 may be attached to the ultrasonic transmission waveguide 78 by any suitable means, such as a welded joint or the like. Although the ultrasonic blade 66 may be detachable from the ultrasonic transmission waveguide 78, it is also contemplated that the single element end effector (e.g., the ultrasonic blade 66) and the ultrasonic transmission waveguide 78 may be formed as a single unitary piece.
In one example aspect, the trigger 32 is coupled to a linkage mechanism to translate the rotational motion of the trigger 32 in directions 33a and 33b to the linear motion of the reciprocating tubular actuating member 58 in corresponding directions 60a and 60b (
A control circuit 108 may receive the signals from the sensors 112 and/or 113. The control circuit 108 may include any suitable analog or digital circuit components. The control circuit 108 also may communicate with the generator 102 and/or the transducer 104 to modulate the power delivered to the end effector 106 and/or the generator level or ultrasonic blade amplitude of the end effector 106 based on the force applied to the trigger 110 and/or the position of the trigger 110 and/or the position of the outer tubular sheath 56 described above relative to the reciprocating tubular actuating member 58 located within the outer tubular sheath 56 described above (e.g., as measured by a Hall-effect sensor and magnet combination). For example, as more force is applied to the trigger 110, more power and/or a higher ultrasonic blade amplitude may be delivered to the end effector 106. According to various aspects, the force sensor 112 may be replaced by a multi-position switch.
According to various aspects, the end effector 106 may include a clamp or clamping mechanism, for example, such as that described above with respect to
According to various aspects, the surgical device 100 also may include one or more feedback devices for indicating the amount of power delivered to the end effector 106. For example, a speaker 114 may emit a signal indicative of the end effector power. According to various aspects, the speaker 114 may emit a series of pulse sounds, where the frequency of the sounds indicates power. In addition to, or instead of the speaker 114, the device may include a visual display 116. The visual display 116 may indicate end effector power according to any suitable method. For example, the visual display 116 may include a series of light emitting diodes (LEDs), where end effector power is indicated by the number of illuminated LEDs. The speaker 114 and/or visual display 116 may be driven by the control circuit 108. According to various aspects, the device 100 may include a ratcheting device (not shown) connected to the trigger 110. The ratcheting device may generate an audible sound as more force is applied to the trigger 110, providing an indirect indication of end effector power. The device 100 may include other features that may enhance safety. For example, the control circuit 108 may be configured to prevent power from being delivered to the end effector 106 in excess of a predetermined threshold. Also, the control circuit 108 may implement a delay between the time when a change in end effector power is indicated (e.g., by speaker 114 or display 116), and the time when the change in end effector power is delivered. In this way, a clinician may have ample warning that the level of ultrasonic power that is to be delivered to the end effector 106 is about to change.
Power may be supplied to a power rail of the power amplifier 162 by a switch-mode regulator 170. In certain aspects the switch-mode regulator 170 may comprise an adjustable buck regulator, for example. The non-isolated stage 154 may further comprise a processor 174, which in one aspect may comprise a DSP processor such as an Analog Devices ADSP-21469 SHARC DSP, available from Analog Devices, Norwood, Mass., for example. In certain aspects the processor 174 may control operation of the switch-mode power converter 170 responsive to voltage feedback data received from the power amplifier 162 by the processor 174 via an analog-to-digital converter (ADC) 176. In one aspect, for example, the processor 174 may receive as input, via the ADC 176, the waveform envelope of a signal (e.g., an RF signal) being amplified by the power amplifier 162. The processor 174 may then control the switch-mode regulator 170 (e.g., via a pulse-width modulated (PWM) output) such that the rail voltage supplied to the power amplifier 162 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of the power amplifier 162 based on the waveform envelope, the efficiency of the power amplifier 162 may be significantly improved relative to a fixed rail voltage amplifier schemes.
In certain aspects and as discussed in further detail in connection with
The non-isolated stage 154 may further comprise an ADC 178 and an ADC 180 coupled to the output of the power transformer 156 via respective isolation transformers 182, 184 for respectively sampling the voltage and current of drive signals output by the generator 102. In certain aspects, the ADCs 178, 180 may be configured to sample at high speeds (e.g., 80 Msps) to enable oversampling of the drive signals. In one aspect, for example, the sampling speed of the ADCs 178, 180 may enable approximately 200× (depending on drive frequency) oversampling of the drive signals. In certain aspects, the sampling operations of the ADCs 178, 180 may be performed by a single ADC receiving input voltage and current signals via a two-way multiplexer. The use of high-speed sampling in aspects of the generator 102 may enable, among other things, calculation of the complex current flowing through the motional branch (which may be used in certain aspects to implement DDS based waveform shape control described above), accurate digital filtering of the sampled signals, and calculation of real power consumption with a high degree of precision. Voltage and current feedback data output by the ADCs 178, 180 may be received and processed (e.g., FIFO buffering, multiplexing) by the programmable logic device 166 and stored in data memory for subsequent retrieval by, for example, the processor 174. As noted above, voltage and current feedback data may be used as input to an algorithm for pre-distorting or modifying LUT waveform samples on a dynamic and ongoing basis. In certain aspects, this may require each stored voltage and current feedback data pair to be indexed based on, or otherwise associated with, a corresponding LUT sample that was output by the programmable logic device 166 when the voltage and current feedback data pair was acquired. Synchronization of the LUT samples and the voltage and current feedback data in this manner contributes to the correct timing and stability of the pre-distortion algorithm.
In certain aspects, the voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signals. In one aspect, for example, voltage and current feedback data may be used to determine impedance phase. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), thereby minimizing or reducing the effects of ultrasonic distortion and correspondingly enhancing impedance phase measurement accuracy. The determination of phase impedance and a frequency control signal may be implemented in the processor 174, for example, with the frequency control signal being supplied as input to a DDS control algorithm implemented by the programmable logic device 166.
In another aspect, for example, the current feedback data may be monitored in order to maintain the current amplitude of the drive signal at a current amplitude setpoint. The current amplitude setpoint may be specified directly or determined indirectly based on specified voltage amplitude and power setpoints. In certain aspects, control of the current amplitude may be implemented by control algorithm, such as, for example, a proportional-integral-derivative (PID) or a proportional-integral (PI) control algorithm, in the processor 174. Variables controlled by the control algorithm to suitably control the current amplitude of the drive signal may include, for example, the scaling of the LUT waveform samples stored in the programmable logic device 166 and/or the full-scale output voltage of the DAC 168 (which supplies the input to the power amplifier 162) via a DAC 186.
The non-isolated stage 154 may further comprise a processor 190 for providing, among other things user interface (UI) functionality. In one aspect, the processor 190 may comprise an Atmel AT91 SAM9263 processor having an ARM 926EJ-S core, available from Atmel Corporation, San Jose, Calif., for example. Examples of UI functionality supported by the processor 190 may include audible and visual user feedback, communication with peripheral devices (e.g., via a Universal Serial Bus (USB) interface), communication with the footswitch 120, communication with an input device 145 (e.g., a touch screen display) and communication with an output device 146 (e.g., a speaker). The processor 190 may communicate with the processor 174 and the programmable logic device (e.g., via serial peripheral interface (SPI) buses). Although the processor 190 may primarily support UI functionality, it may also coordinate with the processor 174 to implement hazard mitigation in certain aspects. For example, the processor 190 may be programmed to monitor various aspects of user input and/or other inputs (e.g., touch screen inputs, footswitch 120 inputs, temperature sensor inputs) and may disable the drive output of the generator 102 when an erroneous condition is detected.
In certain aspects, both the processor 174 and the processor 190 may determine and monitor the operating state of the generator 102. For the processor 174, the operating state of the generator 102 may dictate, for example, which control and/or diagnostic processes are implemented by the processor 174. For the processor 190, the operating state of the generator 102 may dictate, for example, which elements of a user interface (e.g., display screens, sounds) are presented to a user. The processors 174, 190 may independently maintain the current operating state of the generator 102 and recognize and evaluate possible transitions out of the current operating state. The processor 174 may function as the master in this relationship and determine when transitions between operating states are to occur. The processor 190 may be aware of valid transitions between operating states and may confirm if a particular transition is appropriate. For example, when the processor 174 instructs the processor 190 to transition to a specific state, the processor 190 may verify that requested transition is valid. In the event that a requested transition between states is determined to be invalid by the processor 190, the processor 190 may cause the generator 102 to enter a failure mode.
The non-isolated stage 154 may further comprise a controller 196 for monitoring input devices 145 (e.g., a capacitive touch sensor used for turning the generator 102 on and off, a capacitive touch screen). In certain aspects, the controller 196 may comprise at least one processor and/or other controller device in communication with the processor 190. In one aspect, for example, the controller 196 may comprise a processor (e.g., a Mega168 8-bit controller available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. In one aspect, the controller 196 may comprise a touch screen controller (e.g., a QT5480 touch screen controller available from Atmel) to control and manage the acquisition of touch data from a capacitive touch screen.
In certain aspects, when the generator 102 is in a “power off’ state, the controller 196 may continue to receive operating power (e.g., via a line from a power supply of the generator 102, such as the power supply 211 discussed below). In this way, the controller 196 may continue to monitor an input device 145 (e.g., a capacitive touch sensor located on a front panel of the generator 102) for turning the generator 102 on and off. When the generator 102 is in the power off state, the controller 196 may wake the power supply (e.g., enable operation of one or more DC/DC voltage converters 213 of the power supply 211) if activation of the “on/off’ input device 145 by a user is detected. The controller 196 may therefore initiate a sequence for transitioning the generator 102 to a “power on” state. Conversely, the controller 196 may initiate a sequence for transitioning the generator 102 to the power off state if activation of the “on/off’ input device 145 is detected when the generator 102 is in the power on state. In certain aspects, for example, the controller 196 may report activation of the “on/off’ input device 145 to the processor 190, which in tum implements the necessary process sequence for transitioning the generator 102 to the power off state. In such aspects, the controller 196 may have no independent ability for causing the removal of power from the generator 102 after its power on state has been established.
In certain aspects, the controller 196 may cause the generator 102 to provide audible or other sensory feedback for alerting the user that a power on or power off sequence has been initiated. Such an alert may be provided at the beginning of a power on or power off sequence and prior to the commencement of other processes associated with the sequence.
In certain aspects, the isolated stage 152 may comprise an instrument interface circuit 198 to, for example, provide a communication interface between a control circuit of a surgical device (e.g., a control circuit comprising handpiece switches) and components of the non-isolated stage 154, such as, for example, the programmable logic device 166, the processor 174 and/or the processor 190. The instrument interface circuit 198 may exchange information with components of the non-isolated stage 154 via a communication link that maintains a suitable degree of electrical isolation between the stages 152, 154, such as, for example, an infrared (IR)-based communication link. Power may be supplied to the instrument interface circuit 198 using, for example, a low-dropout voltage regulator powered by an isolation transformer driven from the non-isolated stage 154.
In one aspect, the instrument interface circuit 198 may comprise a programmable logic device 200 (e.g., an FPGA) in communication with a signal conditioning circuit 202. The signal conditioning circuit 202 may be configured to receive a periodic signal from the programmable logic device 200 (e.g., a 2 kHz square wave) to generate a bipolar interrogation signal having an identical frequency. The interrogation signal may be generated, for example, using a bipolar current source fed by a differential amplifier. The interrogation signal may be communicated to a surgical device control circuit (e.g., by using a conductive pair in a cable that connects the generator 102 to the surgical device) and monitored to determine a state or configuration of the control circuit. The control circuit may comprise a number of switches, resistors and/or diodes to modify one or more characteristics (e.g., amplitude, rectification) of the interrogation signal such that a state or configuration of the control circuit is uniquely discernable based on the one or more characteristics. In one aspect, for example, the signal conditioning circuit 202 may comprise an ADC for generating samples of a voltage signal appearing across inputs of the control circuit resulting from passage of interrogation signal therethrough. The programmable logic device 200 (or a component of the nonisolated stage 154) may then determine the state or configuration of the control circuit based on the ADC samples.
In one aspect, the instrument interface circuit 198 may comprise a first data circuit interface 204 to enable information exchange between the programmable logic device 200 (or other element of the instrument interface circuit 198) and a first data circuit disposed in or otherwise associated with a surgical device. In certain aspects, a first data circuit 206 may be disposed in a cable integrally attached to a surgical device handpiece, or in an adaptor for interfacing a specific surgical device type or model with the generator 102. In certain aspects, the first data circuit may comprise a non-volatile storage device, such as an electrically erasable programmable read-only memory (EEPROM) device. In certain aspects and referring again to
In certain aspects, the first data circuit 206 may store information pertaining to the particular surgical device with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical device has been used, and/or any other type of information. This information may be read by the instrument interface circuit 198 (e.g., by the programmable logic device 200), transferred to a component of the non-isolated stage 154 (e.g., to programmable logic device 166, processor 174 and/or processor 190) for presentation to a user via an output device 146 and/or for controlling a function or operation of the generator 102. Additionally, any type of information may be communicated to first data circuit 206 for storage therein via the first data circuit interface 204 (e.g., using the programmable logic device 200). Such information may comprise, for example, an updated number of operations in which the surgical device has been used and/or dates and/or times of its usage.
A surgical instrument may be detachable from a handpiece to promote instrument interchangeability and/or disposability. In such cases, known generators may be limited in their ability to recognize particular instrument configurations being used and to optimize control and diagnostic processes accordingly. The addition of readable data circuits to surgical device instruments to address this issue is problematic from a compatibility standpoint, however. For example, designing a surgical device to remain backwardly compatible with generators that lack the requisite data reading functionality may be impractical due to, for example, differing signal schemes, design complexity and cost. Aspects of instruments may use data circuits that may be implemented in existing surgical instruments economically and with minimal design changes to preserve compatibility of the surgical devices with current generator platforms.
Additionally, aspects of the generator 102 may enable communication with instrument-based data circuits. For example, the generator 102 may be configured to communicate with a second data circuit contained in an instrument of a surgical device. The instrument interface circuit 198 may comprise a second data circuit interface 210 to enable this communication. In one aspect, the second data circuit interface 210 may comprise a tri-state digital interface, although other interfaces may also be used. In certain aspects, the second data circuit may generally be any circuit for transmitting and/or receiving data. In one aspect, for example, the second data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information. Additionally or alternatively, any type of information may be communicated to second data circuit for storage therein via the second data circuit interface 210 (e.g., using the programmable logic device 200). Such information may comprise, for example, an updated number of operations in which the instrument has been used and/or dates and/or times of its usage. In certain aspects, the second data circuit may transmit data acquired by one or more sensors (e.g., an instrument-based temperature sensor). In certain aspects, the second data circuit may receive data from the generator 102 and provide an indication to a user (e.g., an LED indication or other visible indication) based on the received data.
