End effector control and calibration

Information

  • Patent Grant
  • 11266430
  • Patent Number
    11,266,430
  • Date Filed
    Tuesday, November 29, 2016
    7 years ago
  • Date Issued
    Tuesday, March 8, 2022
    2 years ago
Abstract
Methods and apparatus for end effector control and calibration are described. The method may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may further include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may also include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
Description
TECHNICAL FIELD

The technical field may generally relate to controlling surgical instruments, and in particular, controlling and calibrating end effectors of surgical instruments.


BACKGROUND

Various aspects are directed to surgical instruments, and controlling and calibrating end effectors of surgical instruments.


For example, ultrasonic surgical devices are finding increasingly widespread applications in surgical procedures by virtue of their unique performance characteristics. Depending upon specific device configurations and operational parameters, ultrasonic surgical devices can provide substantially simultaneous transection of tissue and homeostasis by coagulation, desirably minimizing patient trauma. An ultrasonic surgical device may comprise a handpiece containing an ultrasonic transducer, and an instrument coupled to the ultrasonic transducer having a distally mounted end effector (e.g., an ultrasonic blade and a clamp arm, where the clamp arm may comprise a non-stick tissue pad) to cut and seal tissue. In some cases, the instrument may be permanently affixed to the handpiece. In other cases, the instrument may be detachable from the handpiece, as in the case of a disposable instrument or an instrument that is interchangeable between different handpieces. The end effector transmits ultrasonic energy to tissue brought into contact with the end effector to realize cutting and sealing action. Ultrasonic surgical devices of this nature can be configured for open surgical use, laparoscopic, or endoscopic surgical procedures including robotic-assisted procedures.


Ultrasonic energy cuts and coagulates tissue using temperatures lower than those used in electro surgical procedures. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue by the ultrasonic blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. A surgeon can control the cutting speed and coagulation by the force applied to the tissue by the end effector, the time over which the force is applied and the selected excursion level of the end effector.


SUMMARY

In one aspect, a method for controlling an end effector may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may also include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may additionally include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.


One or more of the following features may be included. The first tube may be an inner tube and the second tube may be an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube. The method may further include detecting the signal using a Hall-effect sensor and a magnet positioned on the first tube. The method may also include moving a magnet positioned on the first tube relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector. The method may additionally include adjusting the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor. Moreover, the method may include adjusting the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade. Further more, the method may include adjusting the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


In one or more implementations, the method may include determining a type of tissue between the clamp arm and the ultrasonic blade based on the signal. The method may also include adjusting the power output to the ultrasonic blade of the end effector based on the type of tissue. The method may additionally include, in response to determining that the type of tissue between the clamp and the ultrasonic blade is a small vessel, reducing the power output to the ultrasonic blade of the end effector by an amount less than for a large vessel. Moreover, the method may include in response to determining that the type of tissue between the clamp and the ultrasonic blade is a large vessel, reducing the power output to the ultrasonic blade of the end effector by an amount more than for a small vessel.


In one aspect, an apparatus for controlling an end effector may include a sensor configured to detect a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The apparatus may also include a processor configured to determine a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The apparatus may further include a transducer configured to adjust a power output to the ultrasonic blade of the end effector based on the clamp arm position.


One or more of the following features may be included. The first tube may be an inner tube and the second tube may be an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube. The apparatus may further include a magnet positioned on the first tube wherein the sensor is a Hall-effect sensor used to detect the signal based on a position of the magnet. The magnet may be positioned on the first tube moves relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector. The transducer may be an ultrasonic transducer configured to adjust the power output to the ultrasonic blade of the end effector based on a voltage change in a Hall-effect sensor. The apparatus may also include a proportional-integral controller configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


In one aspect, a method for calibrating an apparatus for controlling an end effector may include detecting a first signal corresponding to a fully open position of a clamp arm and a ultrasonic blade of the end effector. The method may also include detecting a second signal corresponding to an intermediate position of the clamp arm and the ultrasonic blade of the end effector, the intermediate position resulting from clamping a rigid body between the clamp arm and the ultrasonic blade. The method may additionally include detecting a third signal corresponding to a fully closed position of the clamp arm and the ultrasonic blade of the end effector. The method may further include determining a best fit curve to represent signal strength as a function of sensor displacement based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body. Moreover, the method may include creating a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.


The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an elevation view of an example surgical instrument in accordance with one aspect of the present disclosure



FIG. 2 is a perspective view of an example surgical instrument in accordance with one aspect of the present disclosure;



FIG. 3 illustrates an example end effector of a surgical instruments in accordance with one aspect of the present disclosure;



FIG. 4 illustrates an example end effector of a surgical instruments in accordance with one aspect of the present disclosure;



FIG. 5 is an exploded view of one aspect of a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 6 illustrates a diagram of a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 7 illustrates a structural view of a generator architecture in accordance with one aspect of the present disclosure;



FIGS. 8A-8C illustrate functional views of a generator architecture in accordance with one aspect of the present disclosure;



FIG. 9 illustrates a controller for monitoring input devices and controlling output devices in accordance with one aspect of the present disclosure;



FIGS. 10A and 10B illustrate structural and functional aspects of one aspect of the generator in accordance with one aspect the present disclosure;



FIG. 11 illustrates an example end effectors and shaft of a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 12 illustrates an example Hall-effect sensor and magnet configuration in accordance with one aspect of the present disclosure where the Hall-effect sensor is fixed and the magnet moves in a line perpendicular to the face of the Hall sensor;



FIG. 13A illustrates an example Hall-effect sensor and magnet configuration in accordance with one aspect of the present disclosure where the Hall-effect sensor is fixed and the magnet moves in a line parallel to the face of the Hall-effect sensor;



FIG. 13B illustrates an example Hall-effect sensor and magnet configuration in accordance with one aspect of the present disclosure where the Hall-effect sensor is fixed and the magnet moves in a line parallel to the face of the Hall-effect sensor;



FIG. 14A is a table of output voltage of a Hall-effect sensor as a function of distance as a clamp arm moves from a fully closed position to a fully open position in accordance with one aspect the present disclosure;



FIG. 14B is a graph of output voltage of a Hall-effect sensor as a function of distance as a clamp arm moves from a fully closed position to a fully open position in accordance with one aspect the present disclosure;



FIG. 15A is a top view of a Hall-effect sensor and magnet configurations in a surgical instrument and corresponding open jaws end effector position in accordance with one aspect of the present disclosure;



FIG. 15B is a top view of a Hall-effect sensor and magnet configurations in a surgical instrument and corresponding closed jaws end effector position in accordance with one aspect of the present disclosure;



FIG. 16 illustrates a plan view of a system comprising a Hall-effect sensor and magnet configuration in a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 17A illustrates a view of an Hall-effect sensor and magnet configurations in the context of a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 17B illustrates a view of an Hall-effect sensor and magnet configurations in the context of a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 18 illustrates a Hall-effect sensor and magnet configuration in a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 19A illustrates a Hall-effect sensor and magnet configuration in accordance with one aspect of the present disclosure;



FIG. 19B illustrates Hall-effect sensor and magnet configurations in a surgical instrument in accordance with one aspect of the present disclosure;



FIG. 20 is a graph of a curve depicting Travel Ratio (TR) along the y-axis, based on Hall-effect sensor output voltage, as a function of Time (Sec) along the x-axis in accordance with one aspect of the present disclosure;



FIG. 21 illustrates a graph of a first curve depicting Travel Ratio (TR) along the left y-axis, based on Hall-effect sensor output voltage, as a function of Time (Sec) along the x-axis in accordance with one aspect of the present disclosure;



FIG. 22 illustrates charts showing Proportional-Integral control of power output to an ultrasonic blade in accordance with one aspect of the present disclosure;



FIG. 23 illustrates several vessels that were sealed using the techniques and features described herein in accordance with one aspect of the present disclosure;



FIG. 24 illustrates a graph of a best fit curve of Hall-effect sensor output voltage as a function of distance for various positions of the clamp arm as the clamp arm moves between fully closed to a fully open positions in accordance with one aspect of the present disclosure;



FIGS. 25-28 illustrate an end effector being calibrated in four different configurations in accordance with various aspects of the present disclosure using gage pins for two of the configurations for recording a Hall-effect sensor response corresponding to various positions of the clamp arm to record four data points (1-4) to create a best fit curve during production, where:



FIG. 25 illustrates an end effector in a fully open configuration to record a first data point (1) in accordance with one aspect of the present disclosure;



FIG. 26 illustrates an end effector in a second intermediate configuration grasping a first gage pin of a known diameter to record a second data point (2) in accordance with one aspect of the present disclosure;



FIG. 27 illustrates an end effector in a third intermediate configuration grasping a second gage pin of a known diameter to record a third data point (3) in accordance with one aspect of the present disclosure; and



FIG. 28 illustrates an end effector in a fully closed configuration to record a fourth data point (4) in accordance with one aspect of the present disclosure;



FIGS. 29A-D illustrate an example surgical instrument in accordance with one aspect of the present disclosure and charts showing example output power level in a hemostasis mode for small and large vessels, where:



FIG. 29A is a schematic diagram of surgical instrument configured to seal small and large vessels in accordance with one aspect of the present disclosure;



FIG. 29B is a diagram of an example range of a small vessel and a large vessel and the relative position of a clamp arm of the end effector in accordance with one aspect of the present disclosure;



FIG. 29C is a graph that depicts a process for sealing small vessels by applying various ultrasonic energy levels for a different periods of time in accordance with one aspect of the present disclosure; and



FIG. 29D is a graph that depicts a process for sealing large vessels by applying various ultrasonic energy levels for different periods of time in accordance with one aspect of the present disclosure;



FIG. 30 is a logic diagram illustrating an example process for determining whether hemostasis mode should be used, in accordance with one aspect of the present disclosure;



FIG. 31 is a logic diagram illustrating an example process for end effector control in accordance with one aspect of the present disclosure;



FIG. 32 is a logic diagram illustrating an example process for calibrating an apparatus for controlling for an end effector in accordance with one aspect of the present disclosure;



FIG. 33 is a logic diagram of a process for tracking wear of the tissue pad portion of the clamp arm and compensating for resulting drift of the Hall-effect sensor and determining tissue coefficient of friction in accordance with one aspect of the present disclosure;



FIG. 34 illustrates a Hall-effect sensor system that can be employed with the process of FIG. 33 in accordance with one aspect of the present disclosure; and



FIG. 35 illustrates one aspect of a ramp type counter analog-to-digital converter (ADC) that may be employed with the Hall-effect sensor system of FIG. 34 in accordance with one aspect of the present disclosure.





DESCRIPTION

Various aspects described herein are directed to surgical instruments comprising distally positioned, articulatable jaw assemblies. The jaw assemblies may be utilized in lieu of or in addition to shaft articulation. For example, the jaw assemblies may be utilized to grasp tissue and move it towards an ultrasonic blade, RF electrodes or other component for treating tissue.


In one aspect, a surgical instrument may comprise an end effector with an ultrasonic blade extending distally therefrom. The jaw assembly may be articulatable and may pivot about at least two axes. A first axis, or wrist pivot axis, may be substantially perpendicular to a longitudinal axis of the instrument shaft. The jaw assembly may pivot about the wrist pivot axis from a first position where the jaw assembly is substantially parallel to the ultrasonic blade to a second position where the jaw assembly is not substantially parallel to the ultrasonic blade. In addition, the jaw assembly may comprise first and second jaw members that are pivotable about a second axis or jaw pivot axis. The jaw pivot axis may be substantially perpendicular to the wrist pivot axis. In some aspects, the jaw pivot axis itself may pivot as the jaw assembly pivots about the wrist pivot axis. The first and second jaw members may be pivotably relative to one another about the jaw pivot axis such that the first and second jaw members may “open” and “close.” Additionally, in some aspects, the first and second jaw members are also pivotable about the jaw pivot axis together such that the direction of the first and second jaw members may change.


Reference will now be made in detail to several aspects, including aspects showing example implementations of manual and robotic surgical instruments with end effectors comprising ultrasonic and/or electro surgical elements. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict example aspects of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example aspects of the structures and methods illustrated herein may be employed without departing from the principles described herein.



FIG. 1 is a right side view of one aspect of an ultrasonic surgical instrument 10. In the illustrated aspect, the ultrasonic surgical instrument 10 may be employed in various surgical procedures including endoscopic or traditional open surgical procedures. In one aspect, the ultrasonic surgical instrument 10 comprises a handle assembly 12, an elongated shaft assembly 14, and an ultrasonic transducer 16. The handle assembly 12 comprises a trigger assembly 24, a distal rotation assembly 13, and a switch assembly 28. The elongated shaft assembly 14 comprises an end effector assembly 26, which comprises elements to dissect tissue or mutually grasp, cut, and coagulate vessels and/or tissue, and actuating elements to actuate the end effector assembly 26. The handle assembly 12 is adapted to receive the ultrasonic transducer 16 at the proximal end. The ultrasonic transducer 16 is mechanically engaged to the elongated shaft assembly 14 and portions of the end effector assembly 26. The ultrasonic transducer 16 is electrically coupled to a generator 20 via a cable 22. Although the majority of the drawings depict a multiple end effector assembly 26 for use in connection with laparoscopic surgical procedures, the ultrasonic surgical instrument 10 may be employed in more traditional open surgical procedures and in other aspects, may be configured for use in endoscopic procedures. For the purposes herein, the ultrasonic surgical instrument 10 is described in terms of an endoscopic instrument; however, it is contemplated that an open and/or laparoscopic version of the ultrasonic surgical instrument 10 also may include the same or similar operating components and features as described herein.


In various aspects, the generator 20 comprises several functional elements, such as modules and/or blocks. Different functional elements or modules may be configured for driving different kinds of surgical devices. For example, an ultrasonic generator module 21 may drive an ultrasonic device, such as the ultrasonic surgical instrument 10. In some example aspects, the generator 20 also comprises an electrosurgery/RF generator module 23 for driving an electrosurgical device (or an electro surgical aspect of the ultrasonic surgical instrument 10). In the example aspect illustrated in FIG. 1, the generator 20 includes a control system 25 integral with the generator 20, and a foot switch 29 connected to the generator via a cable 27. The generator 20 may also comprise a triggering mechanism for activating a surgical instrument, such as the instrument 10. The triggering mechanism may include a power switch (not shown) as well as a foot switch 29. When activated by the foot switch 29, the generator 20 may provide energy to drive the acoustic assembly of the surgical instrument 10 and to drive the end effector 18 at a predetermined excursion level. The generator 20 drives or excites the acoustic assembly at any suitable resonant frequency of the acoustic assembly and/or derives the therapeutic/sub-therapeutic electromagnetic/RF energy. In one aspect, the electrosurgical/RF generator module 23 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one aspect, the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga. In bipolar electrosurgery applications, as previously discussed, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, or adjacent to, the tissue to be treated such that current can flow from the active electrode to the return electrode through the tissue. Accordingly, the electrosurgical/RF module 23 generator may be configured for therapeutic purposes by applying electrical energy to the tissue T sufficient for treating the tissue (e.g., cauterization). For example, in some aspects, the active and/or return electrode may be positioned on the jaw assembly described herein.


In one aspect, the electrosurgical/RF generator module 23 may be configured to deliver a subtherapeutic RF signal to implement a tissue impedance measurement module. In one aspect, the electrosurgical/RF generator module 23 comprises a bipolar radio frequency generator. In one aspect, the electrosurgical/RF generator module 23 may be configured to monitor electrical impedance Z, of tissue T and to control the characteristics of time and power level based on the tissue T by way of a return electrode provided on a clamp member of the end effector assembly 26. Accordingly, the electrosurgical/RF generator module 23 may be configured for subtherapeutic purposes for measuring the impedance or other electrical characteristics of the tissue T. Techniques and circuit configurations for measuring the impedance or other electrical characteristics of tissue Tare discussed in more detail in commonly assigned U.S. Patent Publication No. 2011/0015631, titled “Electrosurgical Generator for Ultrasonic Surgical Instrument,” the disclosure of which is herein incorporated by reference in its entirety.


A suitable ultrasonic generator module 21 may be configured to functionally operate in a manner similar to the GEN300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio as is disclosed in one or more of the following U.S. patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (Method for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); U.S. Pat. No. 6,537,291 (Method for Detecting a Loose Blade in a Hand Piece Connected to an Ultrasonic Surgical System); U.S. Pat. No. 6,662,127 (Method for Detecting Presence of a Blade in an Ultrasonic System); U.S. Pat. No. 6,977,495 (Detection Circuitry for Surgical Handpiece System); U.S. Pat. No. 7,077,853 (Method for Calculating Transducer Capacitance to Determine Transducer Temperature); U.S. Pat. No. 7,179,271 (Method for Driving an Ultrasonic System to Improve Acquisition of Ultrasonic Blade Resonance Frequency at Startup); and U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).


It will be appreciated that in various aspects, the generator 20 may be configured to operate in several modes. In one mode, the generator 20 may be configured such that the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be operated independently.