In certain aspects, the second data circuit and the second data circuit interface 210 may be configured such that communication between the programmable logic device 200 and the second data circuit can be effected without the need to provide additional conductors for this purpose (e.g., dedicated conductors of a cable connecting a handpiece to the generator 102). In one aspect, for example, information may be communicated to and from the second data circuit using a 1-wire bus communication scheme implemented on existing cabling, such as one of the conductors used transmit interrogation signals from the signal conditioning circuit 202 to a control circuit in a handpiece. In this way, design changes or modifications to the surgical device that might otherwise be necessary are minimized or reduced. Moreover, because different types of communications can be implemented over a common physical channel (either with or without frequency-band separation), the presence of a second data circuit may be “invisible” to generators that do not have the requisite data reading functionality, thus enabling backward compatibility of the surgical device instrument. In certain aspects, the isolated stage 152 may comprise at least one blocking capacitor 296-1 connected to the drive signal output 160b to prevent passage of DC current to a patient. A single blocking capacitor may be required to comply with medical regulations or standards, for example. While failure in single-capacitor designs is relatively uncommon, such failure may nonetheless have negative consequences. In one aspect, a second blocking capacitor 296-2 may be provided in series with the blocking capacitor 296-1, with current leakage from a point between the blocking capacitors 296-1, 296-2 being monitored by, for example, an ADC 298 for sampling a voltage induced by leakage current. The samples may be received by the programmable logic device 200, for example. Based on changes in the leakage current (as indicated by the voltage samples in the aspect of
In certain aspects, the non-isolated stage 154 may comprise a power supply 211 for outputting DC power at a suitable voltage and current. The power supply may comprise, for example, a 400 W power supply for outputting a 48 VDC system voltage. The power supply 211 may further comprise one or more DC/DC voltage converters 213 for receiving the output of the power supply to generate DC outputs at the voltages and currents required by the various components of the generator 102. As discussed above in connection with the controller 196, one or more of the DC/DC voltage converters 213 may receive an input from the controller 196 when activation of the “on/off’ input device 145 by a user is detected by the controller 196 to enable operation of, or wake, the DC/DC voltage converters 213.
The multiplexed current and voltage feedback samples may be received by a parallel data acquisition port (PDAP) implemented within block 214 of the processor 174. The PDAP may comprise a packing unit for implementing any of a number of methodologies for correlating the multiplexed feedback samples with a memory address. In one aspect, for example, feedback samples corresponding to a particular LUT sample output by the programmable logic device 166 may be stored at one or more memory addresses that are correlated or indexed with the LUT address of the LUT sample. In another aspect, feedback samples corresponding to a particular LUT sample output by the programmable logic device 166 may be stored, along with the LUT address of the LUT sample, at a common memory location. In any event, the feedback samples may be stored such that the address of an LUT sample from which a particular set of feedback samples originated may be subsequently ascertained. As discussed above, synchronization of the LUT sample addresses and the feedback samples in this way contributes to the correct timing and stability of the pre-distortion algorithm. A direct memory access (DMA) controller implemented at block 216 of the processor 174 may store the feedback samples (and any LUT sample address data, where applicable) at a designated memory location 218 of the processor 174 (e.g., internal RAM).
Block 220 of the processor 174 may implement a pre-distortion algorithm for pre-distorting or modifying the LUT samples stored in the programmable logic device 166 on a dynamic, ongoing basis. As discussed above, pre-distortion of the LUT samples may compensate for various sources of distortion present in the output drive circuit of the generator 102. The pre-distorted LUT samples, when processed through the drive circuit, will therefore result in a drive signal having the desired waveform shape (e.g., sinusoidal) for optimally driving the ultrasonic transducer.
At block 222 of the pre-distortion algorithm, the current through the motional branch of the ultrasonic transducer is determined. The motional branch current may be determined using Kirchoffs Current Law based on, for example, the current and voltage feedback samples stored at memory location 218, a value of the ultrasonic transducer static capacitance Co (measured or known a priori) and a known value of the drive frequency. A motional branch current sample for each set of stored current and voltage feedback samples associated with a LUT sample may be determined.
At block 224 of the pre-distortion algorithm, each motional branch current sample determined at block 222 is compared to a sample of a desired current waveform shape to determine a difference, or sample amplitude error, between the compared samples. For this determination, the sample of the desired current waveform shape may be supplied, for example, from a waveform shape LUT 226 containing amplitude samples for one cycle of a desired current waveform shape. The particular sample of the desired current waveform shape from the LUT 226 used for the comparison may be dictated by the LUT sample address associated with the motional branch current sample used in the comparison. Accordingly, the input of the motional branch current to block 224 may be synchronized with the input of its associated LUT sample address to block 224. The LUT samples stored in the programmable logic device 166 and the LUT samples stored in the waveform shape LUT 226 may therefore be equal in number. In certain aspects, the desired current waveform shape represented by the LUT samples stored in the waveform shape LUT 226 may be a fundamental sine wave. Other waveform shapes may be desirable. For example, it is contemplated that a fundamental sine wave for driving main longitudinal motion of an ultrasonic transducer superimposed with one or more other drive signals at other frequencies, such as a third order ultrasonic for driving at least two mechanical resonances for beneficial vibrations of transverse or other modes, could be used.
Each value of the sample amplitude error determined at block 224 may be transmitted to the LUT of the programmable logic device 166 (shown at block 228 in
Current and voltage amplitude measurements, power measurements and impedance measurements may be determined at block 230 of the processor 174 based on the current and voltage feedback samples stored at memory location 218. Prior to the determination of these quantities, the feedback samples may be suitably scaled and, in certain aspects, processed through a suitable filter 232 to remove noise resulting from, for example, the data acquisition process and induced ultrasonic components. The filtered voltage and current samples may therefore substantially represent the fundamental frequency of the generator's drive output signal. In certain aspects, the filter 232 may be a finite impulse response (FIR) filter applied in the frequency domain. Such aspects may use the fast Fourier transform (FFT) of the output drive signal current and voltage signals. In certain aspects, the resulting frequency spectrum may be used to provide additional generator functionality. In one aspect, for example, the ratio of the second and/or third order ultrasonic component relative to the fundamental frequency component may be used as a diagnostic indicator. At block 234, a root mean square (RMS) calculation may be applied to a sample size of the current feedback samples representing an integral number of cycles of the drive signal to generate a measurement Irms representing the drive signal output current.
At block 236, a root mean square (RMS) calculation may be applied to a sample size of the voltage feedback samples representing an integral number of cycles of the drive signal to determine a measurement Vrms representing the drive signal output voltage. At block 238, the current and voltage feedback samples may be multiplied point by point, and a mean calculation is applied to samples representing an integral number of cycles of the drive signal to determine a measurement Pr of the generator's real output power.
At block 240, measurement Pa of the generator's apparent output power may be determined as the product Vrms·Irms.
At block 242, measurement Zm of the load impedance magnitude may be determined as the quotient Vrms/Irms.
In certain aspects, the quantities Irms, Vrms, Pr, Pa, and Zm determined at blocks 234, 236, 238, 240 and 242 may be used by the generator 102 to implement any of number of control and/or diagnostic processes. In certain aspects, any of these quantities may be communicated to a user via, for example, an output device 146 integral with the generator 102 or an output device 146 connected to the generator 102 through a suitable communication interface (e.g., a USB interface). Various diagnostic processes may include, without limitation, handpiece integrity, instrument integrity, instrument attachment integrity, instrument overload, approaching instrument overload, frequency lock failure, over-voltage, over-current, over-power, voltage sense failure, current sense failure, audio indication failure, visual indication failure, short circuit, power delivery failure, blocking capacitor failure, for example.
Block 244 of the processor 174 may implement a phase control algorithm for determining and controlling the impedance phase of an electrical load (e.g., the ultrasonic transducer) driven by the generator 102. As discussed above, by controlling the frequency of the drive signal to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), the effects of ultrasonic distortion may be minimized or reduced, and the accuracy of the phase measurement increased.
The phase control algorithm receives as input the current and voltage feedback samples stored in the memory location 218. Prior to their use in the phase control algorithm, the feedback samples may be suitably scaled and, in certain aspects, processed through a suitable filter 246 (which may be identical to filter 232) to remove noise resulting from the data acquisition process and induced ultrasonic components, for example. The filtered voltage and current samples may therefore substantially represent the fundamental frequency of the generator's drive output signal.
At block 248 of the phase control algorithm, the current through the motional branch of the ultrasonic transducer is determined. This determination may be identical to that described above in connection with block 222 of the pre-distortion algorithm. The output of block 248 may thus be, for each set of stored current and voltage feedback samples associated with a LUT sample, a motional branch current sample.
At block 250 of the phase control algorithm, impedance phase is determined based on the synchronized input of motional branch current samples determined at block 248 and corresponding voltage feedback samples. In certain aspects, the impedance phase is determined as the average of the impedance phase measured at the rising edge of the waveforms and the impedance phase measured at the falling edge of the waveforms.
At block 252 of the of the phase control algorithm, the value of the impedance phase determined at block 222 is compared to phase setpoint 254 to determine a difference, or phase error, between the compared values.
At block 256 of the phase control algorithm, based on a value of phase error determined at block 252 and the impedance magnitude determined at block 242, a frequency output for controlling the frequency of the drive signal is determined. The value of the frequency output may be continuously adjusted by the block 256 and transferred to a DDS control block 268 (discussed below) in order to maintain the impedance phase determined at block 250 at the phase setpoint (e.g., zero phase error). In certain aspects, the impedance phase may be regulated to a oo phase setpoint. In this way, any ultrasonic distortion will be centered about the crest of the voltage waveform, enhancing the accuracy of phase impedance determination.
Block 258 of the processor 174 may implement an algorithm for modulating the current amplitude of the drive signal in order to control the drive signal current, voltage and power in accordance with user specified setpoints, or in accordance with requirements specified by other processes or algorithms implemented by the generator 102. Control of these quantities may be realized, for example, by scaling the LUT samples in the LUT 228 and/or by adjusting the full-scale output voltage of the DAC 168 (which supplies the input to the power amplifier 162) via a DAC 186. Block 260 (which may be implemented as a PID controller in certain aspects) may receive as input current feedback samples (which may be suitably scaled and filtered) from the memory location 218. The current feedback samples may be compared to a “current demand” Id value dictated by the controlled variable (e.g., current, voltage or power) to determine if the drive signal is supplying the necessary current. In aspects in which drive signal current is the control variable, the current demand Id may be specified directly by a current setpoint 262A (Isp). For example, an RMS value of the current feedback data (determined as in block 234) may be compared to user-specified RMS current setpoint Isp to determine the appropriate controller action. If, for example, the current feedback data indicates an RMS value less than the current setpoint Isp, LUT scaling and/or the full-scale output voltage of the DAC 168 may be adjusted by the block 260 such that the drive signal current is increased. Conversely, block 260 may adjust LUT scaling and/or the full-scale output voltage of the DAC 168 to decrease the drive signal current when the current feedback data indicates an RMS value greater than the current setpoint Isp.
In aspects in which the drive signal voltage is the control variable, the current demand Id may be specified indirectly, for example, based on the current required to maintain a desired voltage setpoint 262B (Vsp) given the load impedance magnitude Zm measured at block 242 (e.g. Id=Vsp/Zm). Similarly, in aspects in which drive signal power is the control variable, the current demand Id may be specified indirectly, for example, based on the current required to maintain a desired power setpoint 262C (Psp) given the voltage Vrms measured at blocks 236 (e.g. Id=Psp/Vrms).
Block 268 may implement a DDS control algorithm for controlling the drive signal by recalling LUT samples stored in the LUT 228. In certain aspects, the DDS control algorithm be a numerically-controlled oscillator (NCO) algorithm for generating samples of a waveform at a fixed clock rate using a point (memory location)-skipping technique. The NCO algorithm may implement a phase accumulator, or frequency-to-phase converter, that functions as an address pointer for recalling LUT samples from the LUT 228. In one aspect, the phase accumulator may be a D step size, modulo N phase accumulator, where D is a positive integer representing a frequency control value, and N is the number of LUT samples in the LUT 228. A frequency control value of D=1, for example, may cause the phase accumulator to sequentially point to every address of the LUT 228, resulting in a waveform output replicating the waveform stored in the LUT 228. When D>1, the phase accumulator may skip addresses in the LUT 228, resulting in a waveform output having a higher frequency. Accordingly, the frequency of the waveform generated by the DDS control algorithm may therefore be controlled by suitably varying the frequency control value. In certain aspects, the frequency control value may be determined based on the output of the phase control algorithm implemented at block 244. The output of block 268 may supply the input of (DAC) 168, which in tum supplies a corresponding analog signal to an input of the power amplifier 162.
Block 270 of the processor 174 may implement a switch-mode converter control algorithm for dynamically modulating the rail voltage of the power amplifier 162 based on the waveform envelope of the signal being amplified, thereby improving the efficiency of the power amplifier 162. In certain aspects, characteristics of the waveform envelope may be determined by monitoring one or more signals contained in the power amplifier 162. In one aspect, for example, characteristics of the waveform envelope may be determined by monitoring the minima of a drain voltage (e.g., a MOSFET drain voltage) that is modulated in accordance with the envelope of the amplified signal. A minima voltage signal may be generated, for example, by a voltage minima detector coupled to the drain voltage. The minima voltage signal may be sampled by ADC 176, with the output minima voltage samples being received at block 272 of the switch-mode converter control algorithm. Based on the values of the minima voltage samples, block 274 may control a PWM signal output by a PWM generator 276, which, in turn, controls the rail voltage supplied to the power amplifier 162 by the switch-mode regulator 170. In certain aspects, as long as the values of the minima voltage samples are less than a minima target 278 input into block 262, the rail voltage may be modulated in accordance with the waveform envelope as characterized by the minima voltage samples. When the minima voltage samples indicate low envelope power levels, for example, block 274 may cause a low rail voltage to be supplied to the power amplifier 162, with the full rail voltage being supplied only when the minima voltage samples indicate maximum envelope power levels. When the minima voltage samples fall below the minima target 278, block 274 may cause the rail voltage to be maintained at a minimum value suitable for ensuring proper operation of the power amplifier 162.
In one aspect, a method and/or apparatus may provide functionality for sensing a clamp arm position relative to a ultrasonic blade of an end effector, and a generator such as generator 102 and a controller such as control circuit 108 and/or controller 196 may be used to adjust a power output to the ultrasonic blade based on the clamp arm position. Referring now to
Referring now to
Ultrasonic blade 306 may deliver a tissue effect through mechanical vibration to tissues and/or blood vessels. Clamp arm 304 may pivot about point 314, which may represent a connection between the clamp arm and an outer tube 310. An inner tube 308 may move back and forth and may drive closure of the clamp arm 304 on ultrasonic blade 306. In various aspects, it may be desirable to measure the angle between the clamp arm 304 and the ultrasonic blade 306.
In one aspect, the position of clamp arm 304 relative to ultrasonic blade 306 (e.g., during activation) may be approximated through a coupling with the inner tube 308. The inner tube 308 may be linked to the clamp arm 304 and may be similar to the reciprocating tubular actuating member 58 located within the outer tubular sheath 56. The outer tube 310, which may be similar to the outer tubular sheath 56, and/or ultrasonic blade 306, may be used to determine a position and/or angle of the clamp arm 304 relative to ultrasonic blade 306. The outer tube 310 may be static and in one aspect may be linked to clamp arm 304. As result, using the techniques and features described herein, the movement (e.g., represented with the bidirectional arrow 312) of the inner tube 308 relative to the outer tube 310 may be measured and used to approximate the claim arm position.
Referring briefly to
Use of Hall-effect sensors will be described herein with respect to various aspects of the present disclosure, however other types of sensors may be used to measure the movement 312. For example, linear variable differential transformers (LVDT), rotary variable differential transformer, piezoelectric transducers, potentiometers, photo electric sensors may be used to measure the movement 312. Furthermore, Hall-effect sensors and suitable equivalents may be used to measure the position of two bodies relative to one another through the use of a small electronic board and magnets.
Referring now to
The Hall-effect sensor may include a small electronic chip which may sense magnetic fields and change its electrical output based on the relative proximity of the magnet or the strength of the magnetic fields to the Hall-effect sensor. As the magnet moves across the face of the Hall-effect sensor (e.g., marked “X”) and gets closer to being directly in front of the face, an output signal of the Hall-effect sensor may change and be used to determine a position of the magnet relative to the Hall-effect sensor. In one aspect, the magnet may not cause much of a change in the output signal of the Hall-effect sensor. For example, using a magnet and Hall-effect sensor having particular characteristics, the magnet being more than 1.5 inches or further distances from the Hall-effect sensor may produce very little in terms of the output signal, but as the magnet moves closer and closer to the Hall-effect sensor, the electrical output changes more rapidly such that a very discernable signal change occurs in response to small motions of the magnet as it is moved closer to a critical position. The electrical response of the Hall-effect sensor at various positions of the magnet may be used to create a best fit curve. For example, the voltage output of the Hall-effect sensor as a function of the displacement of the magnet may be determined.
Referring now to
Turning now to
Referring now to
It should be noted that while various aspects discussed herein are described to include an outer tube that is static and an inner tube that drives motion of the clamp arm, other configurations are possible and within the scope of the present disclosure. For example, in various aspects, an outer tube may drive the motion of the clamp arm and the inner tube may be static. Additionally, while various aspects discussed herein are described to include a Hall-effect sensor 510 and/or integrated circuit (e.g., chip) that is static and a magnet 508 that moves as the clamp arm 500 moves, other configurations are possible and within the scope of the present disclosure. For example, in various aspects, the Hall-effect sensor 510 may move as the clamp arm 503 moves and the magnet may be static. Many combinations are possible, including a fixed outer tube and a moveable inner, a moving magnet 508 and a stationery Hall-effect sensor 510 or other sensing circuit, a moving Hall-effect sensor 510 or other sensing circuit and a stationary magnet 508, a moveable outer tube and a fixed inner tube, a fixed magnet in one of the inner and outer tubes, and/or a moving magnet in one of the inner and outer tubes. The Hall-effect sensor 510 or other circuit may be mounted to the moving part (e.g., inner or outer tube) or mounted to the stationary part (e.g., inner or outer tube), as long as flexible electrical connections are considered and motion can be achieved.
As shown in
Referring now to
In one aspect, an ultrasonic algorithm or process may be used to enable a surgical device to seal tissue without transection. The implementation of this algorithm or process may require measuring clamp arm position relative to the ultrasonic blade of an end effector. A method can be used to sense the clamp arm position relative to the ultrasonic blade as described herein and that positioning can be consistently calibrated during manufacturing, as will be described below, such that estimates of thickness of tissue can be made. For example, an algorithm or process that is fed information about quantity of tissue can react as that quantity changes. This may allow the surgical device to treat the tissue without completely transecting a vessel.
Turning now briefly to
Typically, end effectors may be used to coagulate and cuts vessels at the same time. However, using the techniques and features described herein, an end effector may be used to seal a carotid or vessel without actually transecting it, as may be desired by a surgeon. With information on the clamp arm position, a Travel Ratio (TR) can be calculated, whereby if the clamp arm is in the completely closed position with nothing captured in the end effector, the sensor (e.g., Hall-effect sensor) may indicate a TR of 1. For example, for illustrative purposes only, let XT represent a relative clamp arm position at any given time in activation, X1 be a claim arm position when the surgical device is fully clamped with no tissue, and X2 be a clamp arm position at a beginning of activation, with tissue grasped in the end effector, where:
Continuing with the example above, X1 may be a value programmed into the surgical device for the clamp arm position when the jaws are fully closed and nothing is captured in the end effector. X2 may be the clamp arm position at the start of an activation such that if a vessel is attached in the end effector and the clamp arm is closed all the way, the clamp arm may be squeezing the vessel down but with some distance to travel before the vessel is transected and the clamp arm is directly opposite the ultrasonic blade with full contact. XT may change dynamically as it is the clamp arm position at any given time.
For example, at the very beginning of activation TR may be zero, as X1 may be set to represent the clamp arm position being fully closed with nothing captured. X2, at the very beginning of the activation, when the clamp arm is touching a vessel, may provide a relative thickness before firing the ultrasonic blade. XT may be the value in the equation that is updating continuously with time as the clamp arm travels further and compresses and starts to cut the tissue. In one aspect, it may be desirable to deactivate (e.g., stop firing) the ultrasonic blade when the clamp arm has traveled 70% or 0.7. Thus, it may be empirically determined beforehand that a desired TR is 0.7 of the way between the clamp arm being closed with a full bite of tissue and being fully closed with nothing in between the clamp arm and ultrasonic blade.
The TR of 0.7 has been described for illustrative purposes only and may depend on many parameters. For example, the desired TR for the point at which the ultrasonic blade will be shut-off may be based on vessel size. The TR may be any value observed to work for treating a given tissue or vessel without transection. Once the desired position is known, the vibrating of the ultrasonic blade may be adjusted based on the desired position.
In one aspect, it may be desirable to use a proportional-integral controller.
Turning now briefly to
Turning back to
As the ultrasonic blade is powered, the ultrasonic blade will effect the tissue or the vessel such that friction at the interface of the ultrasonic blade and the tissue causes heat to drive the moisture from and dry out the tissue. During this process, the clamp arm portion is able to increasingly compress the tissue as the seal develops. As the TR increases over time the tissue flattens by applying more pressure with the clamp arm as the tissue dries out. In this way, a PI controller may be used to cook the tissue from a beginning point (where TR=0) to a certain second position by controlling power output to effectively seal large vessels. With the PI controller, as the TR approaches the Desired Value, the ultrasonic device drops the power delivery (to the ultrasonic blade) to smoothly control the compression and coagulation of the tissue. This process has shown an ability to effectively seal vessels without transection. In this way, process 3200 may adjust 3218 the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral (PI) controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade. It will be appreciated that PI control is not the only logic system through which power could be controlled. Many mathematical mappings exist to appropriately reduce power as a function of the Hall-effect sensor. Examples of other logic systems include PID controllers, proportional controllers, fuzzy logic, neural networks, polynomials, Bayesian networks, among others.
In effect, the PI controller may indicate what the power output should be based on the distance at any given time between the Travel Ratio and the Desired Value. From that distance, the PI controller may output a certain value (e.g., 0.4). In the example of
In one aspect the techniques described herein may be employed to seal different sizes of vessels (e.g., 5 mm, 6 mm, and 7 mm round vessels). The strength of the seals may be tested until the seal bursts and recording the burst pressure. A higher burst pressure indicates a stronger seal. In the case of an actual surgery, if a surgical instrument or device as described herein is used to seal a vessel the seal will not leak if it has a high associated burst pressure. In one aspect, the burst pressures can be measured across different sizes of vessels, e.g., 5 mm, 6 mm, and 7 mm round vessels, respectively. Typically, smaller vessels have higher burst pressure with larger vessels, the burst pressure is decreased.
Turning now to
In one aspect, it has been observed that activating a ultrasonic blade with the clamp arm open may help to release tissue that may have stuck to the ultrasonic blade while being coagulated. Detecting a change in signal from a Hall-effect sensor may indicate when the user is opening the clamp arm after device activation. This information may trigger the system to send a low level ultrasonic signal for a short period of time, in order to release any tissue stuck to the ultrasonic blade. This short, sub-therapeutic signal may reduce the level of sticking experienced by the user. This feature may be useful if a ultrasonic shear device were designed for multiple uses and the ultrasonic blade coating began to wear off. In this way, the techniques and features described herein may be used to reduce the amount of tissue sticking to the ultrasonic blade.
A method for calibrating an end effector and Hall-effect sensor may include calibrating the end effector and Hall-effect sensor during manufacturing of thereafter. As discussed above, process 3300 shown in
As described above, determining a Travel Ratio (TR) may help in various processes to control an end effector. In determining TR, X1 is the clamp arm position when the device is fully closed with no tissue. Determining the value (e.g., Hall effect signal) corresponding to X1 may be done during manufacturing and may be part of the calibration process.
Turning now to
Still with reference to
Turning back now to
The second data point (2) is recorded when the end effector 2600 is in the configuration shown in
The third data point (3) is recorded when the end effector 2600 is in the configuration shown in
The fourth data point (4) is recorded when the end effector 2600 is in the configuration shown in
Various configurations of gage pins may create known displacements and/or angles between the clamp arm 2606 and the ultrasonic blade 2608 of the end effector 2600. Using kinematics of a given clamp arm/ultrasonic blade/shaft design and gage pins of known diameter, a theoretical displacement of the shaft assembly can be known at each of the, e.g., four or more positions. This information may be input, along with the voltage readings of the Hall-effect sensor, to fit a parabolic curve (e.g., best fit curve 2502 as shown in
The Hall-effect sensor signal response at, for example, the four positions of the clamp arm described above may be graphed and the responses may be fit and entered into to a lookup table or developed into a polynomial which may be used to set/calibrate the Hall-effect sensor such that when used by a surgeon, the end effector delivers the tissue effect desired. In this way, process 3300 may determine 3308 a best fit curve to represent signal strength (e.g., from Hall-effect sensor) as a function of sensor displacement (e.g., magnet displacement) based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body. Process 3300 may also create 3310 a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.
The positioning of the Hall-effect sensor/magnet arrangement in the configurations described above may be used to calibrate the surgical device such that the most sensitive movements of the clamp arm 2606 exist when the clamp arm 2606 is closest to the ultrasonic blade 2608. Four positions, corresponding to four data points (1-4), were chosen in the example described above, but any number of positions could be used at the discretion of design and development teams to ensure proper calibration.
In one aspect, the techniques and features described herein may be used to provide feedback to a surgeon to indicate when the surgeon should use hemostasis mode for the vessel sealing procedure prior to engaging the cutting procedure. For example, hemostasis mode algorithm may be dynamically changed based on the size of a vessel grasped by the end effector 2600 in order to save time. This may require feedback based on the position of the clamp arm 2606.
Turning now to
With reference now to
Smaller vessels 3014 may be easier to seal at high burst pressure levels. Thus, it may be desirable to sense and determine whether a smaller vessel 3014 (e.g., less than 4 mm) is clamped by the clamp arm 3006, and if so, the ultrasonic energy level may not need to be dropped to 1. Instead, the energy level could be dropped less, to about 3.5 for example, as shown by the first graph 3020 shown in
If the end effector position indicates a vessel larger than 5 mm, the process 3100 determines 3110 if the end effector position indicates a vessel larger than 7 mm. If the end effector position does not indicate a vessel larger than 7 mm, the process 3100 indicates 3112 that hemostasis mode should be used. This condition may be indicated using a variety of auditory, vibratory, or visual feedback techniques including, for example, a green LED located on the surgical device (e.g., on top of the handle) may be enabled. If the end effector position does indicate a vessel larger than 7 mm, the process 3100 indicates 3114 that the tissue should not be taken (i.e., hemostasis mode should not be used) because too much tissue has been captured by the end effector. This condition may be indicated using a variety of auditory, vibratory, or visual feedback techniques including, for example, a red LED on the surgical device (e.g., on top of the handle) may be enabled.
The process 3200 continues and determines 3204 a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal (from, e.g., Hall-effect sensor voltage output). Once clamp arm position relative to ultrasonic blade is known, the vibrational mode of the ultrasonic blade can be adjusted to obtain different tissue effects. In this way, the process 3200 adjusts 3206 a power output to the ultrasonic blade of the end effector based on the clamp arm position. For example, the process 3200 may adjust 3214 the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor. Alternatively, the process can effectively seal vessels without transection. In this way, the process 3200 may adjust 3218 the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
In another aspect, the process 3200 may adjust 3216 the power output to the ultrasonic blade of the end effector dynamically, based on the travel ratio that changes as the clamp arm approaches the ultrasonic blade. For example, as the clamp arm moves towards the ultrasonic blade and a Desired Value (
In one aspect, the process 3200 of
As described hereinabove, the position of the clamp arm portion of the end effector can be measured with a Hall-effect sensor/magnet arrangement. A tissue pad, usually made of TEFLON, may be positioned on the clamp arm to prevent tissue from sticking to the clamp arm. As the end effector is used and the tissue pad is worn, it will be necessary to track the drift of the Hall-effect sensor output signal and establish changing thresholds to maintain the integrity of the tissue treatment algorithm selection and the end of cut trigger points feedback to the tissue treatment algorithms.
Accordingly, a control system is provided. The output of the Hall-effect sensor in the form of counts can be used to track the aperture of the end effector clamp arm. The reader may refer to
Furthermore, the Hall-effect sensor ADC counts may be employed to determine the tissue coefficient of friction (μ) of the tissue under treatment based on the aperture of the clamp arm by employing predetermined μ values stored in a look-up table. For example, the specific tissue treatment algorithm can be dynamically adjusted or changed during an ultrasonic treatment cycle (e.g., firing sequence or activation of ultrasonic energy) to optimize the tissue cut based on the tissue type (e.g., fatty tissue, mesentery, vessel) or the tissue quantity or thickness.
In one aspect, the process 3400 may be implemented by a circuit may comprising a controller comprising one or more processors (e.g., microprocessor, microcontroller) coupled to at least one memory circuit. The at least one memory circuit stores machine executable instructions that when executed by the processor, cause the processor to execute the process 3400.
The processor may be any one of a number of single or multi-core processors known in the art. The memory circuit may comprise volatile and non-volatile storage media. In one aspect, the processor may include an instruction processing unit and an arithmetic unit. The instruction processing unit may be configured to receive instructions from the one memory circuit.
In one aspect, a circuit may comprise a finite state machine comprising a combinational logic circuit configured to implement the process 3400 described herein. In one aspect, a circuit may comprise a finite state machine comprising a sequential logic circuit comprising a combinational logic circuit and at least one memory circuit, for example. The at least one memory circuit can store a current state of the finite state machine. The sequential logic circuit or the combinational logic circuit can be configured to implement the process 3400 described herein. In certain instances, the sequential logic circuit may be synchronous or asynchronous.
In other aspects, the circuit may comprise a combination of the processor and the finite state machine to implement the compression and decompression techniques described herein. In other embodiments, the finite state machine may comprise a combination of the combinational logic circuit and the sequential logic circuit.
As described herein, the position of the clamp arm is sensed by a Hall-effect sensor relative to a magnet located in a closure tube of a surgical instrument. Turning now to the process 3400, the initial home position of the clamp arm, e.g., the position of the Hall-effect sensor located on the closure tube, is stored 3402 in memory. As the closure tube is displaced in a distal direction, the clamp arm is closed towards the ultrasonic blade and the instantaneous position of the clamp arm is stored 3404 in memory. The difference, delta (x), between the instantaneous position and the home position of the clamp arm is calculated 3406. The difference, delta (x), may be used to determine a change in displacement of the tube, which can be used to calculate the angle and the force applied by the clamp arm to the tissue located between the clamp arm and the ultrasonic blade. The instantaneous position of the clamp arm is compared 3408 to the closed position of the clamp arm determine whether the clamp arm is in a closed position. While the clamp arm is not yet in a closed position, the process 3400 proceeds along the no path (N) and compares the instantaneous position of the clamp arm with the home position of the clamp arm until the clamp reaches a closed position.
When the clamp arm reaches a closed position, the process 3400 continues along the yes path (Y) and the closed position of the clamp arm is applied to one input of a logic AND function 3410. The logic AND function 3410 is a high level representation of a logic operation, which may comprise boolean AND, OR, XOR, and NAND operations implemented either in software, hardware, or a combination thereof. When a tissue pad abuse or wear condition is determined based on acoustic impedance measurements, the current clamp arm closed position is set 3414 as the new home position of the clamp arm to compensate for the abuse or wear condition. If no tissue pad abuse or wear is determined, the home position of the clamp arm remains the same. Abuse or wear of the clamp arm tissue pad is determined by monitoring 3420 the impedance 3422 of the ultrasonic blade. The tissue pad/ultrasonic blade interface impedance id s determined 3422 and compared 3412 to a tissue pad abuse or wear condition. When the impedance corresponds to a tissue pad abuse or wear condition, the process 3400 proceeds along the yes path (Y) and the current closed position of the clamp arm is set 3414 as the new home position of the clamp arm to compensate for the abuse or wear condition of the tissue pad. When the impedance does not correspond to a tissue pad abuse or wear condition, the process 3400 proceeds along the no path (N) and the home position of the clamp arm remains the same.