For example, the ultrasonic generator module 21 may be activated to apply ultrasonic energy to the end effector assembly 26 and subsequently, either therapeutic sub-therapeutic RF energy may be applied to the end effector assembly 26 by the electrosurgical/RF generator module 23. As previously discussed, the sub-therapeutic electrosurgical/RF energy may be applied to tissue clamped between claim elements of the end effector assembly 26 to measure tissue impedance to control the activation, or modify the activation, of the ultrasonic generator module 21. Tissue impedance feedback from the application of the sub-therapeutic energy also may be employed to activate a therapeutic level of the electrosurgical/RF generator module 23 to seal the tissue (e.g., vessel) clamped between claim elements of the end effector assembly 26.


In another aspect, the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be activated simultaneously. In one example, the ultrasonic generator module 21 is simultaneously activated with a sub-therapeutic RF energy level to measure tissue impedance simultaneously while the ultrasonic blade of the end effector assembly 26 cuts and coagulates the tissue (or vessel) clamped between the clamp elements of the end effector assembly 26. Such feedback may be employed, for example, to modify the drive output of the ultrasonic generator module 21. In another example, the ultrasonic generator module 21 may be driven simultaneously with electrosurgical/RF generator module 23 such that the ultrasonic blade portion of the end effector assembly 26 is employed for cutting the damaged tissue while the electrosurgical/RF energy is applied to electrode portions of the end effector clamp assembly 26 for sealing the tissue (or vessel).


When the generator 20 is activated via the triggering mechanism, electrical energy is continuously applied by the generator 20 to a transducer stack or assembly of the acoustic assembly. In another aspect, electrical energy is intermittently applied (e.g., pulsed) by the generator 20. A phaselocked loop in the control system of the generator 20 may monitor feedback from the acoustic assembly. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 20 to match the resonant frequency of the selected longitudinal mode of vibration of the acoustic assembly. In addition, a second feedback loop in the control system 25 maintains the electrical current supplied to the acoustic assembly at a pre-selected constant level in order to achieve substantially constant excursion at the end effector 18 of the acoustic assembly. In yet another aspect, a third feedback loop in the control system 25 monitors impedance between electrodes located in the end effector assembly 26. Although FIGS. 1-5 show a manually operated ultrasonic surgical instrument, it will be appreciated that ultrasonic surgical instruments may also be used in robotic applications, for example, as described herein as well as combinations of manual and robotic applications.


In ultrasonic operation mode, the electrical signal supplied to the acoustic assembly may cause the distal end of the end effector 18, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz. According to various aspects, the ultrasonic blade 22 may vibrate in the range of about 54 kHz to 56 kHz, for example, at about 55.5 kHz. In other aspects, the ultrasonic blade 22 may vibrate at other frequencies including, for example, about 31 kHz or about 80 kHz. The excursion of the vibrations at the ultrasonic blade can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly of the acoustic assembly by the generator 20. As noted above, the triggering mechanism of the generator 20 allows a user to activate the generator 20 so that electrical energy may be continuously or intermittently supplied to the acoustic assembly. The generator 20 also has a power line for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 20 can also be powered by a direct current (DC) source, such as a battery. The generator 20 can comprise any suitable generator, such as Model No. GEN04, and/or Model No. GEN11 available from Ethicon Endo-Surgery, Inc.



FIG. 2 is a left perspective view of one example aspect of the ultrasonic surgical instrument 10 showing the handle assembly 12, the distal rotation assembly 13, and the elongated shaft assembly 14. FIG. 3 shows the end effector assembly 26. In the illustrated aspect the elongated shaft assembly 14 comprises a distal end 52 dimensioned to mechanically engage the end effector assembly 26 and a proximal end 50 that mechanically engages the handle assembly 12 and the distal rotation assembly 13. The proximal end 50 of the elongated shaft assembly 14 is received within the handle assembly 12 and the distal rotation assembly 13. More details relating to the connections between the elongated shaft assembly 14, the handle assembly 12, and the distal rotation assembly 13 are provided in the description of FIG. 5. In the illustrated aspect, the trigger assembly 24 comprises a trigger 32 that operates in conjunction with a fixed handle 34. The fixed handle 34 and the trigger 32 are ergonomically formed and adapted to interface comfortably with the user. The fixed handle 34 is integrally associated with the handle assembly 12. The trigger 32 is pivotally movable relative to the fixed handle 34 as explained in more detail below with respect to the operation of the ultrasonic surgical instrument 10. The trigger 32 is pivotally movable in direction 33a toward the fixed handle 34 when the user applies a squeezing force against the trigger 32. A spring element 98 (FIG. 5) causes the trigger 32 to pivotally move in direction 33b when the user releases the squeezing force against the trigger 32.


In one example aspect, the trigger 32 comprises an elongated trigger hook 36, which defines an aperture 38 between the elongated trigger hook 36 and the trigger 32. The aperture 38 is suitably sized to receive one or multiple fingers of the user therethrough. The trigger 32 also may comprise a resilient portion 32 a molded over the trigger 32 substrate. The overmolded resilient portion 32 a is formed to provide a more comfortable contact surface for control of the trigger 32 in outward direction 33 b. In one example aspect, the overmolded resilient portion 32 a may be provided over a portion of the elongated trigger hook 36. The proximal surface of the elongated trigger hook 32 remains uncoated or coated with a non-resilient substrate to enable the user to easily slide their fingers in and out of the aperture 38. In another aspect, the geometry of the trigger forms a fully closed loop which defines an aperture suitably sized to receive one or multiple fingers of the user therethrough. The fully closed loop trigger also may comprise a resilient portion molded over the trigger substrate.


In one example aspect, the fixed handle 34 comprises a proximal contact surface 40 and a grip anchor or saddle surface 42. The saddle surface 42 rests on the web where the thumb and the index finger are joined on the hand. The proximal contact surface 40 has a pistol grip contour that receives the palm of the hand in a normal pistol grip with no rings or apertures. The profile curve of the proximal contact surface 40 may be contoured to accommodate or receive the palm of the hand. A stabilization tail 44 is located towards a more proximal portion of the handle assembly 12. The stabilization tail 44 may be in contact with the uppermost web portion of the hand located between the thumb and the index finger to stabilize the handle assembly 12 and make the handle assembly 12 more controllable.


In one example aspect, the switch assembly 28 may comprise a toggle switch 30. The toggle switch 30 may be implemented as a single component with a central pivot 304 located within inside the handle assembly 12 to eliminate the possibility of simultaneous activation. In one example aspect, the toggle switch 30 comprises a first projecting knob 30a and a second projecting knob 30b to set the power setting of the ultrasonic transducer 16 between a minimum power level (e.g., MIN) and a maximum power level (e.g., MAX). In another aspect, the rocker switch may pivot between a standard setting and a special setting. The special setting may allow one or more special programs, processes, or algorithms and described herein to be implemented by the device. The toggle switch 30 rotates about the central pivot as the first projecting knob 30a and the second projecting knob 30b are actuated The one or more projecting knobs 30a, 30b are coupled to one or more arms that move through a small arc and cause electrical contacts to close or open an electric circuit to electrically energize or de-energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b. The toggle switch 30 is coupled to the generator 20 to control the activation of the ultrasonic transducer 16. The toggle switch 30 comprises one or more electrical power setting switches to activate the ultrasonic transducer 16 to set one or more power settings for the ultrasonic transducer 16. The forces required to activate the toggle switch 30 are directed substantially toward the saddle point 42, thus avoiding any tendency of the instrument to rotate in the hand when the toggle switch 30 is activated.


In one example aspect, the first and second projecting knobs 30a, 30b are located on the distal end of the handle assembly 12 such that they can be easily accessible by the user to activate the power with minimal, or substantially no, repositioning of the hand grip, making it suitable to maintain control and keep attention focused on the surgical site (e.g., a monitor in a laparoscopic procedure) while activating the toggle switch 30. The projecting knobs 30a, 30b may be configured to wrap around the side of the handle assembly 12 to some extent to be more easily accessible by variable finger lengths and to allow greater freedom of access to activation in awkward positions or for shorter fingers. In the illustrated aspect, the first projecting knob 30a comprises a plurality of tactile elements 30c, e.g., textured projections or “bumps” in the illustrated aspect, to allow the user to differentiate the first projecting knob 30a from the second projecting knob 30b. It will be appreciated by those skilled in the art that several ergonomic features may be incorporated into the handle assembly 12. Such ergonomic features are described in U.S. Pat. App. Pub. No. 2009/0105750 entitled “Ergonomic Surgical Instruments” which is incorporated by reference herein in its entirety.


In one example aspect, the toggle switch 30 may be operated by the hand of the user. The user may easily access the first and second projecting knobs 30a, 30b at any point while also avoiding inadvertent or unintentional activation at any time. The toggle switch 30 may readily operated with a finger to control the power to the ultrasonic assembly 16 and/or to the ultrasonic assembly 16. For example, the index finger may be employed to activate the first contact portion 30a to tum on the ultrasonic assembly 16 to a maximum (MAX) power level. The index finger may be employed to activate the second contact portion 30b to tum on the ultrasonic assembly 16 to a minimum (MIN) power level. In another aspect, the rocker switch may pivot the instrument 10 between a standard setting and a special setting. The special setting may allow one or more special programs to be implemented by the instrument 10. The toggle switch 30 may be operated without the user having to look at the first or second projecting knob 30a, 30b. For example, the first projecting knob 30a or the second projecting knob 30b may comprise a texture or projections to tactilely differentiate between the first and second projecting knobs 30a, 30b without looking.


In one example aspect, the distal rotation assembly 13 is rotatable without limitation in either direction about a longitudinal axis “T.” The distal rotation assembly 13 is mechanically engaged to the elongated shaft assembly 14. The distal rotation assembly 13 is located on a distal end of the handle assembly 12. The distal rotation assembly 13 comprises a cylindrical hub 46 and a rotation knob 48 formed over the hub 46. The hub 46 mechanically engages the elongated shaft assembly 14. The rotation knob 48 may comprise fluted polymeric features and may be engaged by a finger (e.g., an index finger) to rotate the elongated shaft assembly 14. The hub 46 may comprise a material molded over the primary structure to form the rotation knob 48. The rotation knob 48 may be overmolded over the hub 46. The hub 46 comprises an end cap portion 46a that is exposed at the distal end. The end cap portion 46a of the hub 46 may contact the surface of a trocar during laparoscopic procedures. The hub 46 may be formed of a hard durable plastic such as polycarbonate to alleviate any friction that may occur between the end cap portion 46a and the trocar. The rotation knob 48 may comprise “scallops” or flutes formed of raised ribs 48a and concave portions 48b located between the ribs 48a to provide a more precise rotational grip. In one example aspect, the rotation knob 48 may comprise a plurality of flutes (e.g., three or more flutes). In other aspects, any suitable number of flutes may be employed. The rotation knob 48 may be formed of a softer polymeric material overmolded onto the hard plastic material. For example, the rotation knob 48 may be formed of pliable, resilient, flexible polymeric materials including Versaflex® TPE alloys made by GLS Corporation, for example. This softer overmolded material may provide a greater grip and more precise control of the movement of the rotation knob 48. It will be appreciated that any materials that provide adequate resistance to sterilization, are biocompatible, and provide adequate frictional resistance to surgical gloves may be employed to form the rotation knob 48.


In one example aspect, the handle assembly 12 is formed from two (2) housing portions or shrouds comprising a first portion 12a and a second portion 12b. From the perspective of a user viewing the handle assembly 12 from the distal end towards the proximal end, the first portion 12a is considered the right portion and the second portion 12b is considered the left portion. Each of the first and second portions 12a, 12b includes a plurality of interfaces 69 (FIG. 5) dimensioned to mechanically align and engage each another to form the handle assembly 12 and enclosing the internal working components thereof. The fixed handle 34, which is integrally associated with the handle assembly 12, takes shape upon the assembly of the first and second portions 12a and 12b of the handle assembly 12. A plurality of additional interfaces (not shown) may be disposed at various points around the periphery of the first and second portions 12a and 12b of the handle assembly 12 for ultrasonic welding purposes, e.g., energy direction/deflection points. The first and second portions 12a and 12b (as well as the other components described below) may be assembled together in any fashion known in the art. For example, alignment pins, snap-like interfaces, tongue and groove interfaces, locking tabs, adhesive ports, may all be utilized either alone or in combination for assembly purposes.


In one example aspect, the elongated shaft assembly 14 comprises a proximal end 50 adapted to mechanically engage the handle assembly 12 and the distal rotation assembly 13; and a distal end 52 adapted to mechanically engage the end effector assembly 26. The elongated shaft assembly 14 comprises an outer tubular sheath 56 and a reciprocating tubular actuating member 58 located within the outer tubular sheath 56. The proximal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the trigger 32 of the handle assembly 12 to move in either direction 60A or 60B in response to the actuation and/or release of the trigger 32. The pivotably moveable trigger 32 may generate reciprocating motion along the longitudinal axis “T.” Such motion may be used, for example, to actuate the jaws or clamping mechanism of the end effector assembly 26. A series of linkages translate the pivotal rotation of the trigger 32 to axial movement of a yoke coupled to an actuation mechanism, which controls the opening and closing of the jaws of the clamping mechanism of the end effector assembly 26. The distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the end effector assembly 26. In the illustrated aspect, the distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to a clamp arm assembly 64, which is pivotable about a pivot point 70 (FIG. 4), to open and close the clamp arm assembly 64 in response to the actuation and/or release of the trigger 32. For example, in the illustrated aspect, the clamp arm assembly 64 is movable in direction 62A from an open position to a closed position about a pivot point 70 when the trigger 32 is squeezed in direction 33 a. The clamp arm assembly 64 is movable in direction 62B from a closed position to an open position about the pivot point 70 when the trigger 32 is released or outwardly contacted in direction 33b.


In one example aspect, the end effector assembly 26 is attached at the distal end 52 of the elongated shaft assembly 14 and includes a clamp arm assembly 64 and a ultrasonic blade 66. The jaws of the clamping mechanism of the end effector assembly 26 are formed by clamp arm assembly 64 and the ultrasonic blade 66. The ultrasonic blade 66 is ultrasonically actuatable and is acoustically coupled to the ultrasonic transducer 16. The trigger 32 on the handle assembly 12 is ultimately connected to a drive assembly, which together, mechanically cooperate to effect movement of the clamp arm assembly 64. Squeezing the trigger 32 in direction 33a moves the clamp arm assembly 64 in direction 62A from an open position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 are disposed in a spaced relation relative to one another, to a clamped or closed position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 cooperate to grasp tissue therebetween. The clamp arm assembly 64 may comprise a clamp pad 69 to engage tissue between the ultrasonic blade 66 and the clamp arm 64. Releasing the trigger 32 in direction 33b moves the clamp arm assembly 64 in direction 62B from a closed relationship, to an open position, wherein the clamp arm assembly 64 and the ultrasonic blade 66 are disposed in a spaced relation relative to one another.


The proximal portion of the handle assembly 12 comprises a proximal opening 68 to receive the distal end of the ultrasonic assembly 16. The ultrasonic assembly 16 is inserted in the proximal opening 68 and is mechanically engaged to the elongated shaft assembly 14.


In one example aspect, the elongated trigger hook 36 portion of the trigger 32 provides a longer trigger lever with a shorter span and rotation travel. The longer lever of the elongated trigger hook 36 allows the user to employ multiple fingers within the aperture 38 to operate the elongated trigger hook 36 and cause the trigger 32 to pivot in direction 33b to open the jaws of the end effector assembly 26. For example, the user may insert three fingers (e.g., the middle, ring, and little fingers) in the aperture 38. Multiple fingers allows the surgeon to exert higher input forces on the trigger 32 and the elongated trigger hook 326 to activate the end effector assembly 26. The shorter span and rotation travel creates a more comfortable grip when closing or squeezing the trigger 32 in direction 33a or when opening the trigger 32 in the outward opening motion in direction 33b lessening the need to extend the fingers further outward. This substantially lessens hand fatigue and strain associated with the outward opening motion of the trigger 32 in direction 33b. The outward opening motion of the trigger may be spring-assisted by spring element 98 (FIG. 5) to help alleviate fatigue. The opening spring force is sufficient to assist the ease of opening, but not strong enough to adversely impact the tactile feedback of tissue tension during spreading dissection.


For example, during a surgical procedure either the index finger may be used to control the rotation of the elongated shaft assembly 14 to locate the jaws of the end effector assembly 26 in a suitable orientation. The middle and/or the other lower fingers may be used to squeeze the trigger 32 and grasp tissue within the jaws. Once the jaws are located in the desired position and the jaws are clamped against the tissue, the index finger can be used to activate the toggle switch 30 to adjust the power level of the ultrasonic transducer 16 to treat the tissue. Once the tissue has been treated, the user the may release the trigger 32 by pushing outwardly in the distal direction against the elongated trigger hook 36 with the middle and/or lower fingers to open the jaws of the end effector assembly 26. This basic procedure may be performed without the user having to adjust their grip of the handle assembly 12.