The stored 3404 instantaneous position of the clamp arm is also provided to the input of another logic AND function 3416 to determine the quantity and thickness of the tissue clamped between the clamp arm and the ultrasonic blade. The tissue/ultrasonic blade interface impedance is determined 3422 and is compared 3424, 34267, 3428 to multiple tissue coefficients of friction μ=x, μ=y, or μ=z. Thus, when the tissue/ultrasonic blade interface impedance corresponds to one of the tissue coefficients of friction μ=x, μ=y, or μ=z based on the tissue quantity or thickness, e.g., the aperture of the clamp arm, the current tissue algorithm is maintained 3430 and the current algorithm is used for monitoring 3420 the impedance 3422 of the ultrasonic blade. If the tissue coefficient of friction μ=x, μ=y, or μ=z based on the tissue quantity or thickness, e.g., the aperture of the clamp arm, changes, the current tissue algorithm is changed 3418 based on the new tissue coefficient of friction μ and the tissue quantity or thickness, e.g., the aperture of the clamp arm and the new algorithm is used for monitoring 3420 the impedance 3422 of the ultrasonic blade.
Accordingly, the current clamp arm aperture is used to determine the current tissue coefficient of friction μ based on the quantity and thickness of tissue as measured by the aperture of the clamp arm. Thus, an initial algorithm may be based on an initial aperture of the clamp arm. The impedance of the ultrasonic blade is compared 3424, 3426, 3428 to several tissue coefficients of friction μ=x, μ=y, or μ=z, which are stored in a look-up table, and correspond to fatty tissue, mesentery tissue, or vessel tissue, for example. If no match occurs between the impedance of the ultrasonic blade and the tissue coefficient of friction, the process 3400 proceeds along the no paths (N) of any of the tissue impedance comparisons 3424, 3426, 3428 and the current tissue algorithm is maintained. If any one of the outputs of the comparison 3424, 3426, 3428 functions is true, the processor switches to a different tissue treatment algorithm based on the new tissue impedance and clamp arm aperture. Accordingly, a new tissue treatment algorithm is loaded in the ultrasonic instrument. The process 3400 continues by monitoring 3420 the impedance of the ultrasonic blade, clamp arm aperture, and tissue pad abuse or wear.
As described herein, the analog output of the Hall-effect sensor is provided to an internal or an external analog-to-digital converter such as the ADC 3506 shown in
A START pulse is provided for each analog input voltage Vin to be converted into a digital signal. The END signal represents the end of the conversion for each individual analog input voltage found at Vin (each sample), and not for the entire analog input signal. Each clock pulse increments the counter 3606. Supposing an 8-bit ADC, for converting the analog value for “128” into digital, for example, it would take 128 clock cycles. The ADC 3600 counts from 0 to the maximum possible value (2n−1) until the correct digital output Dn-D0 value is identified for the analog input voltage present at Vin. When this is true, the END signal is given and the digital value for Vin is for at Dn-D0.
While various aspects have been described herein, it should be apparent, however, that various modifications, alterations and adaptations to those aspects may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. The disclosed aspects are therefore intended to include all such modifications, alterations and adaptations without departing from the scope and spirit of the invention. Accordingly, other aspects and implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results.
While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the techniques for operating a generator for digitally generating electrical signal waveforms and surgical instruments may be practiced without these specific details. One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
Further, while several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
For conciseness and clarity of disclosure, selected aspects of the foregoing disclosure have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in one or more computer memories or one or more data storage devices (e.g. floppy disk, hard disk drive, Compact Disc (CD), Digital Video Disk (DVD), or digital tape). Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.
Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one form, several portions of the subject matter described herein may be implemented via an application specific integrated circuits (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), or other integrated formats. However, those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
In some instances, one or more elements may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. It is to be understood that depicted architectures of different components contained within, or connected with, different other components are merely examples, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated also can be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated also can be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components, and/or electrically interacting components, and/or electrically interactable components, and/or optically interacting components, and/or optically interactable components.
In other instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the present disclosure have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “one form,” or “a form” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one form,” or “in an form” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.
All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
Various aspects of the subject matter described herein are set out in the following numbered clauses:
1. A method for controlling an end effector, the method comprising: detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector; determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal; and adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
2. The method of clause 1, wherein adjusting the power output to the ultrasonic blade is achieved by manipulating the electrical current sent to the handpiece.
3. The method of clause 1 or 2, wherein the first tube is an inner tube and the second tube is an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube.
4. The method of any one of clause 1 or 2, wherein the first tube is an inner tube and the second tube is an outer tube, the outer tube being moveable relative to the inner tube, the inner tube being static relative to the inner tube.
5. The method of any one of clauses 1-4 further comprising detecting the signal using a Hall-effect sensor and a magnet positioned on the first tube.
6. The method of any one of clauses 1-5, further comprising moving a magnet positioned on the first tube relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector.
7. The method of any one of clauses 1-6, further comprising adjusting the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor.
8. The method of any one of clauses 1-7, further comprising adjusting the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
9. The method of any one of clauses 1-8, further comprising adjusting the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
10. The method of any one of clauses 1-9, further comprising switching off completely the power output to the ultrasonic blade of the end effector once a travel ratio threshold has been met.
11. The method of any one of clauses 1-10, further comprising: determining a quantity or thickness of tissue between the clamp arm and the ultrasonic blade based on the signal; and adjusting the power output to the ultrasonic blade of the end effector based on the quantity or thickness of tissue.
12. The method of clause 11, further comprising in response to determining that the quantity or thickness of tissue between the clamp arm and the ultrasonic blade is less than a predetermined threshold, reducing the power output to the ultrasonic blade of the end effector by an amount less than for a larger quantity or thickness of tissue.
13. The method of clause 11 or 12, further comprising in response to determining that the quantity or thickness of tissue between the clamp arm and the ultrasonic blade is above a predetermined threshold, reducing the power output to the ultrasonic blade of the end effector by an amount more than for a smaller quantity or thickness of tissue.
14. An apparatus for controlling an end effector, the apparatus comprising: a sensor configured to detect a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector; a processor configured to determine a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal; and a transducer configured to adjust a power output to the ultrasonic blade of the end effector based on the clamp arm position.
15. The apparatus of clause 14, wherein the first tube is an inner tube and the second tube is an outer tube, the outer tube being moveable relative to the inner tube, the inner tube being static relative to the outer tube.
16. The apparatus of clause 14, wherein the first tube is an inner tube and the second tube is an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube.
17. The apparatus of any one of clauses 14-16, further comprising: a magnet positioned on the first tube; and wherein the sensor is a Hall-effect sensor used to detect the signal based on a position of the magnet.
18. The apparatus of any one of clauses 14-17, wherein the magnet positioned on the first tube moves relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector.
19. The apparatus of any one of clauses 14-18, wherein the transducer is an ultrasonic transducer configured to adjust the power output to the ultrasonic blade of the end effector based on a voltage change in a Hall-effect sensor.
20. The apparatus of any one of clauses 14-19, wherein the transducer is configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
21. The apparatus of any one of clauses 14-20, further comprising: a proportional-integral controller configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
22. A method for calibrating an apparatus for controlling an end effector, the method comprising: detecting a first signal corresponding to a fully open position of a clamp arm and a ultrasonic blade of the end effector; detecting a second signal corresponding to an intermediate position of the clamp arm and the ultrasonic blade of the end effector, the intermediate position resulting from clamping a rigid body between the clamp arm and the ultrasonic blade; and detecting a third signal corresponding to a fully closed position of the clamp arm and the ultrasonic blade of the end effector.
23. The method of clause 22, further comprising: determining a best fit curve to represent signal strength as a function of sensor displacement based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body.
24. The method of clause 22 or 23, further comprising: creating a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/363,244, entitled END EFFECTOR CONTROL AND CALIBRATION, filed on Nov. 29, 2016, which issued on Mar. 8, 2022 as U.S. Pat. No. 11,266,430, the entire disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2188497 | Calva | Jan 1940 | A |
2366274 | Luth et al. | Jan 1945 | A |
2425245 | Johnson | Aug 1947 | A |
2442966 | Wallace | Jun 1948 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2597564 | Bugg | May 1952 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2748967 | Roach | Jun 1956 | A |
2845072 | Shafer | Jul 1958 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
2874470 | Richards | Feb 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3033407 | Alfons | May 1962 | A |
3053124 | Balamuth et al. | Sep 1962 | A |
3082805 | Royce | Mar 1963 | A |
3166971 | Stoecker | Jan 1965 | A |
3322403 | Murphy | May 1967 | A |
3432691 | Shoh | Mar 1969 | A |
3433226 | Boyd | Mar 1969 | A |
3489930 | Shoh | Jan 1970 | A |
3513848 | Winston et al. | May 1970 | A |
3514856 | Camp et al. | Jun 1970 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3554198 | Tatoian et al. | Jan 1971 | A |
3580841 | Cadotte et al. | May 1971 | A |
3606682 | Camp et al. | Sep 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3616375 | Inoue | Oct 1971 | A |
3629726 | Popescu | Dec 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3668486 | Silver | Jun 1972 | A |
3702948 | Balamuth | Nov 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885438 | Harris, Sr. et al. | May 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3924335 | Balamuth et al. | Dec 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3989952 | Hohmann | Nov 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4012647 | Balamuth et al. | Mar 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4074719 | Semm | Feb 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4167944 | Banko | Sep 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4244371 | Farin | Jan 1981 | A |
4281785 | Brooks | Aug 1981 | A |
4300083 | Heiges | Nov 1981 | A |
4302728 | Nakamura | Nov 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4409981 | Lundberg | Oct 1983 | A |
4445063 | Smith | Apr 1984 | A |
4461304 | Kuperstein | Jul 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4494759 | Kieffer | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4512344 | Barber | Apr 1985 | A |
4526571 | Wuchinich | Jul 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4541638 | Ogawa et al. | Sep 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4549147 | Kondo | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4562838 | Walker | Jan 1986 | A |
4574615 | Bower et al. | Mar 1986 | A |
4582236 | Hirose | Apr 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4641053 | Takeda | Feb 1987 | A |
4646738 | Trott | Mar 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4662068 | Polonsky | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4694835 | Strand | Sep 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4808154 | Freeman | Feb 1989 | A |
4819635 | Shapiro | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4836186 | Scholz | Jun 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | Mcgurk-Burleson et al. | Jul 1989 | A |
4852578 | Companion et al. | Aug 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4915643 | Samejima et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5001649 | Lo et al. | Mar 1991 | A |
5003693 | Atkinson et al. | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5013956 | Kurozumi et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5042461 | Inoue et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5052145 | Wang | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5075839 | Fisher et al. | Dec 1991 | A |
5084052 | Jacobs | Jan 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5105117 | Yamaguchi | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5113139 | Furukawa | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
D327872 | McMills et al. | Jul 1992 | S |
5152762 | McElhenney | Oct 1992 | A |
5156633 | Smith | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5163945 | Ortiz et al. | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
5172344 | Ehrlich | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
D334173 | Liu et al. | Mar 1993 | S |
5190517 | Zieve et al. | Mar 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5203380 | Chikama | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5214339 | Naito | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5218529 | Meyer et al. | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5222937 | Kagawa | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5231989 | Middleman et al. | Aug 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242339 | Thornton | Sep 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5264925 | Shipp et al. | Nov 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5275166 | Vaitekunas et al. | Jan 1994 | A |
5275607 | Lo et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342356 | Ellman et al. | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5371429 | Manna | Dec 1994 | A |
5374813 | Shipp | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5387215 | Fisher | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5394187 | Shipp | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5408268 | Shipp | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451053 | Garrido | Sep 1995 | A |
5451161 | Sharp | Sep 1995 | A |
5451220 | Ciervo | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507297 | Slater et al. | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522832 | Kugo et al. | Jun 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5548286 | Craven | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562659 | Morris | Oct 1996 | A |
5562703 | Desai | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5600526 | Russell et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618304 | Hart et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5626608 | Cuny et al. | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632717 | Yoon | May 1997 | A |
5638827 | Palmer et al. | Jun 1997 | A |
5640741 | Yano | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5647871 | Levine et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649955 | Hashimoto et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5655100 | Ebrahim et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5678568 | Uchikubo et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5695510 | Hood | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704791 | Gillio | Jan 1998 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5717306 | Shipp | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722980 | Schulz et al. | Mar 1998 | A |
5723970 | Bell | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759183 | VanDusseldorp | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800448 | Banko | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810828 | Lightman et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5854590 | Dalstein | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5903607 | Tailliet | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5906627 | Spaulding | May 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5913823 | Hedberg et al. | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
5974342 | Petrofsky | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5980546 | Hood | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5987344 | West | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
5994855 | Lundell et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6031526 | Shipp | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6048224 | Kay | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6080149 | Huang et al. | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6096033 | Tu et al. | Aug 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126629 | Perkins | Oct 2000 | A |
6126658 | Baker | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132427 | Jones et al. | Oct 2000 | A |
6132429 | Baker | Oct 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6156029 | Mueller | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179853 | Sachse et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6205383 | Hermann | Mar 2001 | B1 |
6205855 | Pfeiffer | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6232899 | Craven | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6238384 | Peer | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
D445092 | Lee | Jul 2001 | S |
D445764 | Lee | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6287344 | Wampler et al. | Sep 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6299591 | Banko | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306157 | Shchervinsky | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6311783 | Harpell | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6356224 | Wohlfarth | Mar 2002 | B1 |
6358246 | Behl et al. | Mar 2002 | B1 |
6358264 | Banko | Mar 2002 | B2 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6384690 | Wilhelmsson et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6390973 | Ouchi | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6405184 | Bohme et al. | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6417969 | DeLuca et al. | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6425906 | Young et al. | Jul 2002 | B1 |
6428538 | Blewett et al. | Aug 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6436129 | Sharkey et al. | Aug 2002 | B1 |
6440062 | Ouchi | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6459363 | Walker et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475215 | Tanrisever | Nov 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6500312 | Wedekamp | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6558380 | Lingenfelder et al. | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6572563 | Ouchi | Jun 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
D477408 | Bromley | Jul 2003 | S |
6585735 | Frazier et al. | Jul 2003 | B1 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6590733 | Wilson et al. | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6632221 | Edwards et al. | Oct 2003 | B1 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6652545 | Shipp et al. | Nov 2003 | B2 |
6656132 | Ouchi | Dec 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6669690 | Okada et al. | Dec 2003 | B1 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685700 | Behl et al. | Feb 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689145 | Lee et al. | Feb 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6690960 | Chen et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6719776 | Baxter et al. | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
D490059 | Conway et al. | May 2004 | S |
6730080 | Harano et al. | May 2004 | B2 |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6739872 | Turri | May 2004 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
D491666 | Kimmell et al. | Jun 2004 | S |
6743245 | Lobdell | Jun 2004 | B2 |
6746284 | Spink, Jr. | Jun 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778023 | Christensen | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6794027 | Araki et al. | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6809508 | Donofrio | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6819027 | Saraf | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843789 | Goble | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6863676 | Lee et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6882439 | Ishijima | Apr 2005 | B2 |
6887209 | Kadziauskas et al. | May 2005 | B2 |
6887252 | Okada et al. | May 2005 | B1 |
6893435 | Goble | May 2005 | B2 |
6898536 | Wiener et al. | May 2005 | B2 |
6899685 | Kermode et al. | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6915623 | Dey et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6926717 | Garito et al. | Aug 2005 | B1 |
6929602 | Hirakui et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6946779 | Birgel | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6988295 | Tillim | Jan 2006 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7001379 | Behl et al. | Feb 2006 | B2 |
7001382 | Gallo, Sr. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014638 | Michelson | Mar 2006 | B2 |
7018389 | Camerlengo | Mar 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7037306 | Podany et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077845 | Hacker et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083613 | Treat | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7117034 | Kronberg | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7119516 | Denning | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7128720 | Podany | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7166103 | Carmel et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7198635 | Danek et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210881 | Greenberg | May 2007 | B2 |
7211079 | Treat | May 2007 | B2 |
7217128 | Atkin et al. | May 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226447 | Uchida et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235071 | Gonnering | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7244262 | Wiener et al. | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7264618 | Murakami et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7269873 | Brewer et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
D552241 | Bromley et al. | Oct 2007 | S |
7282048 | Goble et al. | Oct 2007 | B2 |
7285895 | Beaupre | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303531 | Lee et al. | Dec 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7318832 | Young et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7335165 | Truwit et al. | Feb 2008 | B2 |
7335997 | Wiener | Feb 2008 | B2 |
7337010 | Howard et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357802 | Palanker et al. | Apr 2008 | B2 |
7361172 | Cimino | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7412008 | Lliev | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7419490 | Falkenstein et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422463 | Kuo | Sep 2008 | B2 |
7422582 | Malackowski et al. | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431704 | Babaev | Oct 2008 | B2 |
7431720 | Pendekanti et al. | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455641 | Yamada et al. | Nov 2008 | B2 |
7462181 | Kraft et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473145 | Ehr et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7502234 | Goliszek et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507239 | Shadduck | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520865 | Radley Young et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7525309 | Sherman et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
7535233 | Kojovic et al. | May 2009 | B2 |
D594983 | Price et al. | Jun 2009 | S |
7540871 | Gonnering | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7566318 | Haefner | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7572268 | Babaev | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7582084 | Swanson et al. | Sep 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585181 | Olsen | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7587536 | McLeod | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7601136 | Akahoshi | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645240 | Thompson et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7645278 | Ichihashi et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7649410 | Andersen et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655003 | Lorang et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7659833 | Warner et al. | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7667592 | Ohyama et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670338 | Albrecht et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678105 | McGreevy et al. | Mar 2010 | B2 |
7678125 | Shipp | Mar 2010 | B2 |
7682366 | Sakurai et al. | Mar 2010 | B2 |
7686770 | Cohen | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7696441 | Kataoka | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7713267 | Pozzato | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7721935 | Racenet et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7727177 | Bayat | Jun 2010 | B2 |
7731717 | Odom et al. | Jun 2010 | B2 |
7738969 | Bleich | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766693 | Sartor et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7768510 | Tsai et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780593 | Ueno et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799020 | Shores et al. | Sep 2010 | B2 |
7799027 | Hafner | Sep 2010 | B2 |
7799045 | Masuda | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7815238 | Cao | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7821143 | Wiener | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7862561 | Swanson et al. | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7878991 | Babaev | Feb 2011 | B2 |
7879029 | Jimenez | Feb 2011 | B2 |
7879033 | Sartor et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7897792 | Likura et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909820 | Lipson et al. | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7936203 | Zimlich | May 2011 | B2 |
7951095 | Makin et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7972328 | Wham et al. | Jul 2011 | B2 |
7972329 | Refior et al. | Jul 2011 | B2 |
7975895 | Milliman | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8002732 | Visconti | Aug 2011 | B2 |
8002770 | Swanson et al. | Aug 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025672 | Novak et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8034049 | Odom et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8048074 | Masuda | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8055208 | Lilla et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8057468 | Konesky | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070711 | Bassinger et al. | Dec 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105230 | Honda et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8118276 | Sanders et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142421 | Cooper et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152801 | Goldberg et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8170717 | Sutherland et al. | May 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8186877 | Klimovitch et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8207651 | Gilbert | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8211100 | Podhajsky et al. | Jul 2012 | B2 |
8216223 | Wham et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8221306 | Okada et al. | Jul 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8221418 | Prakash et al. | Jul 2012 | B2 |
8226580 | Govari et al. | Jul 2012 | B2 |
8226665 | Cohen | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8231607 | Takuma | Jul 2012 | B2 |
8235917 | Joseph et al. | Aug 2012 | B2 |
8236018 | Yoshimine et al. | Aug 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8246575 | Viola | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246616 | Amoah et al. | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8253303 | Giordano et al. | Aug 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267935 | Couture et al. | Sep 2012 | B2 |
8273087 | Kimura et al. | Sep 2012 | B2 |
D669992 | Schafer et al. | Oct 2012 | S |
D669993 | Merchant et al. | Oct 2012 | S |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8292905 | Taylor et al. | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8298223 | Wham et al. | Oct 2012 | B2 |
8298225 | Gilbert | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8303576 | Brock | Nov 2012 | B2 |
8303579 | Shibata | Nov 2012 | B2 |
8303580 | Wham et al. | Nov 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8303613 | Crandall et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308721 | Shibata et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328833 | Cuny | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348880 | Messerly et al. | Jan 2013 | B2 |
8348947 | Takashino et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8357149 | Govari et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
8361072 | Dumbauld et al. | Jan 2013 | B2 |
8361569 | Saito et al. | Jan 2013 | B2 |
8366727 | Witt et al. | Feb 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8374670 | Selkee | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382748 | Geisel | Feb 2013 | B2 |
8382775 | Bender et al. | Feb 2013 | B1 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8398394 | Sauter et al. | Mar 2013 | B2 |
8398674 | Prestel | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409234 | Stahler et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430874 | Newton et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8437832 | Govari et al. | May 2013 | B2 |
8439912 | Cunningham et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444036 | Shelton, IV | May 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8460284 | Aronow et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8471685 | Shingai | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491578 | Manwaring et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
D687549 | Johnson et al. | Aug 2013 | S |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8509318 | Tailliet | Aug 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512337 | Francischelli et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8518067 | Masuda et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8523882 | Huitema et al. | Sep 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535308 | Govari et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8546999 | Houser et al. | Oct 2013 | B2 |
8551077 | Main et al. | Oct 2013 | B2 |
8551086 | Kimura et al. | Oct 2013 | B2 |
8556929 | Harper et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562600 | Kirkpatrick et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568397 | Horner et al. | Oct 2013 | B2 |
8568400 | Gilbert | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8585727 | Polo | Nov 2013 | B2 |
8588371 | Ogawa et al. | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
D696631 | Price et al. | Dec 2013 | S |
8596513 | Olson et al. | Dec 2013 | B2 |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8597287 | Benamou et al. | Dec 2013 | B2 |
8602031 | Reis et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603085 | Jimenez | Dec 2013 | B2 |
8603089 | Viola | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617152 | Werneth et al. | Dec 2013 | B2 |
8617194 | Beaupre | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623040 | Artsyukhovich et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8628534 | Jones et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641663 | Kirschenman et al. | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652132 | Tsuchiya et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8657489 | Ladurner et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8663214 | Weinberg et al. | Mar 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663223 | Masuda et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
8668710 | Slipszenko et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685016 | Wham et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696366 | Chen et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8696666 | Sanai et al. | Apr 2014 | B2 |
8696917 | Petisce et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702702 | Edwards et al. | Apr 2014 | B1 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8704425 | Giordano et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709008 | Willis et al. | Apr 2014 | B2 |
8709031 | Stulen | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8721657 | Kondoh et al. | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8738110 | Tabada et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8749116 | Messerly et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8754570 | Voegele et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8758352 | Cooper et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8764735 | Coe et al. | Jul 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8767970 | Eppolito | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8771269 | Sherman et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8771293 | Surti et al. | Jul 2014 | B2 |
8773001 | Wiener et al. | Jul 2014 | B2 |
8777944 | Frankhouser et al. | Jul 2014 | B2 |
8777945 | Floume et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795274 | Hanna | Aug 2014 | B2 |
8795275 | Hafner | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808204 | Irisawa et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821388 | Naito et al. | Sep 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8831779 | Ortmaier et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8845537 | Tanaka et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8848808 | Dress | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8862955 | Cesari | Oct 2014 | B2 |