FIGS. 3-4 illustrate the connection of the elongated shaft assembly 14 relative to the end effector assembly 26. As previously described, in the illustrated aspect, the end effector assembly 26 comprises a clamp arm assembly 64 and a ultrasonic blade 66 to form the jaws of the clamping mechanism. The ultrasonic blade 66 may be an ultrasonically actuatable ultrasonic blade acoustically coupled to the ultrasonic transducer 16. The trigger 32 is mechanically connected to a drive assembly. Together, the trigger 32 and the drive assembly mechanically cooperate to move the clamp arm assembly 64 to an open position in direction 62A wherein the clamp arm assembly 64 and the ultrasonic blade 66 are disposed in spaced relation relative to one another, to a clamped or closed position in direction 62B wherein the clamp arm assembly 64 and the ultrasonic blade 66 cooperate to grasp tissue therebetween. The clamp arm assembly 64 may comprise a clamp pad 69 to engage tissue between the ultrasonic blade 66 and the clamp arm 64. The distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the end effector assembly 26. In the illustrated aspect, the distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the clamp arm assembly 64, which is pivotable about the pivot point 70, to open and close the clamp arm assembly 64 in response to the actuation and/or release of the trigger 32. For example, in the illustrated aspect, the clamp arm assembly 64 is movable from an open position to a closed position in direction 62B about a pivot point 70 when the trigger 32 is squeezed in direction 33a. The clamp arm assembly 64 is movable from a closed position to an open position in direction 62A about the pivot point 70 when the trigger 32 is released or outwardly contacted in direction 33b.


As previously discussed, the clamp arm assembly 64 may comprise electrodes electrically coupled to the electrosurgical/RF generator module 23 to receive therapeutic and/or sub-therapeutic energy, where the electrosurgical/RF energy may be applied to the electrodes either simultaneously or non simultaneously with the ultrasonic energy being applied to the ultrasonic blade 66. Such energy activations may be applied in any suitable combinations to achieve a desired tissue effect in cooperation with an algorithm or other control logic.



FIG. 5 is an exploded view of the ultrasonic surgical instrument 10 shown in FIG. 2. In the illustrated aspect, the exploded view shows the internal elements of the handle assembly 12, the handle assembly 12, the distal rotation assembly 13, the switch assembly 28, and the elongated shaft assembly 14. In the illustrated aspect, the first and second portions 12a, 12b mate to form the handle assembly 12. The first and second portions 12a, 12b each comprises a plurality of interfaces 69 dimensioned to mechanically align and engage one another to form the handle assembly 12 and enclose the internal working components of the ultrasonic surgical instrument 10. The rotation knob 48 is mechanically engaged to the outer tubular sheath 56 so that it may be rotated in circular direction 54 up to 360°. The outer tubular sheath 56 is located over the reciprocating tubular actuating member 58, which is mechanically engaged to and retained within the handle assembly 12 via a plurality of coupling elements 72. The coupling elements 72 may comprise an O-ring 72a, a tube collar cap 72b, a distal washer 72c, a proximal washer 72d, and a thread tube collar 72e. The reciprocating tubular actuating member 58 is located within a reciprocating yoke 84, which is retained between the first and second portions 12a, 12b of the handle assembly 12. The yoke 84 is part of a reciprocating yoke assembly 88. A series of linkages translate the pivotal rotation of the elongated trigger hook 32 to the axial movement of the reciprocating yoke 84, which controls the opening and closing of the jaws of the clamping mechanism of the end effector assembly 26 at the distal end of the ultrasonic surgical instrument 10. In one example aspect, a four-link design provides mechanical advantage in a relatively short rotation span, for example.


In one example aspect, an ultrasonic transmission waveguide 78 is disposed inside the reciprocating tubular actuating member 58. The distal end 52 of the ultrasonic transmission waveguide 78 is acoustically coupled (e.g., directly or indirectly mechanically coupled) to the ultrasonic blade 66 and the proximal end 50 of the ultrasonic transmission waveguide 78 is received within the handle assembly 12. The proximal end 50 of the ultrasonic transmission waveguide 78 is adapted to acoustically couple to the distal end of the ultrasonic transducer 16. The ultrasonic transmission waveguide 78 is isolated from the other elements of the elongated shaft assembly 14 by a protective sheath 80 and a plurality of isolation elements 82, such as silicone rings. The outer tubular sheath 56, the reciprocating tubular actuating member 58, and the ultrasonic transmission waveguide 78 are mechanically engaged by a pin 74. The switch assembly 28 comprises the toggle switch 30 and electrical elements 86a,b to electrically energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b.


In one example aspect, the outer tubular sheath 56 isolates the user or the patient from the ultrasonic vibrations of the ultrasonic transmission waveguide 78. The outer tubular sheath 56 generally includes a hub 76. The outer tubular sheath 56 is threaded onto the distal end of the handle assembly 12. The ultrasonic transmission waveguide 78 extends through the opening of the outer tubular sheath 56 and the isolation elements 82 isolate the ultrasonic transmission waveguide 24 from the outer tubular sheath 56. The outer tubular sheath 56 may be attached to the waveguide 78 with the pin 74. The hole to receive the pin 74 in the waveguide 78 may occur nominally at a displacement node. The waveguide 78 may screw or snap into the hand piece handle assembly 12 by a stud. Flat portions on the hub 76 may allow the assembly to be torqued to a required level. In one example aspect, the hub 76 portion of the outer tubular sheath 56 is preferably constructed from plastic and the tubular elongated portion of the outer tubular sheath 56 is fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 78 may comprise polymeric material surrounding it to isolate it from outside contact.


In one example aspect, the distal end of the ultrasonic transmission waveguide 78 may be coupled to the proximal end of the ultrasonic blade 66 by an internal threaded connection, preferably at or near an antinode. It is contemplated that the ultrasonic blade 66 may be attached to the ultrasonic transmission waveguide 78 by any suitable means, such as a welded joint or the like. Although the ultrasonic blade 66 may be detachable from the ultrasonic transmission waveguide 78, it is also contemplated that the single element end effector (e.g., the ultrasonic blade 66) and the ultrasonic transmission waveguide 78 may be formed as a single unitary piece.


In one example aspect, the trigger 32 is coupled to a linkage mechanism to translate the rotational motion of the trigger 32 in directions 33a and 33b to the linear motion of the reciprocating tubular actuating member 58 in corresponding directions 60a and 60b (FIG. 2). The trigger 32 comprises a first set of flanges 98 with openings formed therein to receive a first yoke pin 94a. The first yoke pin 94a is also located through a set of openings formed at the distal end of the yoke 84. The trigger 32 also comprises a second set of flanges 96 to receive a first end of a link 92. A trigger pin 90 is received in openings formed in the link 92 and the second set of flanges 96. The trigger pin 90 is received in the openings formed in the link 92 and the second set of flanges 96 and is adapted to couple to the first and second portions 12a, 12b of the handle assembly 12 to form a trigger pivot point for the trigger 32. A second end of the link 92 is received in a slot formed in a proximal end of the yoke 84 and is retained therein by a second yoke pin 94b. As the trigger 32 is pivotally rotated about a pivot point formed by the trigger pin 90, the yoke translates horizontally along a longitudinal axis “T” in a direction indicated by arrows 60a,b.



FIG. 6 illustrates a diagram of one aspect of a force feedback surgical device 100 which may include or implement many of the features described herein. For example, in one aspect, surgical device 100 may be similar to or representative of surgical instrument 10. The surgical device 100 may include a generator 102. The surgical device 100 may also include an ultrasonic end effector 106, which may be activated when a clinician operates a trigger 110. When the trigger 110 is actuated, a force sensor 112 may generate a signal indicating the amount of force being applied to the trigger 110. In addition to, or instead of force sensor 112, the device 100 may include a position sensor 113, which may generate a signal indicating the position of the trigger 110 (e.g., how far the trigger has been depressed or otherwise actuated). In one aspect, the position sensor 113 may be a sensor positioned with the outer tubular sheath 56 described above or reciprocating tubular actuating member 58 located within the outer tubular sheath 56 described above In one aspect, the sensor may be a Hall-effect sensor or any suitable transducer that varies its output voltage in response to a magnetic field. The Hall effect sensor may be used for proximity switching, positioning, speed detection, and current sensing applications. In one aspect, the Hall-effect sensor operates as an analog transducer, directly returning a voltage. With a known magnetic field, its distance from the Hall plate can be determined.


A control circuit 108 may receive the signals from the sensors 112 and/or 113. The control circuit 108 may include any suitable analog or digital circuit components. The control circuit 108 also may communicate with the generator 102 and/or the transducer 104 to modulate the power delivered to the end effector 106 and/or the generator level or ultrasonic blade amplitude of the end effector 106 based on the force applied to the trigger 110 and/or the position of the trigger 110 and/or the position of the outer tubular sheath 56 described above relative to the reciprocating tubular actuating member 58 located within the outer tubular sheath 56 described above (e.g., as measured by a Hall-effect sensor and magnet combination). For example, as more force is applied to the trigger 110, more power and/or a higher ultrasonic blade amplitude may be delivered to the end effector 106. According to various aspects, the force sensor 112 may be replaced by a multi-position switch.


According to various aspects, the end effector 106 may include a clamp or clamping mechanism, for example, such as that described above with respect to FIGS. 1-5. When the trigger 110 is initially actuated, the clamping mechanism may close, clamping tissue between a clamp arm and the end effector 106. As the force applied to the trigger increases (e.g., as sensed by force sensor 112) the control circuit 608 may increase the power delivered to the end effector 106 by the transducer 104 and/or the generator level or ultrasonic blade amplitude brought about in the end effector 106. In one aspect, trigger position, as sensed by position sensor 113 or clamp or clamp arm position, as sensed by position sensor 113 (e.g., with a Hall-effect sensor), may be used by the control circuit 108 to set the power and/or amplitude of the end effector 106. For example, as the trigger is moved further towards a fully actuated position, or the clamp or clamp arm moves further towards the ultrasonic blade (or end effector 106), the power and/or amplitude of the end effector 106 may be increased.


According to various aspects, the surgical device 100 also may include one or more feedback devices for indicating the amount of power delivered to the end effector 106. For example, a speaker 114 may emit a signal indicative of the end effector power. According to various aspects, the speaker 114 may emit a series of pulse sounds, where the frequency of the sounds indicates power. In addition to, or instead of the speaker 114, the device may include a visual display 116. The visual display 116 may indicate end effector power according to any suitable method. For example, the visual display 116 may include a series of light emitting diodes (LEDs), where end effector power is indicated by the number of illuminated LEDs. The speaker 114 and/or visual display 116 may be driven by the control circuit 108. According to various aspects, the device 100 may include a ratcheting device (not shown) connected to the trigger 110. The ratcheting device may generate an audible sound as more force is applied to the trigger 110, providing an indirect indication of end effector power. The device 100 may include other features that may enhance safety. For example, the control circuit 108 may be configured to prevent power from being delivered to the end effector 106 in excess of a predetermined threshold. Also, the control circuit 108 may implement a delay between the time when a change in end effector power is indicated (e.g., by speaker 114 or display 116), and the time when the change in end effector power is delivered. In this way, a clinician may have ample warning that the level of ultrasonic power that is to be delivered to the end effector 106 is about to change.



FIG. 7 is a simplified diagram of one aspect of the generator 102 which may provide for inductorless tuning, among other benefits. FIGS. 8A-8C illustrate an architecture of the generator 102 of FIG. 7 according to one aspect of the present disclosure. FIG. 9 illustrates a controller 196 for monitoring input devices and controlling output devices in accordance with one aspect of the present disclosure. With reference now to FIGS. 7-9, the generator 102 may comprise a patient isolated stage 152 in communication with a non-isolated stage 154 via a power transformer 156. A secondary winding 158 of the power transformer 156 is contained in the isolated stage 152 and may comprise a tapped configuration (e.g., a center-tapped or non-center tapped configuration) to define drive signal outputs 160a, 160b, 160c for outputting drive signals to different surgical devices, such as, for example, a surgical device 100, ultrasonic surgical instrument 10, or an electrosurgical device. In particular, drive signal outputs 160a, 160c may output a drive signal (e.g., a 420V RMS drive signal) to an ultrasonic instrument 10, and drive signal outputs 160b, 160c may output a drive signal (e.g., a 100V RMS drive signal) to an electro surgical device, with output 160b corresponding to the center tap of the power transformer 156. The non-isolated stage 154 may comprise a power amplifier 162 having an output connected to a primary winding 164 of the power transformer 156. In certain aspects the power amplifier 162 may comprise a push-pull amplifier, for example. The non-isolated stage 154 may further comprise a programmable logic device 166 for supplying a digital output to a digital-to-analog converter (DAC) 168, which in tum supplies a corresponding analog signal to an input of the power amplifier 162. In certain aspects the programmable logic device 166 may comprise a field-programmable gate array (FPGA), for example. The programmable logic device 166, by virtue of controlling the power amplifier's 162 input via the DAC 168, may therefore control any of a number of parameters (e.g., frequency, waveform shape, waveform amplitude) of drive signals appearing at the drive signal outputs 160a, 160b, 160c. In certain aspects and as discussed below, the programmable logic device 166, in conjunction with a processor (e.g., processor 174 discussed below), may implement a number of digital signal processing (DSP)-based and/or other control algorithms to control parameters of the drive signals output by the generator 102.


Power may be supplied to a power rail of the power amplifier 162 by a switch-mode regulator 170. In certain aspects the switch-mode regulator 170 may comprise an adjustable buck regulator, for example. The non-isolated stage 154 may further comprise a processor 174, which in one aspect may comprise a DSP processor such as an Analog Devices ADSP-21469 SHARC DSP, available from Analog Devices, Norwood, Mass., for example. In certain aspects the processor 174 may control operation of the switch-mode power converter 170 responsive to voltage feedback data received from the power amplifier 162 by the processor 174 via an analog-to-digital converter (ADC) 176. In one aspect, for example, the processor 174 may receive as input, via the ADC 176, the waveform envelope of a signal (e.g., an RF signal) being amplified by the power amplifier 162. The processor 174 may then control the switch-mode regulator 170 (e.g., via a pulse-width modulated (PWM) output) such that the rail voltage supplied to the power amplifier 162 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of the power amplifier 162 based on the waveform envelope, the efficiency of the power amplifier 162 may be significantly improved relative to a fixed rail voltage amplifier schemes.


In certain aspects and as discussed in further detail in connection with FIGS. 10A and 10B, the programmable logic device 166, in conjunction with the processor 174, may implement a direct digital synthesizer (DDS) control scheme to control the waveform shape, frequency and/or amplitude of drive signals output by the generator 102. In one aspect, for example, the programmable logic device 166 may implement a DDS control algorithm 268 by recalling waveform samples stored in a dynamically-updated lookup table (LUT), such as a RAM LUT which may be emebedded in an FPGA. This control algorithm is particularly useful for ultrasonic applications in which an ultrasonic transducer may be driven by a clean sinusoidal current at its resonant frequency. Because other frequencies may excite parasitic resonances, minimizing or reducing the total distortion of the motional branch current may correspondingly minimize or reduce undesirable resonance effects. Because the waveform shape of a drive signal output by the generator 102 is impacted by various sources of distortion present in the output drive circuit (e.g., the power transformer 156, the power amplifier 162), voltage and current feedback data based on the drive signal may be input into an algorithm, such as an error control algorithm implemented by the processor 174, which compensates for distortion by suitably pre-distorting or modifying the waveform samples stored in the LUT on a dynamic, ongoing basis (e.g., in real-time). In one aspect, the amount or degree of pre-distortion applied to the LUT samples may be based on the error between a computed motional branch current and a desired current waveform shape, with the error being determined on a sample-by sample basis. In this way, the predistorted LUT samples, when processed through the drive circuit, may result in a motional branch drive signal having the desired waveform shape (e.g., sinusoidal) for optimally driving the ultrasonic transducer. In such aspects, the LUT waveform samples will therefore not represent the desired waveform shape of the drive signal, but rather the waveform shape that is required to ultimately produce the desired waveform shape of the motional branch drive signal when distortion effects are taken into account.


The non-isolated stage 154 may further comprise an ADC 178 and an ADC 180 coupled to the output of the power transformer 156 via respective isolation transformers 182, 184 for respectively sampling the voltage and current of drive signals output by the generator 102. In certain aspects, the ADCs 178, 180 may be configured to sample at high speeds (e.g., 80 Msps) to enable oversampling of the drive signals. In one aspect, for example, the sampling speed of the ADCs 178, 180 may enable approximately 200× (depending on drive frequency) oversampling of the drive signals. In certain aspects, the sampling operations of the ADCs 178, 180 may be performed by a singleADC receiving input voltage and current signals via a two-way multiplexer. The use of high-speed sampling in aspects of the generator 102 may enable, among other things, calculation of the complex current flowing through the motional branch (which may be used in certain aspects to implement DDSbased waveform shape control described above), accurate digital filtering of the sampled signals, and calculation of real power consumption with a high degree of precision. Voltage and current feedback data output by the ADCs 178, 180 may be received and processed (e.g., FIFO buffering, multiplexing) by the programmable logic device 166 and stored in data memory for subsequent retrieval by, for example, the processor 174. As noted above, voltage and current feedback data may be used as input to an algorithm for pre-distorting or modifying LUT waveform samples on a dynamic and ongoing basis. In certain aspects, this may require each stored voltage and current feedback data pair to be indexed based on, or otherwise associated with, a corresponding LUT sample that was output by the programmable logic device 166 when the voltage and current feedback data pair was acquired. Synchronization of the LUT samples and the voltage and current feedback data in this manner contributes to the correct timing and stability of the pre-distortion algorithm.


In certain aspects, the voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signals. In one aspect, for example, voltage and current feedback data may be used to determine impedance phase. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°), thereby minimizing or reducing the effects of ultrasonic distortion and correspondingly enhancing impedance phase measurement accuracy. The determination of phase impedance and a frequency control signal may be implemented in the processor 174, for example, with the frequency control signal being supplied as input to a DDS control algorithm implemented by the programmable logic device 166.


In another aspect, for example, the current feedback data may be monitored in order to maintain the current amplitude of the drive signal at a current amplitude setpoint. The current amplitude setpoint may be specified directly or determined indirectly based on specified voltage amplitude and power setpoints. In certain aspects, control of the current amplitude may be implemented by control algorithm, such as, for example, a proportional-integral-derivative (PID) or a proportional-integral (PI) control algorithm, in the processor 174. Variables controlled by the control algorithm to suitably control the current amplitude of the drive signal may include, for example, the scaling of the LUT waveform samples stored in the programmable logic device 166 and/or the full-scale output voltage of the DAC 168 (which supplies the input to the power amplifier 162) via a DAC 186.


The non-isolated stage 154 may further comprise a processor 190 for providing, among other things user interface (UI) functionality. In one aspect, the processor 190 may comprise an Atmel AT91 SAM9263 processor having an ARM926 EJ-S core, available from Atmel Corporation, San Jose, Calif., for example. Examples of UI functionality supported by the processor 190 may include audible and visual user feedback, communication with peripheral devices (e.g., via a Universal Serial Bus (USB) interface), communication with the footswitch 120, communication with an input device 145 (e.g., a touch screen display) and communication with an output device 146 (e.g., a speaker). The processor 190 may communicate with the processor 174 and the programmable logic device (e.g., via serial peripheral interface (SPI) buses). Although the processor 190 may primarily support UI functionality, it may also coordinate with the processor 174 to implement hazard mitigation in certain aspects. For example, the processor 190 may be programmed to monitor various aspects of user input and/or other inputs (e.g., touch screen inputs, footswitch 120 inputs, temperature sensor inputs) and may disable the drive output of the generator 102 when an erroneous condition is detected.


In certain aspects, both the processor 174 and the processor 190 may determine and monitor the operating state of the generator 102. For the processor 174, the operating state of the generator 102 may dictate, for example, which control and/or diagnostic processes are implemented by the processor 174. For the processor 190, the operating state of the generator 102 may dictate, for example, which elements of a user interface (e.g., display screens, sounds) are presented to a user. The processors 174, 190 may independently maintain the current operating state of the generator 102 and recognize and evaluate possible transitions out of the current operating state. The processor 174 may function as the master in this relationship and determine when transitions between operating states are to occur. The processor 190 may be aware of valid transitions between operating states and may confirm if a particular transition is appropriate. For example, when the processor 174 instructs the processor 190 to transition to a specific state, the processor 190 may verify that requested transition is valid. In the event that a requested transition between states is determined to be invalid by the processor 190, the processor 190 may cause the generator 102 to enter a failure mode.


The non-isolated stage 154 may further comprise a controller 196 for monitoring input devices 145 (e.g., a capacitive touch sensor used for turning the generator 102 on and off, a capacitive touch screen). In certain aspects, the controller 196 may comprise at least one processor and/or other controller device in communication with the processor 190. In one aspect, for example, the controller 196 may comprise a processor (e.g., a Mega168 8-bit controller available from Atmel) configured to monitor user input provided via one or more capacitive touch sensors. In one aspect, the controller 196 may comprise a touch screen controller (e.g., a QT5480 touch screen controller available from Atmel) to control and manage the acquisition of touch data from a capacitive touch screen.


In certain aspects, when the generator 102 is in a “power off” state, the controller 196 may continue to receive operating power (e.g., via a line from a power supply of the generator 102, such as the power supply 211 discussed below). In this way, the controller 196 may continue to monitor an input device 145 (e.g., a capacitive touch sensor located on a front panel of the generator 102) for turning the generator 102 on and off. When the generator 102 is in the power off state, the controller 196 may wake the power supply (e.g., enable operation of one or more DC/DC voltage converters 213 of the power supply 211) if activation of the “on/off” input device 145 by a user is detected. The controller 196 may therefore initiate a sequence for transitioning the generator 102 to a “power on” state. Conversely, the controller 196 may initiate a sequence for transitioning the generator 102 to the power off state if activation of the “on/off” input device 145 is detected when the generator 102 is in the power on state. In certain aspects, for example, the controller 196 may report activation of the “on/off” input device 145 to the processor 190, which in tum implements the necessary process sequence for transitioning the generator 102 to the power off state. In such aspects, the controller 196 may have no independent ability for causing the removal of power from the generator 102 after its power on state has been established.


In certain aspects, the controller 196 may cause the generator 102 to provide audible or other sensory feedback for alerting the user that a power on or power off sequence has been initiated. Such an alert may be provided at the beginning of a power on or power off sequence and prior to the commencement of other processes associated with the sequence.


In certain aspects, the isolated stage 152 may comprise an instrument interface circuit 198 to, for example, provide a communication interface between a control circuit of a surgical device (e.g., a control circuit comprising handpiece switches) and components of the non-isolated stage 154, such as, for example, the programmable logic device 166, the processor 174 and/or the processor 190. The instrument interface circuit 198 may exchange information with components of the non-isolated stage 154 via a communication link that maintains a suitable degree of electrical isolation between the stages 152, 154, such as, for example, an infrared (IR)-based communication link. Power may be supplied to the instrument interface circuit 198 using, for example, a low-dropout voltage regulator powered by an isolation transformer driven from the non-isolated stage 154.


In one aspect, the instrument interface circuit 198 may comprise a programmable logic device 200 (e.g., an FPGA) in communication with a signal conditioning circuit 202. The signal conditioning circuit 202 may be configured to receive a periodic signal from the programmable logic device 200 (e.g., a 2 kHz square wave) to generate a bipolar interrogation signal having an identical frequency. The interrogation signal may be generated, for example, using a bipolar current source fed by a differential amplifier. The interrogation signal may be communicated to a surgical device control circuit (e.g., by using a conductive pair in a cable that connects the generator 102 to the surgical device) and monitored to determine a state or configuration of the control circuit. The control circuit may comprise a number of switches, resistors and/or diodes to modify one or more characteristics (e.g., amplitude, rectification) of the interrogation signal such that a state or configuration of the control circuit is uniquely discernable based on the one or more characteristics. In one aspect, for example, the signal conditioning circuit 202 may comprise an ADC for generating samples of a voltage signal appearing across inputs of the control circuit resulting from passage of interrogation signal therethrough. The programmable logic device 200 (or a component of the nonisolated stage 154) may then determine the state or configuration of the control circuit based on the ADC samples.


In one aspect, the instrument interface circuit 198 may comprise a first data circuit interface 204 to enable information exchange between the programmable logic device 200 (or other element of the instrument interface circuit 198) and a first data circuit disposed in or otherwise associated with a surgical device. In certain aspects, a first data circuit 206 may be disposed in a cable integrally attached to a surgical device handpiece, or in an adaptor for interfacing a specific surgical device type or model with the generator 102. In certain aspects, the first data circuit may comprise a non-volatile storage device, such as an electrically erasable programmable read-only memory (EEPROM) device. In certain aspects and referring again to FIG. 7, the first data circuit interface 204 may be implemented separately from the programmable logic device 200 and comprise suitable circuitry (e.g., discrete logic devices, a processor) to enable communication between the programmable logic device 200 and the first data circuit. In other aspects, the first data circuit interface 204 may be integral with the programmable logic device 200.


In certain aspects, the first data circuit 206 may store information pertaining to the particular surgical device with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical device has been used, and/or any other type of information. This information may be read by the instrument interface circuit 198 (e.g., by the programmable logic device 200), transferred to a component of the non-isolated stage 154 (e.g., to programmable logic device 166, processor 174 and/or processor 190) for presentation to a user via an output device 146 and/or for controlling a function or operation of the generator 102. Additionally, any type of information may be communicated to first data circuit 206 for storage therein via the first data circuit interface 204 (e.g., using the programmable logic device 200). Such information may comprise, for example, an updated number of operations in which the surgical device has been used and/or dates and/or times of its usage.


A surgical instrument may be detachable from a handpiece to promote instrument interchangeability and/or disposability. In such cases, known generators may be limited in their ability to recognize particular instrument configurations being used and to optimize control and diagnostic processes accordingly. The addition of readable data circuits to surgical device instruments to address this issue is problematic from a compatibility standpoint, however. For example, designing a surgical device to remain backwardly compatible with generators that lack the requisite data reading functionality may be impractical due to, for example, differing signal schemes, design complexity and cost. Aspects of instruments may use data circuits that may be implemented in existing surgical instruments economically and with minimal design changes to preserve compatibility of the surgical devices with current generator platforms.


Additionally, aspects of the generator 102 may enable communication with instrument-based data circuits. For example, the generator 102 may be configured to communicate with a second data circuit contained in an instrument of a surgical device. The instrument interface circuit 198 may comprise a second data circuit interface 210 to enable this communication. In one aspect, the second data circuit interface 210 may comprise a tri-state digital interface, although other interfaces may also be used. In certain aspects, the second data circuit may generally be any circuit for transmitting and/or receiving data. In one aspect, for example, the second data circuit may store information pertaining to the particular surgical instrument with which it is associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information. Additionally or alternatively, any type of information may be communicated to second data circuit for storage therein via the second data circuit interface 210 (e.g., using the programmable logic device 200). Such information may comprise, for example, an updated number of operations in which the instrument has been used and/or dates and/or times of its usage. In certain aspects, the second data circuit may transmit data acquired by one or more sensors (e.g., an instrument-based temperature sensor). In certain aspects, the second data circuit may receive data from the generator 102 and provide an indication to a user (e.g., an LED indication or other visible indication) based on the received data.


In certain aspects, the second data circuit and the second data circuit interface 210 may be configured such that communication between the programmable logic device 200 and the second data circuit can be effected without the need to provide additional conductors for this purpose (e.g., dedicated conductors of a cable connecting a handpiece to the generator 102). In one aspect, for example, information may be communicated to and from the second data circuit using a 1-wire bus communication scheme implemented on existing cabling, such as one of the conductors used transmit interrogation signals from the signal conditioning circuit 202 to a control circuit in a handpiece. In this way, design changes or modifications to the surgical device that might otherwise be necessary are minimized or reduced. Moreover, because different types of communications can be implemented over a common physical channel (either with or without frequency-band separation), the presence of a second data circuit may be “invisible” to generators that do not have the requisite data reading functionality, thus enabling backward compatibility of the surgical device instrument. In certain aspects, the isolated stage 152 may comprise at least one blocking capacitor 296-1 connected to the drive signal output 160 b to prevent passage of DC current to a patient. A single blocking capacitor may be required to comply with medical regulations or standards, for example. While failure in single-capacitor designs is relatively uncommon, such failure may nonetheless have negative consequences. In one aspect, a second blocking capacitor 296-2 may be provided in series with the blocking capacitor 296-1, with current leakage from a point between the blocking capacitors 296-1, 296-2 being monitored by, for example, an ADC 298 for sampling a voltage induced by leakage current. The samples may be received by the programmable logic device 200, for example. Based on changes in the leakage current (as indicated by the voltage samples in the aspect of FIG. 7), the generator 102 may determine when at least one of the blocking capacitors 296-1, 296-2 has failed. Accordingly, the aspect of FIG. 7 may provide a benefit over single-capacitor designs having a single point of failure.


In certain aspects, the non-isolated stage 154 may comprise a power supply 211 for outputting DC power at a suitable voltage and current. The power supply may comprise, for example, a 400 W power supply for outputting a 48 VDC system voltage. The power supply 211 may further comprise one or more DC/DC voltage converters 213 for receiving the output of the power supply to generate DC outputs at the voltages and currents required by the various components of the generator 102. As discussed above in connection with the controller 196, one or more of the DC/DC voltage converters 213 may receive an input from the controller 196 when activation of the “on/off” input device 145 by a user is detected by the controller 196 to enable operation of, or wake, the DC/DC voltage converters 213.



FIGS. 10A and 10B illustrate certain functional and structural aspects of one aspect of the generator 102. Feedback indicating current and voltage output from the secondary winding 158 of the power transformer 156 is received by the ADCs 178, 180, respectively. As shown, the ADCs 178, 180 may be implemented as a 2-channel ADC and may sample the feedback signals at a high speed (e.g., 80 Msps) to enable oversampling (e.g., approximately 200× oversampling) of the drive signals. The current and voltage feedback signals may be suitably conditioned in the analog domain (e.g., amplified, filtered) prior to processing by the ADCs 178, 180. Current and voltage feedback samples from the ADCs 178, 180 may be individually buffered and subsequently multiplexed or interleaved into a single data stream within block 212 of the programmable logic device 166. In the aspect of FIGS. 10A and 10B, the programmable logic device 166 comprises an FPGA.


The multiplexed current and voltage feedback samples may be received by a parallel data acquisition port (PDAP) implemented within block 214 of the processor 174. The PDAP may comprise a packing unit for implementing any of a number of methodologies for correlating the multiplexed feedback samples with a memory address. In one aspect, for example, feedback samples corresponding to a particular LUT sample output by the programmable logic device 166 may be stored at one or more memory addresses that are correlated or indexed with the LUT address of the LUT sample. In another aspect, feedback samples corresponding to a particular LUT sample output by the programmable logic device 166 may be stored, along with the LUT address of the LUT sample, at a common memory location. In any event, the feedback samples may be stored such that the address of an LUT sample from which a particular set of feedback samples originated may be subsequently ascertained. As discussed above, synchronization of the LUT sample addresses and the feedback samples in this way contributes to the correct timing and stability of the pre-distortion algorithm. A direct memory access (DMA) controller implemented at block 216 of the processor 174 may store the feedback samples (and any LUT sample address data, where applicable) at a designated memory location 218 of the processor 174 (e.g., internal RAM).


Block 220 of the processor 174 may implement a pre-distortion algorithm for pre-distorting or modifying the LUT samples stored in the programmable logic device 166 on a dynamic, ongoing basis. As discussed above, pre-distortion of the LUT samples may compensate for various sources of distortion present in the output drive circuit of the generator 102. The pre-distorted LUT samples, when processed through the drive circuit, will therefore result in a drive signal having the desired waveform shape (e.g., sinusoidal) for optimally driving the ultrasonic transducer.


At block 222 of the pre-distortion algorithm, the current through the motional branch of the ultrasonic transducer is determined. The motional branch current may be determined using Kirchoffs Current Law based on, for example, the current and voltage feedback samples stored at memory location 218, a value of the ultrasonic transducer static capacitance Co (measured or known a priori) and a known value of the drive frequency. A motional branch current sample for each set of stored current and voltage feedback samples associated with a LUT sample may be determined.


At block 224 of the pre-distortion algorithm, each motional branch current sample determined at block 222 is compared to a sample of a desired current waveform shape to determine a difference, or sample amplitude error, between the compared samples. For this determination, the sample of the desired current waveform shape may be supplied, for example, from a waveform shape LUT 226 containing amplitude samples for one cycle of a desired current waveform shape. The particular sample of the desired current waveform shape from the LUT 226 used for the comparison may be dictated by the LUT sample address associated with the motional branch current sample used in the comparison. Accordingly, the input of the motional branch current to block 224 may be synchronized with the input of its associated LUT sample address to block 224. The LUT samples stored in the programmable logic device 166 and the LUT samples stored in the waveform shape LUT 226 may therefore be equal in number. In certain aspects, the desired current waveform shape represented by the LUT samples stored in the waveform shape LUT 226 may be a fundamental sine wave. Other waveform shapes may be desirable. For example, it is contemplated that a fundamental sine wave for driving main longitudinal motion of an ultrasonic transducer superimposed with one or more other drive signals at other frequencies, such as a third order ultrasonic for driving at least two mechanical resonances for beneficial vibrations of transverse or other modes, could be used.


Each value of the sample amplitude error determined at block 224 may be transmitted to the LUT of the programmable logic device 166 (shown at block 228 in FIG. 10A) along with an indication of its associated LUT address. Based on the value of the sample amplitude error and its associated address (and, optionally, values of sample amplitude error for the same LUT address previously received), the LUT 228 (or other control block of the programmable logic device 166) may pre-distort or modify the value of the LUT sample stored at the LUT address such that the sample amplitude error is reduced or minimized. It will be appreciated that such pre-distortion or modification of each LUT sample in an iterative manner across the entire range of LUT addresses will cause the waveform shape of the generator's output current to match or conform to the desired current waveform shape represented by the samples of the waveform shape LUT 226.