8864749 | Okada | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870865 | Frankhouser et al. | Oct 2014 | B2 |
8874220 | Draghici et al. | Oct 2014 | B2 |
8876726 | Amit et al. | Nov 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8900259 | Houser et al. | Dec 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8920412 | Fritz et al. | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8926620 | Chasmawala et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8932282 | Gilbert | Jan 2015 | B2 |
8932299 | Bono et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8945126 | Garrison et al. | Feb 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968294 | Maass et al. | Mar 2015 | B2 |
8968296 | McPherson | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8974447 | Kimball et al. | Mar 2015 | B2 |
8974477 | Yamada | Mar 2015 | B2 |
8974479 | Ross et al. | Mar 2015 | B2 |
8974932 | McGahan et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986287 | Park et al. | Mar 2015 | B2 |
8986297 | Daniel et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
8998891 | Garito et al. | Apr 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017370 | Reschke et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9023035 | Allen, IV et al. | May 2015 | B2 |
9023070 | Levine et al. | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9028397 | Naito | May 2015 | B2 |
9028476 | Bonn | May 2015 | B2 |
9028478 | Mueller | May 2015 | B2 |
9028481 | Behnke, II | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033973 | Krapohl et al. | May 2015 | B2 |
9035741 | Hamel et al. | May 2015 | B2 |
9037259 | Mathur | May 2015 | B2 |
9039690 | Kersten et al. | May 2015 | B2 |
9039691 | Moua et al. | May 2015 | B2 |
9039692 | Behnke, II et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039696 | Assmus et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9039731 | Joseph | May 2015 | B2 |
9043018 | Mohr | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9044238 | Orszulak | Jun 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9050123 | Krause et al. | Jun 2015 | B2 |
9050124 | Houser | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9059547 | McLawhorn | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9060778 | Condie et al. | Jun 2015 | B2 |
9066720 | Ballakur et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9066747 | Robertson | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9072538 | Suzuki et al. | Jul 2015 | B2 |
9072539 | Messerly et al. | Jul 2015 | B2 |
9084624 | Larkin et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095333 | Konesky et al. | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9113907 | Allen, IV et al. | Aug 2015 | B2 |
9113940 | Twomey | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9144453 | Rencher et al. | Sep 2015 | B2 |
9147965 | Lee | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9165114 | Jain et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9173656 | Schurr et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186199 | Strauss et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9186796 | Ogawa | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192421 | Garrison | Nov 2015 | B2 |
9192428 | Houser et al. | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9198718 | Marczyk et al. | Dec 2015 | B2 |
9198776 | Young | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204891 | Weitzman | Dec 2015 | B2 |
9204918 | Germain et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9216051 | Fischer et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220483 | Frankhouser et al. | Dec 2015 | B2 |
9220527 | Houser et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9241060 | Fujisaki | Jan 2016 | B1 |
9241692 | Gunday et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241768 | Sandhu et al. | Jan 2016 | B2 |
9247953 | Palmer et al. | Feb 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, II et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9265973 | Akagane | Feb 2016 | B2 |
9266310 | Krogdahl et al. | Feb 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9305497 | Seo et al. | Apr 2016 | B2 |
9307388 | Liang et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314261 | Bales, Jr. et al. | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9314301 | Ben-Haim et al. | Apr 2016 | B2 |
9326754 | Polster | May 2016 | B2 |
9326767 | Koch, Jr. et al. | May 2016 | B2 |
9326787 | Sanai et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9333034 | Hancock | May 2016 | B2 |
9339289 | Robertson | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345534 | Artale et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351642 | Nadkarni et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9352173 | Yamada et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364171 | Harris et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9370611 | Ross et al. | Jun 2016 | B2 |
9375206 | Vidal et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375256 | Cunningham et al. | Jun 2016 | B2 |
9375264 | Horner et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9385831 | Marr et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9393070 | Gelfand et al. | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402680 | Ginnebaugh et al. | Aug 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414853 | Stulen et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9427249 | Robertson et al. | Aug 2016 | B2 |
9427279 | Muniz-Medina et al. | Aug 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439669 | Wiener et al. | Sep 2016 | B2 |
9439671 | Akagane | Sep 2016 | B2 |
9442288 | Tanimura | Sep 2016 | B2 |
9445784 | O'Keeffe | Sep 2016 | B2 |
9445832 | Wiener et al. | Sep 2016 | B2 |
9451967 | Jordan et al. | Sep 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9468498 | Sigmon, Jr. | Oct 2016 | B2 |
9474542 | Slipszenko et al. | Oct 2016 | B2 |
9474568 | Akagane | Oct 2016 | B2 |
9486236 | Price et al. | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9498245 | Voegele et al. | Nov 2016 | B2 |
9498275 | Wham et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504520 | Worrell et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9504855 | Messerly et al. | Nov 2016 | B2 |
9510850 | Robertson et al. | Dec 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9522032 | Behnke | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545497 | Wenderow et al. | Jan 2017 | B2 |
9554465 | Liu et al. | Jan 2017 | B1 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9560995 | Addison et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9585714 | Livneh | Mar 2017 | B2 |
9592056 | Mozdzierz et al. | Mar 2017 | B2 |
9592072 | Akagane | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9603669 | Govari et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9623237 | Turner et al. | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9632573 | Ogawa et al. | Apr 2017 | B2 |
9636135 | Stulen | May 2017 | B2 |
9636165 | Larson et al. | May 2017 | B2 |
9636167 | Gregg | May 2017 | B2 |
9638770 | Dietz et al. | May 2017 | B2 |
9642644 | Houser et al. | May 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9643052 | Tchao et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9649173 | Choi et al. | May 2017 | B2 |
9655670 | Larson et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9674949 | Liu et al. | Jun 2017 | B1 |
9675374 | Stulen et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9681884 | Clem et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9687290 | Keller | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9693817 | Mehta et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9700343 | Messerly et al. | Jul 2017 | B2 |
9705456 | Gilbert | Jul 2017 | B2 |
9707004 | Houser et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713507 | Stulen et al. | Jul 2017 | B2 |
9717548 | Couture | Aug 2017 | B2 |
9717552 | Cosman et al. | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724120 | Faller et al. | Aug 2017 | B2 |
9724152 | Horlle et al. | Aug 2017 | B2 |
9730695 | Leimbach et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737326 | Worrell et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9743946 | Faller et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757150 | Alexander et al. | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9770285 | Zoran et al. | Sep 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9795405 | Price et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9795808 | Messerly et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801648 | Houser et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9815211 | Cao et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9820806 | Lee et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9839443 | Brockman et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9848901 | Robertson et al. | Dec 2017 | B2 |
9848902 | Price et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9861381 | Johnson | Jan 2018 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867651 | Wham | Jan 2018 | B2 |
9867670 | Brannan et al. | Jan 2018 | B2 |
9872722 | Lech | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9872726 | Morisaki | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9877782 | Voegele et al. | Jan 2018 | B2 |
9878184 | Beaupre | Jan 2018 | B2 |
9883860 | Leimbach et al. | Feb 2018 | B2 |
9883884 | Neurohr et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9895160 | Fan et al. | Feb 2018 | B2 |
9901321 | Harks et al. | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901383 | Hassler, Jr. | Feb 2018 | B2 |
9901754 | Yamada | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913656 | Stulen | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9925003 | Parihar et al. | Mar 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9937001 | Nakamura | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9962182 | Dietz et al. | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987033 | Neurohr et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993289 | Sobajima et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004526 | Dycus et al. | Jun 2018 | B2 |
10004527 | Gee et al. | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010339 | Witt et al. | Jul 2018 | B2 |
10010341 | Houser et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10022567 | Messerly et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10028786 | Mucilli et al. | Jul 2018 | B2 |
10034684 | Weisenburgh, II et al. | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039588 | Harper et al. | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045794 | Witt et al. | Aug 2018 | B2 |
10045810 | Schall et al. | Aug 2018 | B2 |
10045819 | Jensen et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10080609 | Hancock et al. | Sep 2018 | B2 |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085762 | Timm et al. | Oct 2018 | B2 |
10085792 | Johnson et al. | Oct 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092344 | Mohr et al. | Oct 2018 | B2 |
10092347 | Weisshaupt et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10111703 | Cosman, Jr. et al. | Oct 2018 | B2 |
10117649 | Baxter, III et al. | Nov 2018 | B2 |
10117667 | Robertson et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10123835 | Keller et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10130410 | Strobl et al. | Nov 2018 | B2 |
10130412 | Wham | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10154848 | Chernov et al. | Dec 2018 | B2 |
10154852 | Conlon et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10159524 | Yates et al. | Dec 2018 | B2 |
10166060 | Johnson et al. | Jan 2019 | B2 |
10172665 | Heckel et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10179022 | Yates et al. | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10188455 | Hancock et al. | Jan 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10194973 | Wiener et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194977 | Yang | Feb 2019 | B2 |
10194999 | Bacher et al. | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10201382 | Wiener et al. | Feb 2019 | B2 |
10206676 | Shelton, IV | Feb 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226273 | Messerly et al. | Mar 2019 | B2 |
10231747 | Stulen et al. | Mar 2019 | B2 |
10238385 | Yates et al. | Mar 2019 | B2 |
10238391 | Leimbach et al. | Mar 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245095 | Boudreaux | Apr 2019 | B2 |
10245097 | Honda et al. | Apr 2019 | B2 |
10245104 | McKenna et al. | Apr 2019 | B2 |
10251664 | Shelton, IV et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258505 | Ovchinnikov | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265117 | Wiener et al. | Apr 2019 | B2 |
10265118 | Gerhardt | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
10278721 | Dietz et al. | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10285724 | Faller et al. | May 2019 | B2 |
10285750 | Coulson et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10299810 | Robertson et al. | May 2019 | B2 |
10299821 | Shelton, IV et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
D851762 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10314579 | Chowaniec et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10314638 | Gee et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321950 | Yates et al. | Jun 2019 | B2 |
D854151 | Shelton, IV et al. | Jul 2019 | S |
10335149 | Baxter, II et al. | Jul 2019 | B2 |
10335182 | Stulen et al. | Jul 2019 | B2 |
10335183 | Worrell et al. | Jul 2019 | B2 |
10335614 | Messerly et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342606 | Cosman et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10348941 | Elliot, Jr. et al. | Jul 2019 | B2 |
10349999 | Yates et al. | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10350025 | Loyd et al. | Jul 2019 | B1 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10357303 | Conlon et al. | Jul 2019 | B2 |
10363084 | Friedrichs | Jul 2019 | B2 |
10368861 | Baxter, II et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10376305 | Yates et al. | Aug 2019 | B2 |
10390841 | Shelton, IV et al. | Aug 2019 | B2 |
10398439 | Cabrera et al. | Sep 2019 | B2 |
10398466 | Stulen et al. | Sep 2019 | B2 |
10398497 | Batross et al. | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10413352 | Thomas et al. | Sep 2019 | B2 |
10413353 | Kerr et al. | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420579 | Wiener et al. | Sep 2019 | B2 |
10420607 | Woloszko et al. | Sep 2019 | B2 |
D865175 | Widenhouse et al. | Oct 2019 | S |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426507 | Wiener et al. | Oct 2019 | B2 |
10426546 | Graham et al. | Oct 2019 | B2 |
10426978 | Akagane | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433865 | Witt et al. | Oct 2019 | B2 |
10433866 | Witt et al. | Oct 2019 | B2 |
10433900 | Harris et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441308 | Robertson | Oct 2019 | B2 |
10441310 | Olson et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10448986 | Zikorus et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
10456193 | Yates et al. | Oct 2019 | B2 |
10463421 | Boudreaux et al. | Nov 2019 | B2 |
10463887 | Witt et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10478182 | Taylor | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10485607 | Strobl et al. | Nov 2019 | B2 |
D869655 | Shelton, IV et al. | Dec 2019 | S |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10492849 | Juergens et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10507033 | Dickerson et al. | Dec 2019 | B2 |
10512795 | Voegele et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517627 | Timm et al. | Dec 2019 | B2 |
10524787 | Shelton, IV et al. | Jan 2020 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10524854 | Woodruff et al. | Jan 2020 | B2 |
10524872 | Stewart et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
10543008 | Vakharia et al. | Jan 2020 | B2 |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548655 | Scheib et al. | Feb 2020 | B2 |
10555769 | Worrell et al. | Feb 2020 | B2 |
10561560 | Boutoussov et al. | Feb 2020 | B2 |
10568624 | Shelton, IV et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10575892 | Danziger et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588633 | Shelton, IV et al. | Mar 2020 | B2 |
10595929 | Boudreaux et al. | Mar 2020 | B2 |
10595930 | Scheib et al. | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610286 | Wiener et al. | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10617412 | Shelton, IV et al. | Apr 2020 | B2 |
10617420 | Shelton, IV et al. | Apr 2020 | B2 |
10617464 | Duppuis | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624691 | Wiener et al. | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631859 | Shelton, IV et al. | Apr 2020 | B2 |
10631928 | Basu et al. | Apr 2020 | B2 |
10632630 | Cao et al. | Apr 2020 | B2 |
RE47996 | Turner et al. | May 2020 | E |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639092 | Corbett et al. | May 2020 | B2 |
10639098 | Cosman et al. | May 2020 | B2 |
10646269 | Worrell et al. | May 2020 | B2 |
10646292 | Solomon et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10660692 | Lesko et al. | May 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687809 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687884 | Wiener et al. | Jun 2020 | B2 |
10688321 | Wiener et al. | Jun 2020 | B2 |
10695055 | Shelton, IV et al. | Jun 2020 | B2 |
10695057 | Shelton, IV et al. | Jun 2020 | B2 |
10695058 | Lytle, IV et al. | Jun 2020 | B2 |
10695119 | Smith | Jun 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10702329 | Strobl et al. | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10709469 | Shelton, IV et al. | Jul 2020 | B2 |
10709906 | Nield | Jul 2020 | B2 |
10716615 | Shelton, IV et al. | Jul 2020 | B2 |
10722233 | Wellman | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729494 | Parihar et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736685 | Wiener et al. | Aug 2020 | B2 |
10751108 | Yates et al. | Aug 2020 | B2 |
10751138 | Giordano et al. | Aug 2020 | B2 |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758232 | Shelton, IV et al. | Sep 2020 | B2 |