Current and voltage amplitude measurements, power measurements and impedance measurements may be determined at block 230 of the processor 174 based on the current and voltage feedback samples stored at memory location 218. Prior to the determination of these quantities, the feedback samples may be suitably scaled and, in certain aspects, processed through a suitable filter 232 to remove noise resulting from, for example, the data acquisition process and induced ultrasonic components. The filtered voltage and current samples may therefore substantially represent the fundamental frequency of the generator's drive output signal. In certain aspects, the filter 232 may be a finite impulse response (FIR) filter applied in the frequency domain. Such aspects may use the fast Fourier transform (FFT) of the output drive signal current and voltage signals. In certain aspects, the resulting frequency spectrum may be used to provide additional generator functionality. In one aspect, for example, the ratio of the second and/or third order ultrasonic component relative to the fundamental frequency component may be used as a diagnostic indicator. At block 234, a root mean square (RMS) calculation may be applied to a sample size of the current feedback samples representing an integral number of cycles of the drive signal to generate a measurement Irms representing the drive signal output current.


At block 236, a root mean square (RMS) calculation may be applied to a sample size of the voltage feedback samples representing an integral number of cycles of the drive signal to determine a measurement Vrms representing the drive signal output voltage. At block 238, the current and voltage feedback samples may be multiplied point by point, and a mean calculation is applied to samples representing an integral number of cycles of the drive signal to determine a measurement Pr of the generator's real output power.


At block 240, measurement Pa of the generator's apparent output power may be determined as the product Vrms. Irms.


At block 242, measurement Zm of the load impedance magnitude may be determined as the quotient Vrms/Irms.


In certain aspects, the quantities Irms, Vrms, Pr, Pa, and Zm determined at blocks 234, 236, 238, 240 and 242 may be used by the generator 102 to implement any of number of control and/or diagnostic processes. In certain aspects, any of these quantities may be communicated to a user via, for example, an output device 146 integral with the generator 102 or an output device 146 connected to the generator 102 through a suitable communication interface (e.g., a USB interface). Various diagnostic processes may include, without limitation, handpiece integrity, instrument integrity, instrument attachment integrity, instrument overload, approaching instrument overload, frequency lock failure, over-voltage, over-current, over-power, voltage sense failure, current sense failure, audio indication failure, visual indication failure, short circuit, power delivery failure, blocking capacitor failure, for example.


Block 244 of the processor 174 may implement a phase control algorithm for determining and controlling the impedance phase of an electrical load (e.g., the ultrasonic transducer) driven by the generator 102. As discussed above, by controlling the frequency of the drive signal to minimize or reduce the difference between the determined impedance phase and an impedance phase setpoint (e.g., 0°, the effects of ultrasonic distortion may be minimized or reduced, and the accuracy of the phase measurement increased.


The phase control algorithm receives as input the current and voltage feedback samples stored in the memory location 218. Prior to their use in the phase control algorithm, the feedback samples may be suitably scaled and, in certain aspects, processed through a suitable filter 246 (which may be identical to filter 232) to remove noise resulting from the data acquisition process and induced ultrasonic components, for example. The filtered voltage and current samples may therefore substantially represent the fundamental frequency of the generator's drive output signal.


At block 248 of the phase control algorithm, the current through the motional branch of the ultrasonic transducer is determined. This determination may be identical to that described above in connection with block 222 of the pre-distortion algorithm. The output of block 248 may thus be, for each set of stored current and voltage feedback samples associated with a LUT sample, a motional branch current sample.


At block 250 of the phase control algorithm, impedance phase is determined based on the synchronized input of motional branch current samples determined at block 248 and corresponding voltage feedback samples. In certain aspects, the impedance phase is determined as the average of the impedance phase measured at the rising edge of the waveforms and the impedance phase measured at the falling edge of the waveforms.


At block 252 of the of the phase control algorithm, the value of the impedance phase determined at block 222 is compared to phase setpoint 254 to determine a difference, or phase error, between the compared values.


At block 256 of the phase control algorithm, based on a value of phase error determined at block 252 and the impedance magnitude determined at block 242, a frequency output for controlling the frequency of the drive signal is determined. The value of the frequency output may be continuously adjusted by the block 256 and transferred to a DDS control block 268 (discussed below) in order to maintain the impedance phase determined at block 250 at the phase setpoint (e.g., zero phase error). In certain aspects, the impedance phase may be regulated to a oo phase setpoint. In this way, any ultrasonic distortion will be centered about the crest of the voltage waveform, enhancing the accuracy of phase impedance determination.


Block 258 of the processor 174 may implement an algorithm for modulating the current amplitude of the drive signal in order to control the drive signal current, voltage and power in accordance with user specified setpoints, or in accordance with requirements specified by other processes or algorithms implemented by the generator 102. Control of these quantities may be realized, for example, by scaling the LUT samples in the LUT 228 and/or by adjusting the full-scale output voltage of the DAC 168 (which supplies the input to the power amplifier 162) via a DAC 186. Block 260 (which may be implemented as a PID controller in certain aspects) may receive as input current feedback samples (which may be suitably scaled and filtered) from the memory location 218. The current feedback samples may be compared to a “current demand” Id value dictated by the controlled variable (e.g., current, voltage or power) to determine if the drive signal is supplying the necessary current. In aspects in which drive signal current is the control variable, the current demand Id may be specified directly by a current setpoint 262A (Isp). For example, an RMS value of the current feedback data (determined as in block 234) may be compared to user-specified RMS current setpoint Isp to determine the appropriate controller action. If, for example, the current feedback data indicates an RMS value less than the current setpoint Isp, LUT scaling and/or the full-scale output voltage of the DAC 168 may be adjusted by the block 260 such that the drive signal current is increased. Conversely, block 260 may adjust LUT scaling and/or the full-scale output voltage of the DAC 168 to decrease the drive signal current when the current feedback data indicates an RMS value greater than the current setpoint Isp.


In aspects in which the drive signal voltage is the control variable, the current demand Id may be specified indirectly, for example, based on the current required to maintain a desired voltage setpoint 262B (Vsp) given the load impedance magnitude Zm measured at block 242 (e.g. Id=Vsp/Zm). Similarly, in aspects in which drive signal power is the control variable, the current demand Id may be specified indirectly, for example, based on the current required to maintain a desired power setpoint 262C (Psp) given the voltage Vrms measured at blocks 236 (e.g. Id=Psp/Vrms).


Block 268 may implement a DDS control algorithm for controlling the drive signal by recalling LUT samples stored in the LUT 228. In certain aspects, the DDS control algorithm be a numerically-controlled oscillator (NCO) algorithm for generating samples of a waveform at a fixed clock rate using a point (memory location)-skipping technique. The NCO algorithm may implement a phase accumulator, or frequency-to-phase converter, that functions as an address pointer for recalling LUT samples from the LUT 228. In one aspect, the phase accumulator may be a D step size, modulo N phase accumulator, where D is a positive integer representing a frequency control value, and N is the number of LUT samples in the LUT 228. A frequency control value of D=1, for example, may cause the phase accumulator to sequentially point to every address of the LUT 228, resulting in a waveform output replicating the waveform stored in the LUT 228. When D>1, the phase accumulator may skip addresses in the LUT 228, resulting in a waveform output having a higher frequency. Accordingly, the frequency of the waveform generated by the DDS control algorithm may therefore be controlled by suitably varying the frequency control value. In certain aspects, the frequency control value may be determined based on the output of the phase control algorithm implemented at block 244. The output of block 268 may supply the input of (DAC) 168, which in tum supplies a corresponding analog signal to an input of the power amplifier 162.


Block 270 of the processor 174 may implement a switch-mode converter control algorithm for dynamically modulating the rail voltage of the power amplifier 162 based on the waveform envelope of the signal being amplified, thereby improving the efficiency of the power amplifier 162. In certain aspects, characteristics of the waveform envelope may be determined by monitoring one or more signals contained in the power amplifier 162. In one aspect, for example, characteristics of the waveform envelope may be determined by monitoring the minima of a drain voltage (e.g., a MOSFET drain voltage) that is modulated in accordance with the envelope of the amplified signal. A minima voltage signal may be generated, for example, by a voltage minima detector coupled to the drain voltage. The minima voltage signal may be sampled by ADC 176, with the output minima voltage samples being received at block 272 of the switch-mode converter control algorithm. Based on the values of the minima voltage samples, block 274 may control a PWM signal output by a PWM generator 276, which, in turn, controls the rail voltage supplied to the power amplifier 162 by the switch-mode regulator 170. In certain aspects, as long as the values of the minima voltage samples are less than a minima target 278 input into block 262, the rail voltage may be modulated in accordance with the waveform envelope as characterized by the minima voltage samples. When the minima voltage samples indicate low envelope power levels, for example, block 274 may cause a low rail voltage to be supplied to the power amplifier 162, with the full rail voltage being supplied only when the minima voltage samples indicate maximum envelope power levels. When the minima voltage samples fall below the minima target 278, block 274 may cause the rail voltage to be maintained at a minimum value suitable for ensuring proper operation of the power amplifier 162.


In one aspect, a method and/or apparatus may provide functionality for sensing a clamp arm position relative to a ultrasonic blade of an end effector, and a generator such as generator 102 and a controller such as control circuit 108 and/or controller 196 may be used to adjust a power output to the ultrasonic blade based on the clamp arm position. Referring now to FIG. 32, a process 3200 for controlling an end effector is shown. The process 3200 may be executed at least in part by a processor which may be in communication with or may be part of one or more of generator 102, control circuit 108, and/or controller 196. Referring now to FIG. 32, a process 3300 for calibrating a controller for an end effector is shown. The process 3200 may be executed at least in part by a processor which may be in communication with or may be part of one or more of generator 102, control circuit 108, and/or controller 196.


Referring now to FIG. 11, an example end effector 300 and shaft 302 are shown. The clamp arm 304 may have a position (e.g., represented by the “angle” arrow or a displacement) relative to the ultrasonic blade 306, which may be measured using one or more sensors such as Hall-effect sensor. Sensing the position of the clamp arm relative to the ultrasonic blade may provide relevant device information enabling new capabilities such as the ability to sense thickness, quantity, or types of tissues clamped inside the jaws. In one aspect, the process 3200 of FIG. 32 may determine 3220 a type of tissue between the clamp arm and the ultrasonic blade based on a signal (from, e.g., a Hall-effect sensor). Further, using a processor and/or memory, one or more algorithms (e.g., for sealing a vessel without transection) may be chosen based on the thickness, quantity, or type of tissue determined to be clamped inside the jaws.


Ultrasonic blade 306 may deliver a tissue effect through mechanical vibration to tissues and/or blood vessels. Clamp arm 304 may pivot about point 314, which may represent a connection between the clamp arm and an outer tube 310. An inner tube 308 may move back and forth and may drive closure of the clamp arm 304 on ultrasonic blade 306. In various aspects, it may be desirable to measure the angle between the clamp arm 304 and the ultrasonic blade 306.


In one aspect, the position of clamp arm 304 relative to ultrasonic blade 306 (e.g., during activation) may be approximated through a coupling with the inner tube 308. The inner tube 308 may be linked to the clamp arm 304 and may be similar to the reciprocating tubular actuating member 58 located within the outer tubular sheath 56. The outer tube 310, which may be similar to the outer tubular sheath 56, and/or ultrasonic blade 306, may be used to determine a position and/or angle of the clamp arm 304 relative to ultrasonic blade 306. The outer tube 310 may be static and in one aspect may be linked to clamp arm 304. As result, using the techniques and features described herein, the movement (e.g., represented with the bidirectional arrow 312) of the inner tube 308 relative to the outer tube 310 may be measured and used to approximate the claim arm position.


Referring briefly to FIG. 32, process 3200 may detect 3202 a signal (e.g., at a Hall-effect sensor) in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The first tube may be, for example, similar to reciprocating tubular actuating member 58 and the second tube may be, for example, similar to outer tubular sheath 56. In other words, as described in FIG. 32, the first tube may be an inner tube and the second tube is an outer tube. The inner tube may be moveable 3208 relative to the outer tube. The outer tube may be static relative to the inner tube. The process 3200 may detect 3210 the signal using a Hall-effect sensor and a magnet positioned on the first tube.


Use of Hall-effect sensors will be described herein with respect to various aspects of the present disclosure, however other types of sensors may be used to measure the movement 312. For example, linear variable differential transformers (LVDT), rotary variable differential transformer, piezoelectric transducers, potentiometers, photo electric sensors may be used to measure the movement 312. Furthermore, Hall-effect sensors and suitable equivalents may be used to measure the position of two bodies relative to one another through the use of a small electronic board and magnets.


Referring now to FIG. 12, a representation of an example Hall-effect sensor is shown. A magnet 402 may have north and south poles which move in a line perpendicular to the face of the Hall sensor 404, which may be in a fixed position. Referring now to FIG. 13A, another representation of an example Hall-effect sensor is shown. A magnet 408 may have north and south poles moving in a line parallel to the face of the Hall-effect sensor 410, which may be in a fixed position. Referring now to FIG. 13B, another representation of an example Hall-effect sensor is shown. A magnet 414 may have north and south poles moving in a line (418) parallel to the face of the Hall-effect sensor 416, which may be in a fixed position. The magnet may have diameter D and the magnet and Hall-effect sensor 416 may have total effective air gap (TEAG) 420. This configuration may allow for a very sensitive measurement of movement over small distances with the appropriate magnet-sensor combination.


The Hall-effect sensor may include a small electronic chip which may sense magnetic fields and change its electrical output based on the relative proximity of the magnet or the strength of the magnetic fields to the Hall-effect sensor. As the magnet moves across the face of the Hall-effect sensor (e.g., marked “X”) and gets closer to being directly in front of the face, an output signal of the Hall-effect sensor may change and be used to determine a position of the magnet relative to the Hall-effect sensor. In one aspect, the magnet may not cause much of a change in the output signal of the Hall-effect sensor. For example, using a magnet and Hall-effect sensor having particular characteristics, the magnet being more than 1.5 inches or further distances from the Hall-effect sensor may produce very little in terms of the output signal, but as the magnet moves closer and closer to the Hall-effect sensor, the electrical output changes more rapidly such that a very discernable signal change occurs in response to small motions of the magnet as it is moved closer to a critical position. The electrical response of the Hall-effect sensor at various positions of the magnet may be used to create a best fit curve. For example, the voltage output of the Hall-effect sensor as a function of the displacement of the magnet may be determined.



FIG. 14A is a table 1400 of output voltage of a Hall-effect sensor as a function of distance as a clamp arm moves from a fully closed position to a fully open position in accordance with the present disclosure. Relative distance (mm) is listed in the first column 1402. Absolute distance (mm) is listed in the second column 1404 and absolute distance in inches is listed in the third column 1406. Output voltage of the Hall-effect sensor is listed in the fourth column 1408 and clamp arm position is listed in the fifth column 1410, where the uppermost cell indicates the clamp arm in the fully closed position and the lowermost cell indicates the clamp arm in the fully open position.


Referring now to FIGS. 14A and 14B, a table 1400 and a graph 1450 of the output voltage of a Hall-effect sensor (y-axis) as a function of the displacement (x-axis) and related data are shown. In this example, the sensitivity of a prototyped Hall-effect sensor/magnet combination is shown as a relatively small linear movement (e.g., 0.100″) may result in a 1.5 volts signal change. This signal change may be read by a generator (e.g., generator 102) and used to make determinations about ultrasonic blade displacement, or provide auditory, tactile and/or other feedback to a user (e.g., via speaker 114 and/or visual display 116). A best fit curve 1452 may be determined from the plotted data points 145a-h (e.g., one or more of relative displacement, absolute displacement, voltage output, and position) and a polynomial equation for output voltage of the Hall-effect sensor (y-axis) as a function of the displacement (x-axis) of the magnet may result. The best fit curve may be of the 2nd, 3rd, 4th . . . nth order. The data points 1454a-h and/or the best fit curve 1452 may be used to create a lookup table stored in a memory and/or the resulting equation may be executed in a processor in order to determine, for example, a displacement for the magnet (and a corresponding clamp arm position) given a specific output voltage of the Hall-effect sensor. In this way, turning briefly to FIG. 32, the process 3200 may determine 3204 a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal (from, e.g., Hall-effect sensor voltage output).


Turning now to FIG. 15A there is shown a top view of a Hall-effect sensor 510 and magnet 508 configurations in a surgical instrument and corresponding open jaws end effector 500 position in accordance with one aspect of the present disclosure and FIG. 15B is a top view of the Hall-effect sensor 510 and magnet 508 configurations in a surgical instrument and corresponding closed jaws end effector 500 position in accordance with one aspect of the present disclosure. In one aspect, as shown in FIGS. 15A and 15B, the voltage output of the Hall-effect sensor 50 is 1.6 VDC when the jaws of the end effector 500 are open and 3.1 VDC when the jaws of the end effector 500 are closed.