10758294 | Jones | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765470 | Yates et al. | Sep 2020 | B2 |
10772629 | Shelton, IV et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779824 | Shelton, IV et al. | Sep 2020 | B2 |
10779825 | Shelton, IV et al. | Sep 2020 | B2 |
10779845 | Timm et al. | Sep 2020 | B2 |
10779849 | Shelton, IV et al. | Sep 2020 | B2 |
10779879 | Yates et al. | Sep 2020 | B2 |
10786253 | Shelton, IV et al. | Sep 2020 | B2 |
10786276 | Hirai et al. | Sep 2020 | B2 |
10806454 | Kopp | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10820938 | Fischer et al. | Nov 2020 | B2 |
10828032 | Leimbach et al. | Nov 2020 | B2 |
10828058 | Shelton, IV et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV et al. | Nov 2020 | B2 |
10835307 | Shelton, IV et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
10842523 | Shelton, IV et al. | Nov 2020 | B2 |
10842563 | Gilbert et al. | Nov 2020 | B2 |
D906355 | Messerly et al. | Dec 2020 | S |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856869 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10856896 | Eichmann et al. | Dec 2020 | B2 |
10856929 | Yates et al. | Dec 2020 | B2 |
10856934 | Trees et al. | Dec 2020 | B2 |
10874465 | Weir et al. | Dec 2020 | B2 |
D908216 | Messerly et al. | Jan 2021 | S |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881409 | Cabrera | Jan 2021 | B2 |
10881449 | Boudreaux et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10888347 | Witt et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893883 | Dannaher | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898256 | Yates et al. | Jan 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912580 | Green et al. | Feb 2021 | B2 |
10912603 | Boudreaux et al. | Feb 2021 | B2 |
10918385 | Overmyer et al. | Feb 2021 | B2 |
10925659 | Shelton, IV et al. | Feb 2021 | B2 |
10926022 | Hickey et al. | Feb 2021 | B2 |
D914878 | Shelton, IV et al. | Mar 2021 | S |
10932766 | Tesar et al. | Mar 2021 | B2 |
10932847 | Yates et al. | Mar 2021 | B2 |
10945727 | Shelton, IV et al. | Mar 2021 | B2 |
10952788 | Asher et al. | Mar 2021 | B2 |
10959727 | Hunter et al. | Mar 2021 | B2 |
10966741 | Illizaliturri-Sanchez et al. | Apr 2021 | B2 |
10966747 | Worrell et al. | Apr 2021 | B2 |
10973516 | Shelton, IV et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
10987105 | Cappola et al. | Apr 2021 | B2 |
10987123 | Weir et al. | Apr 2021 | B2 |
10987156 | Trees et al. | Apr 2021 | B2 |
10993715 | Shelton, IV et al. | May 2021 | B2 |
10993716 | Shelton, IV et al. | May 2021 | B2 |
10993763 | Batross et al. | May 2021 | B2 |
11000278 | Shelton, IV et al. | May 2021 | B2 |
11000279 | Shelton, IV et al. | May 2021 | B2 |
11020114 | Shelton, IV et al. | Jun 2021 | B2 |
11020140 | Gee et al. | Jun 2021 | B2 |
11033322 | Wiener et al. | Jun 2021 | B2 |
11039834 | Harris et al. | Jun 2021 | B2 |
11045191 | Shelton, IV et al. | Jun 2021 | B2 |
11045192 | Harris et al. | Jun 2021 | B2 |
11045275 | Boudreaux et al. | Jun 2021 | B2 |
11051840 | Shelton, IV et al. | Jul 2021 | B2 |
11051873 | Wiener et al. | Jul 2021 | B2 |
11058424 | Shelton, IV et al. | Jul 2021 | B2 |
11058447 | Houser | Jul 2021 | B2 |
11058448 | Shelton, IV et al. | Jul 2021 | B2 |
11058475 | Wiener et al. | Jul 2021 | B2 |
11064997 | Shelton, IV et al. | Jul 2021 | B2 |
11065048 | Messerly et al. | Jul 2021 | B2 |
11083455 | Shelton, IV et al. | Aug 2021 | B2 |
11083458 | Harris et al. | Aug 2021 | B2 |
11090048 | Fanelli et al. | Aug 2021 | B2 |
11090049 | Bakos et al. | Aug 2021 | B2 |
11090104 | Wiener et al. | Aug 2021 | B2 |
11096688 | Shelton, IV et al. | Aug 2021 | B2 |
11096752 | Stulen et al. | Aug 2021 | B2 |
11109866 | Shelton, IV et al. | Sep 2021 | B2 |
11129611 | Shelton, IV et al. | Sep 2021 | B2 |
11129666 | Messerly et al. | Sep 2021 | B2 |
11129669 | Stulen et al. | Sep 2021 | B2 |
11129670 | Shelton, IV et al. | Sep 2021 | B2 |
11134942 | Harris et al. | Oct 2021 | B2 |
11134978 | Shelton, IV et al. | Oct 2021 | B2 |
11141154 | Shelton, IV et al. | Oct 2021 | B2 |
11141213 | Yates et al. | Oct 2021 | B2 |
11147551 | Shelton, IV | Oct 2021 | B2 |
11147553 | Shelton, IV | Oct 2021 | B2 |
11160551 | Shelton, IV et al. | Nov 2021 | B2 |
11166716 | Shelton, IV et al. | Nov 2021 | B2 |
11172929 | Shelton, IV | Nov 2021 | B2 |
11179155 | Shelton, IV et al. | Nov 2021 | B2 |
11179173 | Price et al. | Nov 2021 | B2 |
11191539 | Overmyer et al. | Dec 2021 | B2 |
11191540 | Aronhalt et al. | Dec 2021 | B2 |
11197668 | Shelton, IV et al. | Dec 2021 | B2 |
11202670 | Worrell et al. | Dec 2021 | B2 |
11207065 | Harris et al. | Dec 2021 | B2 |
11207067 | Shelton, IV et al. | Dec 2021 | B2 |
11213293 | Worthington et al. | Jan 2022 | B2 |
11213294 | Shelton, IV et al. | Jan 2022 | B2 |
11219453 | Shelton, IV et al. | Jan 2022 | B2 |
11224426 | Shelton, IV et al. | Jan 2022 | B2 |
11224497 | Shelton, IV et al. | Jan 2022 | B2 |
11229437 | Shelton, IV et al. | Jan 2022 | B2 |
11229450 | Shelton, IV et al. | Jan 2022 | B2 |
11229471 | Shelton, IV et al. | Jan 2022 | B2 |
11229472 | Shelton, IV et al. | Jan 2022 | B2 |
11234698 | Shelton, IV et al. | Feb 2022 | B2 |
11241235 | Shelton, IV et al. | Feb 2022 | B2 |
11246592 | Shelton, IV et al. | Feb 2022 | B2 |
11246625 | Kane et al. | Feb 2022 | B2 |
11246678 | Shelton, IV et al. | Feb 2022 | B2 |
11253256 | Harris et al. | Feb 2022 | B2 |
11259803 | Shelton, IV et al. | Mar 2022 | B2 |
11259805 | Shelton, IV et al. | Mar 2022 | B2 |
11259806 | Shelton, IV et al. | Mar 2022 | B2 |
11259807 | Shelton, IV et al. | Mar 2022 | B2 |
11266405 | Shelton, IV et al. | Mar 2022 | B2 |
11266430 | Clauda et al. | Mar 2022 | B2 |
11272931 | Boudreaux et al. | Mar 2022 | B2 |
11278280 | Shelton, IV et al. | Mar 2022 | B2 |
11284890 | Nalagatla et al. | Mar 2022 | B2 |
11291440 | Harris et al. | Apr 2022 | B2 |
11291444 | Boudreaux et al. | Apr 2022 | B2 |
11291445 | Shelton, IV et al. | Apr 2022 | B2 |
11291447 | Shelton, IV et al. | Apr 2022 | B2 |
11291451 | Shelton, IV | Apr 2022 | B2 |
11298127 | Shelton, IV | Apr 2022 | B2 |
11298129 | Bakos et al. | Apr 2022 | B2 |
11298130 | Bakos et al. | Apr 2022 | B2 |
11304695 | Shelton, IV et al. | Apr 2022 | B2 |
11304696 | Shelton, IV et al. | Apr 2022 | B2 |
11304699 | Shelton, IV et al. | Apr 2022 | B2 |
11311306 | Shelton, IV et al. | Apr 2022 | B2 |
11311326 | Boudreaux | Apr 2022 | B2 |
11311342 | Parihar et al. | Apr 2022 | B2 |
D950728 | Bakos et al. | May 2022 | S |
D952144 | Boudreaux | May 2022 | S |
11317915 | Boudreaux et al. | May 2022 | B2 |
11324503 | Shelton, IV et al. | May 2022 | B2 |
11324527 | Aldridge et al. | May 2022 | B2 |
11324557 | Shelton, IV et al. | May 2022 | B2 |
11331100 | Boudreaux et al. | May 2022 | B2 |
11331101 | Harris et al. | May 2022 | B2 |
11337747 | Voegele et al. | May 2022 | B2 |
11344362 | Yates et al. | May 2022 | B2 |
11350938 | Shelton, IV et al. | Jun 2022 | B2 |
11357503 | Bakos et al. | Jun 2022 | B2 |
11361176 | Shelton, IV et al. | Jun 2022 | B2 |
11369377 | Boudreaux et al. | Jun 2022 | B2 |
11376098 | Shelton, IV et al. | Jul 2022 | B2 |
11382642 | Robertson et al. | Jul 2022 | B2 |
11389161 | Shelton, IV et al. | Jul 2022 | B2 |
11389164 | Yates et al. | Jul 2022 | B2 |
11399837 | Shelton, IV et al. | Aug 2022 | B2 |
11399855 | Boudreaux et al. | Aug 2022 | B2 |
11406382 | Shelton, IV et al. | Aug 2022 | B2 |
11406386 | Baber et al. | Aug 2022 | B2 |
11413060 | Faller et al. | Aug 2022 | B2 |
11419606 | Overmyer et al. | Aug 2022 | B2 |
11419626 | Timm et al. | Aug 2022 | B2 |
11424027 | Shelton, IV | Aug 2022 | B2 |
11426167 | Shelton, IV et al. | Aug 2022 | B2 |
11426191 | Vakharia et al. | Aug 2022 | B2 |
D964564 | Boudreaux | Sep 2022 | S |
11446029 | Shelton, IV et al. | Sep 2022 | B2 |
11452525 | Shelton, IV et al. | Sep 2022 | B2 |
11464511 | Timm et al. | Oct 2022 | B2 |
11464512 | Shelton, IV et al. | Oct 2022 | B2 |
11464601 | Shelton, IV et al. | Oct 2022 | B2 |
11471155 | Shelton, IV et al. | Oct 2022 | B2 |
11471156 | Shelton, IV et al. | Oct 2022 | B2 |
11471206 | Henderson et al. | Oct 2022 | B2 |
11471209 | Yates et al. | Oct 2022 | B2 |
11478242 | Shelton, IV et al. | Oct 2022 | B2 |
11484310 | Shelton, IV et al. | Nov 2022 | B2 |
11497547 | McKenna et al. | Nov 2022 | B2 |
11504122 | Shelton, IV et al. | Nov 2022 | B2 |
11517309 | Bakos et al. | Dec 2022 | B2 |
11529137 | Shelton, IV et al. | Dec 2022 | B2 |
11529139 | Shelton, IV et al. | Dec 2022 | B2 |
11553971 | Shelton, IV et al. | Jan 2023 | B2 |
11559304 | Boudreaux et al. | Jan 2023 | B2 |
11559307 | Shelton, IV et al. | Jan 2023 | B2 |
11559308 | Yates et al. | Jan 2023 | B2 |
11559347 | Wiener et al. | Jan 2023 | B2 |
11571210 | Shelton, IV et al. | Feb 2023 | B2 |
11576672 | Shelton, IV et al. | Feb 2023 | B2 |
11576677 | Shelton, IV et al. | Feb 2023 | B2 |
11583306 | Olson et al. | Feb 2023 | B2 |
11589865 | Shelton, IV et al. | Feb 2023 | B2 |
11589888 | Shelton, IV et al. | Feb 2023 | B2 |
11589916 | Shelton, IV et al. | Feb 2023 | B2 |
11607219 | Shelton, IV et al. | Mar 2023 | B2 |
11638587 | Shelton, IV et al. | May 2023 | B2 |
11653920 | Shelton, IV et al. | May 2023 | B2 |
11659023 | Shelton, IV et al. | May 2023 | B2 |
11660089 | Shelton, IV et al. | May 2023 | B2 |
11660163 | Shelton, IV et al. | May 2023 | B2 |
11666368 | Henderson et al. | Jun 2023 | B2 |
11666375 | Scheib et al. | Jun 2023 | B2 |
11678880 | Shelton, IV et al. | Jun 2023 | B2 |
11678925 | Henderson et al. | Jun 2023 | B2 |
11684402 | Shelton, IV et al. | Jun 2023 | B2 |
11684412 | Shelton, IV et al. | Jun 2023 | B2 |
11684434 | Shelton, IV | Jun 2023 | B2 |
11696759 | Shelton, IV et al. | Jul 2023 | B2 |
11696761 | Shelton, IV | Jul 2023 | B2 |
11696776 | Shelton, IV et al. | Jul 2023 | B2 |
11701111 | Shelton, IV et al. | Jul 2023 | B2 |
11707318 | Shelton, IV et al. | Jul 2023 | B2 |
11717311 | Weir et al. | Aug 2023 | B2 |
11717706 | Wiener et al. | Aug 2023 | B2 |
11723716 | Fiebig et al. | Aug 2023 | B2 |
11744636 | Shelton, IV et al. | Sep 2023 | B2 |
11751872 | Zeiner et al. | Sep 2023 | B2 |
11751929 | Shelton, IV et al. | Sep 2023 | B2 |
11759251 | Shelton, IV et al. | Sep 2023 | B2 |
11766287 | Wiener et al. | Sep 2023 | B2 |
11771419 | Shelton, IV et al. | Oct 2023 | B2 |
11779329 | Shelton, IV et al. | Oct 2023 | B2 |
11779387 | Salguero et al. | Oct 2023 | B2 |
11786291 | Sarley et al. | Oct 2023 | B2 |
11786294 | Shelton, IV et al. | Oct 2023 | B2 |
11812957 | Shelton, IV et al. | Nov 2023 | B2 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020002380 | Bishop | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020032452 | Tierney et al. | Mar 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020133152 | Strul | Sep 2002 | A1 |
20020151884 | Hoey et al. | Oct 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20020177373 | Shibata et al. | Nov 2002 | A1 |
20020177862 | Aranyi et al. | Nov 2002 | A1 |
20030009164 | Woloszko et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030014087 | Fang et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040758 | Wang et al. | Feb 2003 | A1 |
20030050572 | Brautigam et al. | Mar 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030073981 | Whitman et al. | Apr 2003 | A1 |
20030109778 | Rashidi | Jun 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030176778 | Messing et al. | Sep 2003 | A1 |
20030181898 | Bowers | Sep 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030208186 | Moreyra | Nov 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212363 | Shipp | Nov 2003 | A1 |
20030212392 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040132383 | Langford et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040142667 | Lochhead et al. | Jul 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040147945 | Fritzsch | Jul 2004 | A1 |
20040158237 | Abboud et al. | Aug 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040181242 | Stack et al. | Sep 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040193153 | Sartor et al. | Sep 2004 | A1 |
20040193212 | Taniguchi et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040215132 | Yoon | Oct 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20040267311 | Viola et al. | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050020967 | Ono | Jan 2005 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050080427 | Govari et al. | Apr 2005 | A1 |
20050088285 | Jei | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050107777 | West et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050171533 | Latterell et al. | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050182339 | Lee et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050188743 | Land | Sep 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050192611 | Houser | Sep 2005 | A1 |
20050206583 | Lemelson et al. | Sep 2005 | A1 |
20050222598 | Ho et al. | Oct 2005 | A1 |
20050234484 | Houser et al. | Oct 2005 | A1 |
20050249667 | Tuszynski et al. | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050262175 | Iino et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050271807 | Iljima et al. | Dec 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060025757 | Heim | Feb 2006 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060030848 | Craig et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060109061 | Dobson et al. | May 2006 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060217700 | Garito et al. | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060224160 | Trieu et al. | Oct 2006 | A1 |
20060247558 | Yamada | Nov 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060259026 | Godara et al. | Nov 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20060264995 | Fanton et al. | Nov 2006 | A1 |
20060265035 | Yachi et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060271030 | Francis et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070021738 | Hasser et al. | Jan 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070066971 | Podhajsky | Mar 2007 | A1 |
20070067123 | Jungerman | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070129726 | Eder et al. | Jun 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070156163 | Davison et al. | Jul 2007 | A1 |
20070166663 | Telles et al. | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191712 | Messerly et al. | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208336 | Kim et al. | Sep 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239101 | Kellogg | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070288055 | Lee | Dec 2007 | A1 |
20070299895 | Johnson et al. | Dec 2007 | A1 |
20080005213 | Holtzman | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080015473 | Shimizu | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033465 | Schmitz et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080077145 | Boyden et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080097501 | Blier | Apr 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080122496 | Wagner | May 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080161809 | Schmitz et al. | Jul 2008 | A1 |
20080167670 | Shelton et al. | Jul 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208108 | Kimura | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080243162 | Shibata et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080275440 | Kratoska et al. | Nov 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090023985 | Ewers | Jan 2009 | A1 |
20090036913 | Wiener et al. | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054889 | Newton et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090065565 | Cao | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090088745 | Hushka et al. | Apr 2009 | A1 |
20090088785 | Masuda | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090101692 | Whitman et al. | Apr 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090118751 | Wiener et al. | May 2009 | A1 |
20090131885 | Akahoshi | May 2009 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090138025 | Stahler et al. | May 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090157064 | Hodel | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090177119 | Heidner et al. | Jul 2009 | A1 |
20090179923 | Amundson et al. | Jul 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090182333 | Eder et al. | Jul 2009 | A1 |
20090192441 | Gelbart et al. | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204114 | Odom | Aug 2009 | A1 |
20090216157 | Yamada | Aug 2009 | A1 |
20090223033 | Houser | Sep 2009 | A1 |
20090240244 | Malis et al. | Sep 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090248022 | Falkenstein et al. | Oct 2009 | A1 |
20090254077 | Craig | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090264909 | Beaupre | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270891 | Beaupre | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20090306639 | Nevo et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100022825 | Yoshie | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100034605 | Huckins et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036373 | Ward | Feb 2010 | A1 |
20100042093 | Wham et al. | Feb 2010 | A9 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100057081 | Hanna | Mar 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100063437 | Nelson et al. | Mar 2010 | A1 |
20100063525 | Beaupre et al. | Mar 2010 | A1 |
20100063528 | Beaupre | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100106173 | Yoshimine | Apr 2010 | A1 |
20100109480 | Forslund et al. | May 2010 | A1 |
20100145335 | Johnson et al. | Jun 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100181966 | Sakakibara | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100222714 | Muir et al. | Sep 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100225209 | Goldberg et al. | Sep 2010 | A1 |
20100228249 | Mohr et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100256635 | McKenna et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100305564 | Livneh | Dec 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20100331871 | Nield et al. | Dec 2010 | A1 |
20110004233 | Muir et al. | Jan 2011 | A1 |
20110015632 | Artale | Jan 2011 | A1 |
20110015650 | Choi et al. | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110071523 | Dickhans | Mar 2011 | A1 |