Referring now to FIGS. 15A and 15B, one aspect of a Hall-effect sensor 510 and magnet 508 combination are shown as implemented in a surgical device such as one or more of those discussed herein. FIGS. 15A and 15B show two images of top-down views of the example. An inner threaded collar 502 may be attached to a magnet 508. As a trigger of the surgical device is closed, a clamp arm 504 of the end effector 500 comes into closer contact with a ultrasonic blade 504, and the magnet 508 moves further proximal as shown in the top-down views. As the magnet 508 moves (in a direction indicated by arrow 506), the voltage potential of the Hall-effect sensor 510 changes. The magnet 508 positioned on the first tube relative to the Hall-effect sensor 510 may move as the first tube drives movement of the clamp arm 503 of the end effector 500.


It should be noted that while various aspects discussed herein are described to include an outer tube that is static and an inner tube that drives motion of the clamp arm, other configurations are possible and within the scope of the present disclosure. For example, in various aspects, an outer tube may drive the motion of the clamp arm and the inner tube may be static. Additionally, while various aspects discussed herein are described to include a Hall-effect sensor 510 and/or integrated circuit (e.g., chip) that is static and a magnet 508 that moves as the clamp arm 500 moves, other configurations are possible and within the scope of the present disclosure. For example, in various aspects, the Hall-effect sensor 510 may move as the clamp arm 503 moves and the magnet may be static. Many combinations are possible, including a fixed outer tube and a moveable inner, a moving magnet 508 and a stationery Hall-effect sensor 510 or other sensing circuit, a moving Hall-effect sensor 510 or other sensing circuit and a stationary magnet 508, a moveable outer tube and a fixed inner tube, a fixed magnet in one of the inner and outer tubes, and/or a moving magnet in one of the inner and outer tubes. The Hall-effect sensor 510 or other circuit may be mounted to the moving part (e.g., inner or outer tube) or mounted to the stationary part (e.g., inner or outer tube), as long as flexible electrical connections are considered and motion can be achieved.


As shown in FIG. 15A, the inner threaded collar 502 with attached magnet 508 is positioned further left than in FIG. 15B, and the corresponding end effector 500 has an open jaw, e.g., open clamp arm 503. As the user pulls the trigger and closes the end effector 500, multiple springs and the inner threaded collar 502 move (in the direction indicated by arrow 506) the clamp arm 503 is driven closed or is driven to grafting tissue captured in between the clamp arm 503 and the ultrasonic blade 504. A Hall-effect sensor 510 and a magnet 508 is shown, which may be cylindrical, moves over the Hall-effect sensor 510, as the clamp arm 503 closes towards the ultrasonic blade 504.


Referring now to FIG. 16, there is shown a plan view of a system 600 comprising a Hall-effect sensor 602 and magnet 606 arrangement. The Hall-effect sensor 602 includes a circuit board 604 and an integrated circuit 606. The magnet 608 moves back and forth along line 610 as the clamp arm is closed and opened. As the magnet 608 moves towards the center of the Hall effect integrated circuit 606 the sensitivity of the Hall-effect sensor 602 changes and the output signal increases. A carrier 612 for the magnet 608 may be coupled to the inner tube that drives the clamp arm. In one aspect, as the inner tube is pulled towards the handle of the surgical instrument (e.g., by the trigger), the jaw closes (e.g., clamp arm) closes. The magnet 608 is connected to an extended leg of the threaded inner collar of the outer tube.



FIGS. 17A and 17B illustrates different views of the system 600 comprising a Hall-effect sensor 602 and magnet 608 configurations in the context of a surgical instrument in accordance with one aspect of the present disclosure. With reference to FIGS. 17A and 17B, the Hall-effect sensor 602 is shown positioned within a surgical instrument. The Hall-effect sensor 602 is positioned on the threaded inner collar 620 of the outer tube 622. A slot 624 is defined in a rotation knob of the outer tube 622 to allow the magnet 608 to travel. The magnet 608 is positioned within the carrier 612, which is slidably movable within the slot 624. For example, the Hall-effect sensor 602 as described herein may be static and is attached to a rotation knob such that it can rotate around the centerline of the ultrasonic blade. A pin 626 may be positioned within an aperture 628 through both the rotation knob and the Hall-effect sensor 602 and through a center ultrasonic blade portion. As a result, the ultrasonic blade does not move axially, but the inner tube is able to move axially right and left of the pin 626. A threaded connection 630 is made of nylon or any other suitable material with minimum magnetic flux.



FIG. 18 illustrates a Hall-effect sensor 602 and magnet 608 configuration in the context of a surgical instrument in accordance with the present disclosure. Referring now to FIG. 18, a shaft of a surgical instrument is shown and the magnet 608 is positioned within the carrier 612. A magnet movement 632 is coupled to the inner tube 634. The magnet 608 may be coupled with snap fits to a threaded collar 638 of the inner tube 634. The Hall-effect sensor 602 as described herein is static and is attached to a rotation knob such that it can rotate around the centerline of the ultrasonic blade.



FIG. 19A illustrates a Hall-effect sensor 602 and magnet 608 configuration in accordance with one aspect of the present disclosure. FIG. 19B is a detailed view of the Hall-effect sensor 602 and magnet 608 configuration in the context of a surgical instrument in accordance with the present disclosure. Referring now to FIGS. 19A and 19B, in one aspect the Hall-effect sensor 602 and magnet 608 configuration is located on a shaft of a surgical instrument. In one aspect, the pole faces of the magnet 608 and the Hall-effect sensor 602 move in line with one another. In FIGS. 17A, 17B, 19A, and 19B, the Hall-effect sensor 602 is stationary while the magnet 608 moves in connection with the clamp arm. In one aspect, the inner threaded collar is configure to carry the magnet 608 and may be directly connected to the inner tube. In this way, the Hall-effect sensor 602 may be positioned in a different way on the rotation knob such that the faces of the magnet 608 and the Hall-effect sensor 602 come together in a perpendicular manner as shown by the motion arrow 640.


In one aspect, an ultrasonic algorithm or process may be used to enable a surgical device to seal tissue without transection. The implementation of this algorithm or process may require measuring clamp arm position relative to the ultrasonic blade of an end effector. A method can be used to sense the clamp arm position relative to the ultrasonic blade as described herein and that positioning can be consistently calibrated during manufacturing, as will be described below, such that estimates of thickness of tissue can be made. For example, an algorithm or process that is fed information about quantity of tissue can react as that quantity changes. This may allow the surgical device to treat the tissue without completely transecting a vessel.


Turning now briefly to FIG. 32, once the clamp arm position relative to ultrasonic blade is known, how the ultrasonic blade vibrates can be adjusted to get different tissue effects. In this way, process 3200 may adjust 3206 a power output to the ultrasonic blade of the end effector based on the clamp arm position. For example, process 3200 may adjust 3214 the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor.


Typically, end effectors may be used to coagulate and cuts vessels at the same time. However, using the techniques and features described herein, an end effector may be used to seal a carotid or vessel without actually transecting it, as may be desired by a surgeon. With information on the clamp arm position, a Travel Ratio (TR) can be calculated, whereby if the clamp arm is in the completely closed position with nothing captured in the end effector, the sensor (e.g., Hall-effect sensor) may indicate a TR of 1. For example, for illustrative purposes only, let XT represent a relative clamp arm position at any given time in activation, X1 be a claim arm position when the surgical device is fully clamped with no tissue, and X2 be a clamp arm position at a beginning of activation, with tissue grasped in the end effector, where:






TR
=



X





1

-
XT



X





1

-

X





2







Continuing with the example above, X1 may be a value programmed into the surgical device for the clamp arm position when the jaws are fully closed and nothing is captured in the end effector. X2 may be the clamp arm position at the start of an activation such that if a vessel is attached in the end effector and the clamp arm is closed all the way, the clamp arm may be squeezing the vessel down but with some distance to travel before the vessel is transected and the clamp arm is directly opposite the ultrasonic blade with full contact. XT may change dynamically as it is the clamp arm position at any given time.


For example, at the very beginning of activation TR may be zero, as X1 may be set to represent the clamp arm position being fully closed with nothing captured. X2, at the very beginning of the activation, when the clamp arm is touching a vessel, may provide a relative thickness before firing the ultrasonic blade. XT may be the value in the equation that is updating continuously with time as the clamp arm travels further and compresses and starts to cut the tissue. In one aspect, it may be desirable to deactivate (e.g., stop firing) the ultrasonic blade when the clamp arm has traveled 70% or 0.7. Thus, it may be empirically determined beforehand that a desired TR is 0.7 of the way between the clamp arm being closed with a full bite of tissue and being fully closed with nothing in between the clamp arm and ultrasonic blade.


The TR of 0.7 has been described for illustrative purposes only and may depend on many parameters. For example, the desired TR for the point at which the ultrasonic blade will be shut-off may be based on vessel size. The TR may be any value observed to work for treating a given tissue or vessel without transection. Once the desired position is known, the vibrating of the ultrasonic blade may be adjusted based on the desired position. FIG. 20 is a graph 2000 of a curve 2002 depicting Travel Ratio (TR) along the y-axis, based on Hall-effect sensor output voltage, as a function of Time (Sec) along the x-axis. As shown in FIG. 20, the desired TR is 0.7, meaning that the ultrasonic blade is deactivated (e.g., stop firing) when the clamp arm has traveled 70% or 0.7. This is relative to a clamp arm on a vessel with a ultrasonic blade firing where the desired end TR was 0.7. In the particular example of FIG. 20, the ultrasonic blade was activated (e.g., firing) on a carotid and shut off at the TR of 0.7 after about 16 seconds.


In one aspect, it may be desirable to use a proportional-integral controller. FIG. 21 is a graph 2100 of a first curve 2102 depicting Travel Ratio (TR) along the left y-axis, based on Hall-effect sensor output voltage, as a function of Time (Sec) along the x-axis. A second curve 2104 depicts Power (Watts) along the right y-axis as a function of Time (Sec) along the x-axis. The graph 2100 provides an example of what can be accomplished with a proportional-integral (PI) controller. The Travel Ratio (TR)curve 2102 is represented on the graph 2100 by the line marked “TRAVEL RATIO.” The goal or Desired Value for the Travel Ratio may be 0.7, as shown by the line marked “DESIRED VALUE,” although various other values may be used. The Power output curve 2104 represents power through the ultrasonic blade and is shown and marked “POWER (WATTS).”


Turning now briefly to FIG. 32, there is shown the process 3200 may adjust 3216 the power output to the ultrasonic blade of the end effector dynamically, based on the travel ratio that changes as the clamp arm approaches the ultrasonic blade. For example, as the clamp arm moves towards the ultrasonic blade and the Desired Value is approached, the amount of power output to the ultrasonic blade and into the tissue may be reduced. This is because the ultrasonic blade will cut the tissue with enough power. However, if the power being output is reduced over time as the Desired Value is approached (where a full transection may be represented by a Travel Ratio of 1), the chance that the tissue is transected may be drastically reduced. In this way, effective sealing may be achieved without cutting the tissue as may be desired by the surgeon.


Turning back to FIG. 21, there is shown the Power output curve 2104 shown in FIG. 21 may represent the power applied with a drive signal to a transducer stack to activate (e.g., fire) the ultrasonic blade. The Power value may be proportional to the movement of the clamp arm portion of the end effector and delivered to the tissue and the Power curve may represent voltage and current applied to the ultrasonic transducer. In one aspect, the ultrasonic generator (e.g., generator 102) may read the voltage output data from the Hall-effect sensor and, in response, send commands for how much voltage and current to provide to the transducer to drive the ultrasonic blade as desired. As the clamp arm portion of the end effector is moved and the desired value is approached, the ultrasonic blade may be forced to deliver less energy to the tissue and reduce the likelihood of cutting the tissue.


As the ultrasonic blade is powered, the ultrasonic blade will effect the tissue or the vessel such that friction at the interface of the ultrasonic blade and the tissue causes heat to drive the moisture from and dry out the tissue. During this process, the clamp arm portion is able to increasingly compress the tissue as the seal develops. As the TR increases over time the tissue flattens by applying more pressure with the clamp arm as the tissue dries out. In this way, a PI controller may be used to cook the tissue from a beginning point (where TR=0) to a certain second position by controlling power output to effectively seal large vessels. With the PI controller, as the TR approaches the Desired Value, the ultrasonic device drops the power delivery (to the ultrasonic blade) to smoothly control the compression and coagulation of the tissue. This process has shown an ability to effectively seal vessels without transection. In this way, process 3200 may adjust 3218 the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral (PI) controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade. It will be appreciated that PI control is not the only logic system through which power could be controlled. Many mathematical mappings exist to appropriately reduce power as a function of the Hall-effect sensor. Examples of other logic systems include PID controllers, proportional controllers, fuzzy logic, neural networks, polynomials, Bayesian networks, among others.



FIG. 22 is a graph 2200 depicting how the PI controller works. The Proportional term may be an indication of the absolute difference between TR and the Desired Value for TR. TR approaches the Desired Value, the effect of the proportional term may shrink and as a result the ultrasonic power (e.g., delivered by the ultrasonic blade) may be reduced. The Integral term, shown as the area 2202 under the curve, may be an accumulation of error over a give section of time. For example, as shown above, the Integral term may not begin to accumulate until after 5 seconds. After 5 seconds, the Integral term may begin to take effect and the power to the ultrasonic blade may be increased. After about 9 seconds, the reduction of the effect in the Proportional term may outweigh the effect of the increase in the Integral term causing the power delivery to the ultrasonic blade to become reduced. In this example, a Desired Value of 0.7 for the TR was used, however, as discussed above, the TR value may be optimized for a specific device along with the Proportional and Integral terms of the controller.


In effect, the PI controller may indicate what the power output should be based on the distance at any given time between the Travel Ratio and the Desired Value. From that distance, the PI controller may output a certain value (e.g., 0.4). In the example of FIG. 22, at a moment in time (e.g., 1 second) the distance is based on the values assigned to the P and I. This distance may be multiplied it by a constant that represents P and result in 0.78. The generator may instruct the system to send out 0.78 or send out, for example, 7.8 watts of power when the distance between these two is a certain amount. As a result, the TR curve approaches the Desired Value curve, and the distance reduces. Over time, the amount of power the generator tells the system to send decreases, which may be the desired outcome. However, this could also mean that if only P and not I is used, when time approaches 15 seconds, there may not be enough power output to the tissue to complete the goal. This is where the I portion (integral portion) is calculated at a set period of time, which may be about five seconds. By calculating the area 2202 under the curve (shown in FIG. 22 by hashed lines, captured between the Desired Value and Travel Ratio over time) and in addition to the 0.78, shown between 0 and 5 seconds, the I portion starts to add its own amount of power to help the progression of the Travel Ratio to the Desired Value and make sure that it gets there in a somewhat timely manner. For example, at five seconds, the I portion is not active, but as time progresses the I portion starts to calculate the area captured between the two curves and adds that value (e.g., additional four watts) which is the area under the curve, in addition to the power coming from the Proportional value. Using these two calculations together may provide the Power curve (i.e., the power output) as shown in FIG. 22. The PI controller is configured to drive towards the seal effect in a somewhat timely manner.


In one aspect the techniques described herein may be employed to seal different sizes of vessels (e.g., 5 mm, 6 mm, and 7 mm round vessels). The strength of the seals may be tested until the seal bursts and recording the burst pressure. A higher burst pressure indicates a stronger seal. In the case of an actual surgery, if a surgical instrument or device as described herein is used to seal a vessel the seal will not leak if it has a high associated burst pressure. In one aspect, the burst pressures can be measured across different sizes of vessels, e.g., 5 mm, 6 mm, and 7 mm round vessels, respectively. Typically, smaller vessels have higher burst pressure with larger vessels, the burst pressure is decreased.


Turning now to FIG. 23, there is shown several vessels 2400 that were sealed using the techniques and features described herein (e.g., using an ultrasonic blade and a Hall-effect sensor). Using the PI controller as described above, 60 vessels were sealed. 58 vessels were sealed without transection.


In one aspect, it has been observed that activating a ultrasonic blade with the clamp arm open may help to release tissue that may have stuck to the ultrasonic blade while being coagulated. Detecting a change in signal from a Hall-effect sensor may indicate when the user is opening the clamp arm after device activation. This information may trigger the system to send a low level ultrasonic signal for a short period of time, in order to release any tissue stuck to the ultrasonic blade. This short, sub-therapeutic signal may reduce the level of sticking experienced by the user. This feature may be useful if a ultrasonic shear device were designed for multiple uses and the ultrasonic blade coating began to wear off. In this way, the techniques and features described herein may be used to reduce the amount of tissue sticking to the ultrasonic blade.


A method for calibrating an end effector and Hall-effect sensor may include calibrating the end effector and Hall-effect sensor during manufacturing of thereafter. As discussed above, process 3300 shown in FIG. 32, may be used to calibrate a controller for the end effector. For example, a clamp arm position of a ultrasonic device may be calibrated during assembly. As discussed herein, sensing the position of the clamp arm relative to the ultrasonic blade may provide relevant surgical device information that may enable new capabilities, including but not limited to the ability to sense a quantity or type of tissues which may be clamped inside the jaws. Further, determinations about various algorithms to execute (e.g., such sealing a vessel without transection) may be made based on sensing the position of the clamp arm. However, in various aspects, in order for this information to be useful and reliable, the surgical device must be calibrated in relation to a baseline such as when the clamp arm is fully open or when the clamp arm fully closed with zero material in the end effector.