20110082494 | Kerr et al. | Apr 2011 | A1 |
20110106141 | Nakamura | May 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110160725 | Kabaya et al. | Jun 2011 | A1 |
20110238010 | Kirschenman et al. | Sep 2011 | A1 |
20110238079 | Hannaford et al. | Sep 2011 | A1 |
20110273465 | Konishi et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110279268 | Konishi et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120004655 | Kim et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022528 | White et al. | Jan 2012 | A1 |
20120022583 | Sugalski et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120053597 | Anvari et al. | Mar 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120071863 | Lee et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120101493 | Masuda et al. | Apr 2012 | A1 |
20120101495 | Young et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116266 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120136279 | Tanaka et al. | May 2012 | A1 |
20120136347 | Brustad et al. | May 2012 | A1 |
20120136386 | Kishida et al. | May 2012 | A1 |
20120143182 | Ullrich et al. | Jun 2012 | A1 |
20120143211 | Kishi | Jun 2012 | A1 |
20120150049 | Zielinski et al. | Jun 2012 | A1 |
20120150169 | Zielinksi et al. | Jun 2012 | A1 |
20120172904 | Muir et al. | Jul 2012 | A1 |
20120191091 | Allen | Jul 2012 | A1 |
20120193396 | Zemlok et al. | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120226266 | Ghosal et al. | Sep 2012 | A1 |
20120234893 | Schuckmann et al. | Sep 2012 | A1 |
20120253328 | Cunningham et al. | Oct 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296239 | Chernov et al. | Nov 2012 | A1 |
20120296325 | Takashino | Nov 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130085510 | Stefanchik et al. | Apr 2013 | A1 |
20130103031 | Garrison | Apr 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130165929 | Muir et al. | Jun 2013 | A1 |
20130190760 | Allen, IV et al. | Jul 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130264369 | Whitman | Oct 2013 | A1 |
20130267874 | Marcotte et al. | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20130321425 | Greene et al. | Dec 2013 | A1 |
20130334989 | Kataoka | Dec 2013 | A1 |
20130345701 | Allen, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005663 | Heard et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140077426 | Park | Mar 2014 | A1 |
20140107538 | Wiener et al. | Apr 2014 | A1 |
20140121569 | Schafer et al. | May 2014 | A1 |
20140135804 | Weisenburgh, II et al. | May 2014 | A1 |
20140163541 | Shelton, IV et al. | Jun 2014 | A1 |
20140163549 | Yates et al. | Jun 2014 | A1 |
20140180274 | Kabaya et al. | Jun 2014 | A1 |
20140180310 | Blumenkranz et al. | Jun 2014 | A1 |
20140194868 | Sanai et al. | Jul 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207124 | Aldridge et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140221994 | Reschke | Aug 2014 | A1 |
20140236152 | Walberg et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140276794 | Batchelor et al. | Sep 2014 | A1 |
20140276797 | Batchelor et al. | Sep 2014 | A1 |
20140276798 | Batchelor et al. | Sep 2014 | A1 |
20140303605 | Boyden et al. | Oct 2014 | A1 |
20140303612 | Williams | Oct 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140373003 | Grez et al. | Dec 2014 | A1 |
20150014392 | Williams et al. | Jan 2015 | A1 |
20150025528 | Arts | Jan 2015 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150048140 | Penna et al. | Feb 2015 | A1 |
20150066027 | Garrison et al. | Mar 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150080887 | Sobajima et al. | Mar 2015 | A1 |
20150080889 | Cunningham et al. | Mar 2015 | A1 |
20150088122 | Jensen | Mar 2015 | A1 |
20150100056 | Nakamura | Apr 2015 | A1 |
20150112335 | Boudreaux et al. | Apr 2015 | A1 |
20150119901 | Steege | Apr 2015 | A1 |
20150157356 | Gee | Jun 2015 | A1 |
20150164533 | Felder et al. | Jun 2015 | A1 |
20150164534 | Felder et al. | Jun 2015 | A1 |
20150164535 | Felder et al. | Jun 2015 | A1 |
20150164536 | Czarnecki et al. | Jun 2015 | A1 |
20150164537 | Cagle et al. | Jun 2015 | A1 |
20150230796 | Calderoni | Aug 2015 | A1 |
20150238260 | Nau, Jr. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272657 | Yates et al. | Oct 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150282879 | Ruelas | Oct 2015 | A1 |
20150289364 | Ilkko et al. | Oct 2015 | A1 |
20150313667 | Allen, IV | Nov 2015 | A1 |
20150317899 | Dumbauld et al. | Nov 2015 | A1 |
20150351765 | Valentine et al. | Dec 2015 | A1 |
20150351857 | Vander Poorten et al. | Dec 2015 | A1 |
20150374430 | Weiler et al. | Dec 2015 | A1 |
20150374457 | Colby | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160038228 | Daniel et al. | Feb 2016 | A1 |
20160044841 | Chamberlain | Feb 2016 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051314 | Batchelor et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160120601 | Boudreaux et al. | May 2016 | A1 |
20160175025 | Strobl | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160206342 | Robertson et al. | Jul 2016 | A1 |
20160228171 | Boudreaux | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160262786 | Madan et al. | Sep 2016 | A1 |
20160270841 | Strobl | Sep 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160296251 | Olson et al. | Oct 2016 | A1 |
20160296252 | Olson et al. | Oct 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20160317216 | Hermes et al. | Nov 2016 | A1 |
20160331455 | Hancock et al. | Nov 2016 | A1 |
20160358849 | Jur et al. | Dec 2016 | A1 |
20170020614 | Jackson et al. | Jan 2017 | A1 |
20170065331 | Mayer et al. | Mar 2017 | A1 |
20170086909 | Yates et al. | Mar 2017 | A1 |
20170119426 | Akagane | May 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170164972 | Johnson et al. | Jun 2017 | A1 |
20170164997 | Johnson et al. | Jun 2017 | A1 |
20170189095 | Danziger et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170209145 | Swayze et al. | Jul 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170224405 | Takashino et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170296169 | Yates et al. | Oct 2017 | A1 |
20170296177 | Harris et al. | Oct 2017 | A1 |
20170296180 | Harris et al. | Oct 2017 | A1 |
20170303954 | Ishii | Oct 2017 | A1 |
20170312018 | Trees et al. | Nov 2017 | A1 |
20170325874 | Noack et al. | Nov 2017 | A1 |
20170333073 | Faller et al. | Nov 2017 | A1 |
20170348043 | Wang et al. | Dec 2017 | A1 |
20170348044 | Wang et al. | Dec 2017 | A1 |
20170367772 | Gunn et al. | Dec 2017 | A1 |
20180014872 | Dickerson | Jan 2018 | A1 |
20180085157 | Batchelor et al. | Mar 2018 | A1 |
20180132850 | Leimbach et al. | May 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180188125 | Park et al. | Jul 2018 | A1 |
20180206904 | Felder et al. | Jul 2018 | A1 |
20180221045 | Zimmerman et al. | Aug 2018 | A1 |
20180250066 | Ding et al. | Sep 2018 | A1 |
20180271578 | Coulombe | Sep 2018 | A1 |
20180289432 | Kostrzewski et al. | Oct 2018 | A1 |
20180303493 | Chapolini | Oct 2018 | A1 |
20180325517 | Wingardner et al. | Nov 2018 | A1 |
20180333179 | Weisenburgh, II et al. | Nov 2018 | A1 |
20180353245 | Mccloud et al. | Dec 2018 | A1 |
20180368844 | Bakos et al. | Dec 2018 | A1 |
20190000459 | Shelton, IV et al. | Jan 2019 | A1 |
20190000461 | Shelton, IV et al. | Jan 2019 | A1 |
20190029746 | Dudhedia et al. | Jan 2019 | A1 |
20190038283 | Shelton, IV et al. | Feb 2019 | A1 |
20190053818 | Nelson et al. | Feb 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190117293 | Kano et al. | Apr 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125384 | Scheib et al. | May 2019 | A1 |
20190125390 | Shelton, IV et al. | May 2019 | A1 |
20190175258 | Tsuruta | Jun 2019 | A1 |
20190183504 | Shelton, IV et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190200987 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201048 | Stulen et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190209201 | Boudreaux et al. | Jul 2019 | A1 |
20190223941 | Kitamura et al. | Jul 2019 | A1 |
20190269455 | Mensch et al. | Sep 2019 | A1 |
20190290265 | Shelton, IV et al. | Sep 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190366562 | Zhang et al. | Dec 2019 | A1 |
20190388091 | Eschbach et al. | Dec 2019 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200078085 | Yates et al. | Mar 2020 | A1 |
20200078609 | Messerly et al. | Mar 2020 | A1 |
20200100825 | Henderson et al. | Apr 2020 | A1 |
20200113622 | Honegger | Apr 2020 | A1 |
20200129261 | Eschbach | Apr 2020 | A1 |
20200138473 | Shelton, IV et al. | May 2020 | A1 |
20200188047 | Itkowitz et al. | Jun 2020 | A1 |
20200222111 | Yates et al. | Jul 2020 | A1 |
20200222112 | Hancock et al. | Jul 2020 | A1 |
20200268430 | Takei et al. | Aug 2020 | A1 |
20200315623 | Eisinger et al. | Oct 2020 | A1 |
20200315712 | Jasperson et al. | Oct 2020 | A1 |
20200405302 | Shelton, IV et al. | Dec 2020 | A1 |
20200410177 | Shelton, IV | Dec 2020 | A1 |
20210100579 | Shelton, IV et al. | Apr 2021 | A1 |
20210153927 | Ross et al. | May 2021 | A1 |
20210177481 | Shelton, IV et al. | Jun 2021 | A1 |
20210177494 | Houser et al. | Jun 2021 | A1 |
20210177496 | Shelton, IV et al. | Jun 2021 | A1 |
20210186492 | Shelton, IV et al. | Jun 2021 | A1 |
20210186497 | Shelton, IV et al. | Jun 2021 | A1 |
20210186499 | Shelton, IV et al. | Jun 2021 | A1 |
20210186501 | Shelton, IV et al. | Jun 2021 | A1 |
20210186553 | Green et al. | Jun 2021 | A1 |
20210186554 | Green et al. | Jun 2021 | A1 |
20210196266 | Shelton, IV et al. | Jul 2021 | A1 |
20210196267 | Shelton, IV et al. | Jul 2021 | A1 |
20210196269 | Shelton, IV et al. | Jul 2021 | A1 |
20210196270 | Shelton, IV et al. | Jul 2021 | A1 |
20210196302 | Shelton, IV et al. | Jul 2021 | A1 |
20210196305 | Strobl | Jul 2021 | A1 |
20210196306 | Estera et al. | Jul 2021 | A1 |
20210196307 | Shelton, IV | Jul 2021 | A1 |
20210196334 | Sarley et al. | Jul 2021 | A1 |
20210196335 | Messerly et al. | Jul 2021 | A1 |
20210196336 | Faller et al. | Jul 2021 | A1 |
20210196344 | Shelton, IV et al. | Jul 2021 | A1 |
20210196345 | Messerly et al. | Jul 2021 | A1 |
20210196346 | Leuck et al. | Jul 2021 | A1 |
20210196349 | Fiebig et al. | Jul 2021 | A1 |
20210196352 | Messerly et al. | Jul 2021 | A1 |
20210196353 | Gee et al. | Jul 2021 | A1 |
20210196354 | Shelton, IV et al. | Jul 2021 | A1 |
20210196357 | Shelton, IV et al. | Jul 2021 | A1 |
20210196358 | Shelton, IV et al. | Jul 2021 | A1 |
20210196359 | Shelton, IV et al. | Jul 2021 | A1 |
20210196361 | Shelton, IV et al. | Jul 2021 | A1 |
20210196362 | Shelton, IV et al. | Jul 2021 | A1 |
20210196363 | Shelton, IV et al. | Jul 2021 | A1 |
20210196364 | Shelton, IV et al. | Jul 2021 | A1 |
20210212754 | Olson | Jul 2021 | A1 |
20210220036 | Shelton, IV et al. | Jul 2021 | A1 |
20210236195 | Asher et al. | Aug 2021 | A1 |
20210282804 | Worrell et al. | Sep 2021 | A1 |
20210393288 | Shelton, IV et al. | Dec 2021 | A1 |
20210393314 | Wiener et al. | Dec 2021 | A1 |
20210393319 | Shelton, IV et al. | Dec 2021 | A1 |
20220039891 | Stulen et al. | Feb 2022 | A1 |
20220071655 | Price et al. | Mar 2022 | A1 |
20220167982 | Shelton, IV et al. | Jun 2022 | A1 |
20220168005 | Aldridge et al. | Jun 2022 | A1 |
20220168039 | Worrell et al. | Jun 2022 | A1 |
20220304736 | Boudreaux | Sep 2022 | A1 |
20220313297 | Aldridge et al. | Oct 2022 | A1 |
20220346863 | Yates et al. | Nov 2022 | A1 |
20220387067 | Faller et al. | Dec 2022 | A1 |
20220406452 | Shelton, IV | Dec 2022 | A1 |
20230038162 | Timm et al. | Feb 2023 | A1 |
20230048996 | Vakharia et al. | Feb 2023 | A1 |
20230270486 | Wiener et al. | Aug 2023 | A1 |
20230277205 | Olson et al. | Sep 2023 | A1 |
20230372743 | Wiener et al. | Nov 2023 | A1 |
20230380880 | Wiener et al. | Nov 2023 | A1 |
Number | Date | Country |
---|---|---|
2535467 | Apr 1993 | CA |
2460047 | Nov 2001 | CN |
1634601 | Jul 2005 | CN |
1775323 | May 2006 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
201029899 | Mar 2008 | CN |
101474081 | Jul 2009 | CN |
101516285 | Aug 2009 | CN |
101522112 | Sep 2009 | CN |
102100582 | Jun 2011 | CN |
102149312 | Aug 2011 | CN |
202027624 | Nov 2011 | CN |
102792181 | Nov 2012 | CN |
103281982 | Sep 2013 | CN |
103379853 | Oct 2013 | CN |
203468630 | Mar 2014 | CN |
104001276 | Aug 2014 | CN |
104013444 | Sep 2014 | CN |
104434298 | Mar 2015 | CN |
107374752 | Nov 2017 | CN |
3904558 | Aug 1990 | DE |
9210327 | Nov 1992 | DE |
4300307 | Jul 1994 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
20021619 | Mar 2001 | DE |
10042606 | Aug 2001 | DE |
10201569 | Jul 2003 | DE |
102012109037 | Apr 2014 | DE |
0171967 | Feb 1986 | EP |
0336742 | Oct 1989 | EP |
0136855 | Nov 1989 | EP |
0705571 | Apr 1996 | EP |
1698289 | Sep 2006 | EP |
1862133 | Dec 2007 | EP |
1972264 | Sep 2008 | EP |
2060238 | May 2009 | EP |
1747761 | Oct 2009 | EP |
2131760 | Dec 2009 | EP |
1214913 | Jul 2010 | EP |
1946708 | Jun 2011 | EP |
2510891 | Oct 2012 | EP |
1767164 | Jan 2013 | EP |
2578172 | Apr 2013 | EP |
2668922 | Dec 2013 | EP |
2076195 | Dec 2015 | EP |
3476302 | May 2019 | EP |
3476331 | May 2019 | EP |
3694298 | Aug 2020 | EP |
2032221 | Apr 1980 | GB |
2317566 | Apr 1998 | GB |
S50100891 | Aug 1975 | JP |
S5968513 | May 1984 | JP |
S59141938 | Aug 1984 | JP |
S62221343 | Sep 1987 | JP |
S62227343 | Oct 1987 | JP |
S62292153 | Dec 1987 | JP |
S62292154 | Dec 1987 | JP |
S63109386 | May 1988 | JP |
S63315049 | Dec 1988 | JP |
H01151452 | Jun 1989 | JP |
H01198540 | Aug 1989 | JP |
H0271510 | May 1990 | JP |
H02286149 | Nov 1990 | JP |
H02292193 | Dec 1990 | JP |
H0337061 | Feb 1991 | JP |
H0425707 | Feb 1992 | JP |
H0464351 | Feb 1992 | JP |
H0430508 | Mar 1992 | JP |
H04152942 | May 1992 | JP |
H 0541716 | Feb 1993 | JP |
H0576482 | Mar 1993 | JP |
H0595955 | Apr 1993 | JP |
H05115490 | May 1993 | JP |
H0670938 | Mar 1994 | JP |
H06104503 | Apr 1994 | JP |
H0824266 | Jan 1996 | JP |
H08229050 | Sep 1996 | JP |
H08275951 | Oct 1996 | JP |
H08299351 | Nov 1996 | JP |
H08336545 | Dec 1996 | JP |
H09130655 | May 1997 | JP |
H09135553 | May 1997 | JP |
H09140722 | Jun 1997 | JP |
H105237 | Jan 1998 | JP |
10127654 | May 1998 | JP |
H10295700 | Nov 1998 | JP |
H11128238 | May 1999 | JP |
H11169381 | Jun 1999 | JP |
2000210299 | Aug 2000 | JP |
2000271142 | Oct 2000 | JP |
2000271145 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2001029353 | Feb 2001 | JP |
2002059380 | Feb 2002 | JP |
2002186901 | Jul 2002 | JP |
2002263579 | Sep 2002 | JP |
2002330977 | Nov 2002 | JP |
2003000612 | Jan 2003 | JP |
2003010201 | Jan 2003 | JP |
2003116870 | Apr 2003 | JP |
2003126104 | May 2003 | JP |
2003126110 | May 2003 | JP |
2003153919 | May 2003 | JP |
2003339730 | Dec 2003 | JP |
2004129871 | Apr 2004 | JP |
2004147701 | May 2004 | JP |
2005003496 | Jan 2005 | JP |
2005027026 | Jan 2005 | JP |
2005074088 | Mar 2005 | JP |
2005337119 | Dec 2005 | JP |
2006068396 | Mar 2006 | JP |
2006081664 | Mar 2006 | JP |
2006114072 | Apr 2006 | JP |
2006217716 | Aug 2006 | JP |
2006288431 | Oct 2006 | JP |
2007037568 | Feb 2007 | JP |
200801876 | Jan 2008 | JP |
2008017876 | Jan 2008 | JP |
200833644 | Feb 2008 | JP |
2008188160 | Aug 2008 | JP |
D1339835 | Aug 2008 | JP |
2010009686 | Jan 2010 | JP |
2010121865 | Jun 2010 | JP |
2012071186 | Apr 2012 | JP |
2012223582 | Nov 2012 | JP |
2012235658 | Nov 2012 | JP |
2013126430 | Jun 2013 | JP |
100789356 | Dec 2007 | KR |
101298237 | Aug 2013 | KR |
2154437 | Aug 2000 | RU |
22035 | Mar 2002 | RU |
2201169 | Mar 2003 | RU |
2405603 | Dec 2010 | RU |
2013119977 | Nov 2014 | RU |
850068 | Jul 1981 | SU |
WO-8103272 | Nov 1981 | WO |
WO-9308757 | May 1993 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9421183 | Sep 1994 | WO |
WO-9424949 | Nov 1994 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9712557 | Apr 1997 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9840015 | Sep 1998 | WO |
WO-9920213 | Apr 1999 | WO |
WO-9923960 | May 1999 | WO |
WO-0024330 | May 2000 | WO |
WO-0064358 | Nov 2000 | WO |
WO-0128444 | Apr 2001 | WO |
WO-0167970 | Sep 2001 | WO |
WO-0172251 | Oct 2001 | WO |
WO-0195810 | Dec 2001 | WO |
WO-02080793 | Oct 2002 | WO |
WO-03095028 | Nov 2003 | WO |
WO-2004037095 | May 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004098426 | Nov 2004 | WO |
WO-2006091494 | Aug 2006 | WO |
WO-2007008710 | Jan 2007 | WO |
WO-2008118709 | Oct 2008 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2010027109 | Mar 2010 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2011052939 | May 2011 | WO |
WO-2011060031 | May 2011 | WO |
WO-2011092464 | Aug 2011 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061722 | May 2012 | WO |
WO-2012088535 | Jun 2012 | WO |
WO-2012150567 | Nov 2012 | WO |
WO-2016130844 | Aug 2016 | WO |
WO-2019130090 | Jul 2019 | WO |
WO-2019130113 | Jul 2019 | WO |
Entry |
---|
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Campbell et al., “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
Chen et al, “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages). |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www. erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988). |
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984. |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line, ” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . . |
http://www.apicalinstr.com/generators.htm. |
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724. |
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html. |
http://www.megadyne.com/es_generator.php. |
http://www.valleylab.com/product/es/generators/index.html. |
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . . |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549. |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Lacourse, J.R.; Vogt, M.C .; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997). |
Missinne, et al. “Stretchable Optical Waveguides,” vol. 22, No. 4, Feb. 18, 2014, pp. 4168-4179 (12 pages). |
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220. |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000). |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Number | Date | Country | |
---|---|---|---|
20220226014 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15363244 | Nov 2016 | US |
Child | 17665163 | US |