As described above, determining a Travel Ratio (TR) may help in various processes to control an end effector. In determining TR, X1 is the clamp arm position when the device is fully closed with no tissue. Determining the value (e.g., Hall effect signal) corresponding to X1 may be done during manufacturing and may be part of the calibration process.


Turning now to FIG. 24, there is shown a graph 2500 of a best fit curve 2502 of Hall-effect sensor output voltage along the y-axis as a function of absolute distance (in) along the x-axis for various positions of the clamp arm. The best fit curve 2502 is plotted based on the absolute distance (in) of the clamp arm from the ultrasonic blade as listed in the third column 1406 of the table 1400 shown in FIG. 14A and the corresponding Hall-effect sensor output voltage listed in the fourth column 1408 of the table 1400 shown in FIG. 14A as the clamp arm moves from a fully open position to a fully closed position in accordance with the present disclosure.


Still with reference to FIG. 24, there is shown an example electrical output of a Hall-effect sensor configured to sense clamp arm position is shown. The Hall-effect sensor signal strength plotted against displacement of the sensor (e.g., a magnet) may follow a parabolic shape as shown by the best fit curve 2502. To calibrate the Hall-effect sensor, several readings of the sensor are taken at known baseline locations. During calibration, the best fit curve 2502 as shown in FIG. 24 may be analyzed to confirm that the Hall-effect sensor is reading effectively based on readings made in a production setting. In this way, a Hall-effect sensor response corresponding to various positions of the clamp arm (e.g., fully open, fully closed, and discrete positions therebetween) may be recorded to create a best fit curve during production. Various data points may be recorded (e.g., four data points 1-4 as shown in FIG. 24 or more as may be necessary) to create the best fit curve 2502. For example, in a first position, a Hall-effect sensor response may be measured when the clamp arm is fully opened. In this way, turning briefly to FIG. 32, the process 3300 shown in FIG. 32 may detect 3302 a first measurement signal (e.g., a Hall-effect sensor response) corresponding to a fully open position of a clamp arm and a ultrasonic blade of the end effector.


Turning back now to FIG. 24 in conjunction with FIG. 25, the four data points 1-4 represent voltage measured with a Hall-effect sensor as a function of the gap between the clamp arm 2606 and the ultrasonic blade 2608, as shown in FIG. 24. These data points 1-4 may be recorded as described in connection with FIGS. 25-28. The first data point (1) is recorded when the end effector 2600 is in the configuration shown in FIG. 25. The first data point (1) corresponds to the Hall-effect sensor output voltage recorded when the clamp arm 2606 is in the fully opened positon relative to the ultrasonic blade 2608.


The second data point (2) is recorded when the end effector 2600 is in the configuration shown in FIG. 26. To obtain an accurate gap between the clamp arm 2606 and the ultrasonic blade 2808, a first gage pin 2602 of known diameter is placed at a predetermined location within the jaws of the end effector 2600, e.g., between the clamp arm 2606 and the ultrasonic blade 2608. As shown in FIG. 26, the first gage pin 2602 is positioned between the distal end and the proximal end of the ultrasonic blade 2608 and is grasped between the clamp arm 2606 and the ultrasonic blade 2608 to set an accurate gap between the clamp arm 2606 and the ultrasonic blade 2808. Once the clamp arm 2606 is closed to grasp the first gage pin 2602, the output voltage of the Hall-effect sensor is measured and recorded. The second data point (2) is correlated to the gap set between the clamp arm 2606 and the ultrasonic blade 2608 by the first gage pin 2602. In this way, the output voltage of the Hall-effect sensor is equated to the gap distance between the clamp arm 2606 and the ultrasonic blade 2608. The second data point (2) is one of several data points to develop the polynomial to generate the best fit curve 2502 shown in FIG. 24. The process 3300 described in FIG. 32 detects 3304 an actual Hall-effect sensor voltage and determines the gap between the clamp arm 2606 and the ultrasonic blade 2608 based on the best first curve 2502 (e.g., computing the polynomial).


The third data point (3) is recorded when the end effector 2600 is in the configuration shown in FIG. 27. To obtain another accurate gap between the clamp arm 2606 and the ultrasonic blade 2808, the first gage pin 2602 is removed and a second gage pin 2604 of known diameter is placed at a predetermined location within the jaws of the end effector 2600, e.g., between the clamp arm 2606 and the ultrasonic blade 2608, that is different form the location of the first gage pin 2602. As shown in FIG. 27, the second gage pin 2604 is positioned between the distal end and the proximal end of the ultrasonic blade 2608 and is grasped between the clamp arm 2606 and the ultrasonic blade 2608 to set an accurate gap between the clamp arm 2606 and the ultrasonic blade 2808. Once the clamp arm 2606 is closed to grasp the second gage pin 2602, the output voltage of the Hall-effect sensor is measured and recorded. The third data point (3) is correlated to the gap set between the clamp arm 2606 and the ultrasonic blade 2608 by the second gage pin 2604. In this way, the output voltage of the Hall-effect sensor is equated to the gap distance between the clamp arm 2606 and the ultrasonic blade 2608. The third data point (3) is one of several data points to develop the polynomial to generate the best fit curve 2502 shown in FIG. 24. The process 3300 described in FIG. 32 detects 3304 an actual Hall-effect sensor voltage and determines the gap between the clamp arm 2606 and the ultrasonic blade 2608 based on the best first curve 2502 (e.g., computing the polynomial).


The fourth data point (4) is recorded when the end effector 2600 is in the configuration shown in FIG. 28. To obtain the fourth data point (4), there are no gage pins 2602, 2604 placed between the clamp arm 2606 and the ultrasonic blade 2608, but rather, the clamp arm 2606 is place in the fully closed position relative to the ultrasonic blade 2608. Once the clamp arm 2606 is placed in the fully closed position, the output voltage of the Hall-effect sensor is measured and recorded. The fourth data point (4) is correlated to the fully closed clamp arm 2606 position. In this way, the output voltage of the Hall-effect sensor is equated to the fully closed clamp arm 2606 position relative to the ultrasonic blade 2608. The fourth data point (4) is one of several data points to develop the polynomial to generate the best fit curve 2502 shown in FIG. 24. The process 3300 described in FIG. 32 detects 3304 an actual Hall-effect sensor voltage and determines the gap between the clamp arm 2606 and the ultrasonic blade 2608 based on the best first curve 2502 (e.g., computing the polynomial).


Various configurations of gage pins may create known displacements and/or angles between the clamp arm 2606 and the ultrasonic blade 2608 of the end effector 2600. Using kinematics of a given clamp arm/ultrasonic blade/shaft design and gage pins of known diameter, a theoretical displacement of the shaft assembly can be known at each of the, e.g., four or more positions. This information may be input, along with the voltage readings of the Hall-effect sensor, to fit a parabolic curve (e.g., best fit curve 2502 as shown in FIG. 24), which may becomes a characteristic of each individual surgical device. This information may be loaded onto the surgical device via an EEPROM or other programmable electronics configured to communicate with the generator (e.g., the generator 102 shown in FIG. 6) during use of the surgical device.


The Hall-effect sensor signal response at, for example, the four positions of the clamp arm described above may be graphed and the responses may be fit and entered into to a lookup table or developed into a polynomial which may be used to set/calibrate the Hall-effect sensor such that when used by a surgeon, the end effector delivers the tissue effect desired. In this way, process 3300 may determine 3308 a best fit curve to represent signal strength (e.g., from Hall-effect sensor) as a function of sensor displacement (e.g., magnet displacement) based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body. Process 3300 may also create 3310 a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.


The positioning of the Hall-effect sensor/magnet arrangement in the configurations described above may be used to calibrate the surgical device such that the most sensitive movements of the clamp arm 2606 exist when the clamp arm 2606 is closest to the ultrasonic blade 2608. Four positions, corresponding to four data points (1-4), were chosen in the example described above, but any number of positions could be used at the discretion of design and development teams to ensure proper calibration.


In one aspect, the techniques and features described herein may be used to provide feedback to a surgeon to indicate when the surgeon should use hemostasis mode for the vessel sealing procedure prior to engaging the cutting procedure. For example, hemostasis mode algorithm may be dynamically changed based on the size of a vessel grasped by the end effector 2600 in order to save time. This may require feedback based on the position of the clamp arm 2606.



FIG. 29A is a schematic diagram 3000 of surgical instrument 3002 configured to seal small and large vessels in accordance with one aspect of the present disclosure. The surgical instrument 3002 comprises an end effector 3004, where the end effector comprises a clamp arm 3006 and an ultrasonic blade 3008 for treating tissue including vessels of various sizes. The surgical instrument 3002 comprises a Hall-effect sensor 3010 to measure the position of the end effector 3004. A closure switch 3012 is provided to provide a feedback signal indicating whether the trigger handle 3013 of the surgical instrument is in a fully closed position.


Turning now to FIG. 29B there is shown a diagram of an example range of a small vessel 3014 and a large vessel 3016 and the relative position of a clamp arm of the end effector in accordance with one aspect of the present disclosure. With reference to FIGS. 29A-B, The surgical instrument 3002 shown in FIG. 29A is configured to seal small vessels 3014 having a diameter <4 mm and large vessels 3016 having a diameter >4 mm and the relative position of the clamp arm 3006 when grasping small and large vessels 3014, 3016 and the different voltage readings provided by the end effector 3010 depending on the size of the vessel.



FIGS. 29C and 29D are two graphs 3020, 3030 that depicts two processes for sealing small and large vessels by applying various ultrasonic energy levels for a different periods of time in accordance with one aspect of the present disclosure. Ultrasonic energy level is shown along the y-axis and time (Sec) is shown along the x-axis. With reference now to FIGS. 29A-C, the first graph 3020 shown in FIG. 29C shows a process for adjusting the ultrasonic energy drive level of a ultrasonic blade to seal a small vessel 3014. In accordance with the process illustrated by the first graph 3020 for sealing and transecting a small vessel 3014, a high ultrasonic energy (5) is applied for a first period 3022. The energy level is then lowered to (3.5) for a second period 3024. Finally, the energy level is raised back to (5) for a third period 3026 to complete sealing the small vessel 3014 and achieve transection and then the energy level is turned off. The entire cycle lasting about 5 seconds.


With reference now to FIGS. 29A-D, the second graph 3030 shown in FIG. 29D shows a process for adjusting the ultrasonic energy drive level of a ultrasonic blade to seal a large vessel 3016. In accordance with the process illustrated by the second graph 3030 for sealing and transecting a large vessel 3016, a high ultrasonic energy (5) is applied for a first period 3032. The energy level is then lowered to (1) for a second period 3034. Finally, the energy level is raised back to (5) for a third period 3036 to complete sealing the large vessel 3016 and achieve transection and then the energy level is turned off. The entire cycle lasting about 10 seconds.


Smaller vessels 3014 may be easier to seal at high burst pressure levels. Thus, it may be desirable to sense and determine whether a smaller vessel 3014 (e.g., less than 4 mm) is clamped by the clamp arm 3006, and if so, the ultrasonic energy level may not need to be dropped to 1. Instead, the energy level could be dropped less, to about 3.5 for example, as shown by the first graph 3020 shown in FIG. 29C. This may allow the surgeon to get through the vessel, coagulate it, and cut the vessel more quickly with knowledge that the process can go faster because the vessel 3014 is slightly smaller. If the vessel 3016 is larger, (e.g., 4 mm or greater) a process that heats the vessel slower and over a longer period of time may be more desirable, as shown by the second graph 3030 in FIG. 29D.



FIG. 30 is a logic diagram illustrating an example process 3100 for determining whether hemostasis mode should be used, in accordance with one aspect of the present disclosure. At the outset, the process 3100 reads 3102 the signal from a Hall-effect sensor determine 3102 the position of an end effector. The process 3100 then determines 3104 if a full closure switch of the surgical device is depressed, or if the handle of the surgical device is fully closed. If the full closure switch of the surgical device is not depressed and/or if the handle of the surgical device is not fully closed, the process 3100 may continue to read 3102 the Hall-effect sensor to determine the position of the end effector. If the full closure switch of the surgical device is depressed, or if the handle of the surgical device is fully closed, the process 3100 determines 3106 if the end effector position indicates a vessel larger than 5 mm. If the end effector position does not indicate a vessel larger than 5 mm, and no system indicators are found 3108, the process 3100 may continue to read 3102 the Hall-effect sensor and determine the position of the end effector.


If the end effector position indicates a vessel larger than 5 mm, the process 3100 determines 3110 if the end effector position indicates a vessel larger than 7 mm. If the end effector position does not indicate a vessel larger than 7 mm, the process 3100 indicates 3112 that hemostasis mode should be used. This condition may be indicated using a variety of auditory, vibratory, or visual feedback techniques including, for example, a green LED located on the surgical device (e.g., on top of the handle) may be enabled. If the end effector position does indicate a vessel larger than 7 mm, the process 3100 indicates 3114 that the tissue should not be taken (i.e., hemostasis mode should not be used) because too much tissue has been captured by the end effector. This condition may be indicated using a variety of auditory, vibratory, or visual feedback techniques including, for example, a red LED on the surgical device (e.g., on top of the handle) may be enabled.



FIG. 31 is a logic diagram illustrating an example process 3200 for end effector control in accordance with one aspect of the present disclosure. In one aspect Referring to FIG. 31, process 3200 detects 3202 a signal (e.g., at a Hall-effect sensor) in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The first tube may be, for example, similar to reciprocating tubular actuating member 58 (FIGS. 3 and 4) and the second tube may be, for example, similar to outer tubular sheath 56 (FIGS. 3 and 4). In other words, as described in FIG. 31, the first tube may be an inner tube and the second tube is an outer tube. The inner tube may be moveable 3208 relative to the outer tube. The outer tube may be static relative to the inner tube. The process 3200 detects 3210 the signal using a Hall-effect sensor and a magnet positioned on the first tube.


The process 3200 continues and determines 3204 a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal (from, e.g., Hall-effect sensor voltage output). Once clamp arm position relative to ultrasonic blade is known, the vibrational mode of the ultrasonic blade can be adjusted to obtain different tissue effects. In this way, the process 3200 adjusts 3206 a power output to the ultrasonic blade of the end effector based on the clamp arm position. For example, the process 3200 may adjust 3214 the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor. Alternatively, the process can effectively seal vessels without transection. In this way, the process 3200 may adjust 3218 the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


In another aspect, the process 3200 may adjust 3216 the power output to the ultrasonic blade of the end effector dynamically, based on the travel ratio that changes as the clamp arm approaches the ultrasonic blade. For example, as the clamp arm moves towards the ultrasonic blade and a Desired Value (FIGS. 21 and 22) is approached, the amount of power output to the ultrasonic blade and into the tissue may be reduced. This is because the ultrasonic blade will cut the tissue with enough power. However, if the power being output is reduced over time as the Desired Value is approached (where a full transection may be represented by a Travel Ratio of 1), the chance that the tissue is transected may be drastically reduced. In this way, effective sealing may be achieved without cutting the tissue as may be desired by the surgeon.


In one aspect, the process 3200 of FIG. 31 moves 3212a magnet positioned on the first tube relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector. The process 3200 then determines 3220 a type of tissue between the clamp arm and the ultrasonic blade based on a signal (from, e.g., a Hall-effect sensor). Further, using a processor and/or memory, one or more algorithms (e.g., for sealing a vessel without transection) may be chosen based on the thickness, quantity, or type of tissue determined to be clamped inside the jaws. In response to determining that the type of tissue between the clamp and the ultrasonic blade is a large vessel, the process 3200 may reduce 3226 the power output to the ultrasonic blade of the end effector by an amount more than for a small vessel. Further, in response to determining that the type of tissue between the clamp and the ultrasonic blade is a small vessel, the process 3200 may reduce 3224 the power output to the ultrasonic blade of the end effector by an amount less than for a large vessel. In one aspect, instead of changing algorithms for small vessels as described above, an indicator may be provided to the surgeon to indicate the thickness of the tissue captured in the end effector. In one aspect, the process 3200 adjusts 3222 the power output to the ultrasonic blade of the end effector based on the type of tissue.



FIG. 32 is a logic diagram illustrating an example process 3300 for calibrating an apparatus for controlling for an end effector in accordance with one aspect of the present disclosure. In one aspect, the process 3300 detects 3302 a first signal corresponding to a fully open position of a clamp arm and a blade of the end effector. The process 3300 then detects 3304 a second signal corresponding to an intermediate position of the clamp arm and the blade of the end effector, the intermediate position resulting from clamping a rigid body between the clamp arm and the blade. The process detects 3306 a third signal corresponding to a fully closed position of the clamp arm and the blade of the end effector. Once the three signals are detected, the process 3300 determines 3308 a best fit curve to represent signal strength as a function of sensor displacement based on at least the first, second, and third signals corresponding to the fully open, intermediate, and fully closed positions, respectively, and a dimension of the rigid body. An example of a best fit curve in this context is shown in FIGS. 14B and 24. Finally, the process 3300 creates 3310 a lookup table based on at least the first, second, and third signals corresponding to the fully open, intermediate, and fully closed positions, respectively.


As described hereinabove, the position of the clamp arm portion of the end effector can be measured with a Hall-effect sensor/magnet arrangement. A tissue pad, usually made of TEFLON, may be positioned on the clamp arm to prevent tissue from sticking to the clamp arm. As the end effector is used and the tissue pad is worn, it will be necessary to track the drift of the Hall-effect sensor output signal and establish changing thresholds to maintain the integrity of the tissue treatment algorithm selection and the end of cut trigger points feedback to the tissue treatment algorithms.


Accordingly, a control system is provided. The output of the Hall-effect sensor in the form of counts can be used to track the aperture of the end effector clamp arm. The reader may refer to FIGS. 34 and 35 for ADC systems 3500, 3600 that can employ the counter output of an ADC. The clamp arm position, with or without a tissue pad, can be calibrated using the techniques described herein. Once the clamp arm position is calibrated, the position of the clamp arm and wear of the tissue pad can be monitored. In one aspect, the control system determines that the clamp arm is in a closed position by monitoring for a rise in acoustic impedance that occurs when the ultrasonic blade contacts either tissue or the tissue pad. Thus, a specific number of ADC counter will accumulate a specific number of counts from the time the clamp arm goes from a fully open position to a fully closed position. In one implementation, based on the configuration of the Hall-effect sensor, the Hall-effect sensor ADC counts increase as the clamp arm closes towards the ultrasonic blade. As the tissue pad wears, the counter will accumulate an incremental additional number of counts due to the additional rotational travel experienced by the clamp arm due to tissue pad wear. By tracking the new count value for a closed clamp arm position, the control system can adjust the trigger threshold for an end of cut and better predict the total range of aperture of the clamp arm that has occurred.


Furthermore, the Hall-effect sensor ADC counts may be employed to determine the tissue coefficient of friction (μ) of the tissue under treatment based on the aperture of the clamp arm by employing predetermined μ values stored in a look-up table. For example, the specific tissue treatment algorithm can be dynamically adjusted or changed during an ultrasonic treatment cycle (e.g., firing sequence or activation of ultrasonic energy) to optimize the tissue cut based on the tissue type (e.g., fatty tissue, mesentery, vessel) or the tissue quantity or thickness.



FIG. 33 is a logic diagram of a process 3400 for tracking wear of the tissue pad portion of the clamp arm and compensating for resulting drift of the Hall-effect sensor and determining tissue coefficient of friction, according to one aspect of the present disclosure. The process 3400 may be implemented in software, hardware, firmware, or a combination thereof, employing the generator circuit environment illustrated in connection with FIGS. 6-10.


In one aspect, the process 3400 may be implemented by a circuit may comprising a controller comprising one or more processors (e.g., microprocessor, microcontroller) coupled to at least one memory circuit. The at least one memory circuit stores machine executable instructions that when executed by the processor, cause the processor to execute the process 3400.


The processor may be any one of a number of single or multi-core processors known in the art. The memory circuit may comprise volatile and non-volatile storage media. In one aspect, the processor may include an instruction processing unit and an arithmetic unit. The instruction processing unit may be configured to receive instructions from the one memory circuit.


In one aspect, a circuit may comprise a finite state machine comprising a combinational logic circuit configured to implement the process 3400 described herein. In one aspect, a circuit may comprise a finite state machine comprising a sequential logic circuit comprising a combinational logic circuit and at least one memory circuit, for example. The at least one memory circuit can store a current state of the finite state machine. The sequential logic circuit or the combinational logic circuit can be configured to implement the process 3400 described herein. In certain instances, the sequential logic circuit may be synchronous or asynchronous.


In other aspects, the circuit may comprise a combination of the processor and the finite state machine to implement the compression and decompression techniques described herein. In other embodiments, the finite state machine may comprise a combination of the combinational logic circuit and the sequential logic circuit.


As described herein, the position of the clamp arm is sensed by a Hall-effect sensor relative to a magnet located in a closure tube of a surgical instrument. Turning now to the process 3400, the initial home position of the clamp arm, e.g., the position of the Hall-effect sensor located on the closure tube, is stored 3402 in memory. As the closure tube is displaced in a distal direction, the clamp arm is closed towards the ultrasonic blade and the instantaneous position of the clamp arm is stored 3404 in memory. The difference, delta (x), between the instantaneous position and the home position of the clamp arm is calculated 3406. The difference, delta (x), may be used to determine a change in displacement of the tube, which can be used to calculate the angle and the force applied by the clamp arm to the tissue located between the clamp arm and the ultrasonic blade. The instantaneous position of the clamp arm is compared 3408 to the closed position of the clamp arm determine whether the clamp arm is in a closed position. While the clamp arm is not yet in a closed position, the process 3400 proceeds along the no path (N) and compares the instantaneous position of the clamp arm with the home position of the clamp arm until the clamp reaches a closed position.


When the clamp arm reaches a closed position, the process 3400 continues along the yes path (Y) and the closed position of the clamp arm is applied to one input of a logic AND function 3410. The logic AND function 3410 is a high level representation of a logic operation, which may comprise boolean AND, OR, XOR, and NAND operations implemented either in software, hardware, or a combination thereof. When a tissue pad abuse or wear condition is determined based on acoustic impedance measurements, the current clamp arm closed position is set 3414 as the new home position of the clamp arm to compensate for the abuse or wear condition. If no tissue pad abuse or wear is determined, the home position of the clamp arm remains the same. Abuse or wear of the clamp arm tissue pad is determined by monitoring 3420 the impedance 3422 of the ultrasonic blade. The tissue pad/ultrasonic blade interface impedance id s determined 3422 and compared 3412 to a tissue pad abuse or wear condition. When the impedance corresponds to a tissue pad abuse or wear condition, the process 3400 proceeds along the yes path (Y) and the current closed position of the clamp arm is set 3414 as the new home position of the clamp arm to compensate for the abuse or wear condition of the tissue pad. When the impedance does not correspond to a tissue pad abuse or wear condition, the process 3400 proceeds along the no path (N) and the home position of the clamp arm remains the same.


The stored 3404 instantaneous position of the clamp arm is also provided to the input of another logic AND function 3416 to determine the quantity and thickness of the tissue clamped between the clamp arm and the ultrasonic blade. The tissue/ultrasonic blade interface impedance is determined 3422 and is compared 3424, 34267, 3428 to multiple tissue coefficients of friction μ=x, μ=y, or μ=z. Thus, when the tissue/ultrasonic blade interface impedance corresponds to one of the tissue coefficients of friction μ=x, μ=y, or μ=z based on the tissue quantity or thickness, e.g., the aperture of the clamp arm, the current tissue algorithm is maintained 3430 and the current algorithm is used for monitoring 3420 the impedance 3422 of the ultrasonic blade. If the tissue coefficient of friction μ=x, μ=y, or μ=z based on the tissue quantity or thickness, e.g., the aperture of the clamp arm, changes, the current tissue algorithm is changed 3418 based on the new tissue coefficient of friction μ and the tissue quantity or thickness, e.g., the aperture of the clamp arm and the new algorithm is used for monitoring 3420 the impedance 3422 of the ultrasonic blade.


Accordingly, the current clamp arm aperture is used to determine the current tissue coefficient of friction μ based on the quantity and thickness of tissue as measured by the aperture of the clamp arm. Thus, an initial algorithm may be based on an initial aperture of the clamp arm. The impedance of the ultrasonic blade is compared 3424, 3426, 3428 to several tissue coefficients of friction μ=x, μ=y, or μ=z, which are stored in a look-up table, and correspond to fatty tissue, mesentery tissue, or vessel tissue, for example. If no match occurs between the impedance of the ultrasonic blade and the tissue coefficient of friction, the process 3400 proceeds along the no paths (N) of any of the tissue impedance comparisons 3424, 3426, 3428 and the current tissue algorithm is maintained. If any one of the outputs of the comparison 3424, 3426, 3428 functions is true, the processor switches to a different tissue treatment algorithm based on the new tissue impedance and clamp arm aperture. Accordingly, a new tissue treatment algorithm is loaded in the ultrasonic instrument. The process 3400 continues by monitoring 3420 the impedance of the ultrasonic blade, clamp arm aperture, and tissue pad abuse or wear.



FIG. 34 illustrates a Hall-effect sensor system 3500 that can be employed with the process 3400 of FIG. 33, according to one aspect of the present disclosure. In connection with the process 3400 described in FIG. 33, the Hall-effect sensor system 3500 of FIG. 34 includes a Hall-effect sensor 3502 powered by a voltage regulator 3504. The output of the Hall-effect sensor 3502 is an analog voltage proportional to the position of the clamp arm, which is applied to an analog-to-digital converter 3506 (ADC). The n-bit digital output of the ADC 3506 is applied to a microprocessor 3508 coupled to a memory 3510. The microprocessor 3508 is configured to process and determine the position of the clamp arm based on the n-bit digital input from the ADC 3505. It will be appreciated that the digital output of the ADC 3506 may be referred to as a count.


As described herein, the analog output of the Hall-effect sensor is provided to an internal or an external analog-to-digital converter such as the ADC 3506 shown in FIG. 34 or any of the analog-to-digital converter circuits located in the generator. The transducer 104 shown in FIG. 6 may comprise an Hall-effect sensor comprising and analog-to-digital converter circuit whose output is applied to the control circuit 108. In one aspect, the generator 102 shown in FIG. 7 comprises several analog-to-digital converter circuits such as ADCs 176, 178, 180, which can be adapted and configured to receive the analog voltage output of the Hall-effect sensor and convert it into digital forms to obtain counts and to interface the Hall-effect sensor with a DSP processor 174, microprocessor 190, a logic device 166, and/or a controller 196.



FIG. 35 illustrates one aspect of a ramp type counter analog-to-digital converter 3600 (ADC) that may be employed with the Hall-effect sensor system 3500 of FIG. 34, according to one aspect of the present disclosure. The digital ramp ADC 3600 receives an analog input voltage from a Hall-effect sensor at the Vin positive input terminal of a comparator 3602 and Dn through D0 (Dn-D0) are the digital outputs (n-bits). The control line found on a counter 3606 turns on the counter 3606 when it is low and stops the counter 3606 when it is high. In operation, the counter 3606 is increased until the value found on the counter 3606 matches the value of the analog input signal at Vin. The digital output Dn-D0 is applied to a digital-to-analog converter 3604 (DAC) and the analog output is applied to the negative terminal of the comparator 3602 and it is compared to the analog input voltage at Vin. When this condition is met, the value on the counter 3606 is the digital equivalent of the analog input signal at Vin.


A START pulse is provided for each analog input voltage Vin to be converted into a digital signal. The END signal represents the end of the conversion for each individual analog input voltage found at Vin (each sample), and not for the entire analog input signal. Each clock pulse increments the counter 3606. Supposing an 8-bit ADC, for converting the analog value for “128” into digital, for example, it would take 128 clock cycles. The ADC 3600 counts from 0 to the maximum possible value (2n−1) until the correct digital output Dn-D0 value is identified for the analog input voltage present at Vin. When this is true, the END signal is given and the digital value for Vin is for at Dn-D0.


While various aspects have been described herein, it should be apparent, however, that various modifications, alterations and adaptations to those aspects may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. The disclosed aspects are therefore intended to include all such modifications, alterations and adaptations without departing from the scope and spirit of the invention. Accordingly, other aspects and implementations are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results.


While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the techniques for operating a generator for digitally generating electrical signal waveforms and surgical instruments may be practiced without these specific details. One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.


Further, while several forms have been illustrated and described, it is not the intention of the applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.


For conciseness and clarity of disclosure, selected aspects of the foregoing disclosure have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in one or more computer memories or one or more data storage devices (e.g. floppy disk, hard disk drive, Compact Disc (CD), Digital Video Disk (DVD), or digital tape). Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.


Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one form, several portions of the subject matter described herein may be implemented via an application specific integrated circuits (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), or other integrated formats. However, those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).


In some instances, one or more elements may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. It is to be understood that depicted architectures of different components contained within, or connected with, different other components are merely examples, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated also can be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated also can be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components, and/or electrically interacting components, and/or electrically interactable components, and/or optically interacting components, and/or optically interactable components.


In other instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


While particular aspects of the present disclosure have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


It is worthy to note that any reference to “one aspect,” “an aspect,” “one form,” or “a form” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in one form,” or “in an form” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).


A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.


All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


1. A method for controlling an end effector, the method comprising: detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector; determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal; and adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.


2. The method of clause 1, wherein adjusting the power output to the ultrasonic blade is achieved by manipulating the electrical current sent to the handpiece.


3. The method of clause 1 or 2, wherein the first tube is an inner tube and the second tube is an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube.


4. The method of any one of clause 1 or 2, wherein the first tube is an inner tube and the second tube is an outer tube, the outer tube being moveable relative to the inner tube, the inner tube being static relative to the inner tube.


5. The method of any one of clauses 1-4 further comprising detecting the signal using a Hall-effect sensor and a magnet positioned on the first tube.


6. The method of any one of clauses 1-5, further comprising moving a magnet positioned on the first tube relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector.


7. The method of any one of clauses 1-6, further comprising adjusting the power output to the ultrasonic blade of the end effector using an ultrasonic transducer based on a voltage change in a Hall-effect sensor.


8. The method of any one of clauses 1-7, further comprising adjusting the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


9. The method of any one of clauses 1-8, further comprising adjusting the power output to the ultrasonic blade of the end effector dynamically, using a proportional-integral controller, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


10. The method of any one of clauses 1-9, further comprising switching off completely the power output to the ultrasonic blade of the end effector once a travel ratio threshold has been met.


11. The method of any one of clauses 1-10, further comprising: determining a quantity or thickness of tissue between the clamp arm and the ultrasonic blade based on the signal; and adjusting the power output to the ultrasonic blade of the end effector based on the quantity or thickness of tissue.


12. The method of clause 11, further comprising in response to determining that the quantity or thickness of tissue between the clamp arm and the ultrasonic blade is less than a predetermined threshold, reducing the power output to the ultrasonic blade of the end effector by an amount less than for a larger quantity or thickness of tissue.


13. The method of clause 11 or 12, further comprising in response to determining that the quantity or thickness of tissue between the clamp arm and the ultrasonic blade is above a predetermined threshold, reducing the power output to the ultrasonic blade of the end effector by an amount more than for a smaller quantity or thickness of tissue.


14. An apparatus for controlling an end effector, the apparatus comprising: a sensor configured to detect a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector; a processor configured to determine a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal; and a transducer configured to adjust a power output to the ultrasonic blade of the end effector based on the clamp arm position.


15. The apparatus of clause 14, wherein the first tube is an inner tube and the second tube is an outer tube, the outer tube being moveable relative to the inner tube, the inner tube being static relative to the outer tube.


16. The apparatus of clause 14, wherein the first tube is an inner tube and the second tube is an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube.


17. The apparatus of any one of clauses 14-16, further comprising: a magnet positioned on the first tube; and wherein the sensor is a Hall-effect sensor used to detect the signal based on a position of the magnet.


18. The apparatus of any one of clauses 14-17, wherein the magnet positioned on the first tube moves relative to a Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector.


19. The apparatus of any one of clauses 14-18, wherein the transducer is an ultrasonic transducer configured to adjust the power output to the ultrasonic blade of the end effector based on a voltage change in a Hall-effect sensor.


20. The apparatus of any one of clauses 14-19, wherein the transducer is configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


21. The apparatus of any one of clauses 14-20, further comprising: a proportional-integral controller configured to adjust the power output to the ultrasonic blade of the end effector dynamically, based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.


22. A method for calibrating an apparatus for controlling an end effector, the method comprising: detecting a first signal corresponding to a fully open position of a clamp arm and a ultrasonic blade of the end effector; detecting a second signal corresponding to an intermediate position of the clamp arm and the ultrasonic blade of the end effector, the intermediate position resulting from clamping a rigid body between the clamp arm and the ultrasonic blade; and detecting a third signal corresponding to a fully closed position of the clamp arm and the ultrasonic blade of the end effector.


23. The method of clause 22, further comprising: determining a best fit curve to represent signal strength as a function of sensor displacement based on at least the first, second, and third signals, the fully open, intermediate, and fully closed positions, and a dimension of the rigid body.


24. The method of clause 22 or 23, further comprising: creating a lookup table based on at least the first, second, and third signals, and the fully open, intermediate, and fully closed positions.

Claims
  • 1. An apparatus for controlling an end effector, the apparatus comprising: a sensor configured to detect a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector;a processor configured to: determine a clamp arm position of the end effector relative to an ultrasonic blade of the end effector based on the signal;determine a thickness of a tissue based on the clamp arm position;determine an impedance of the ultrasonic blade in contact with the tissue; anddetermine a type of the tissue based on the impedance; anda transducer configured to dynamically adjust a power output to the ultrasonic blade of the end effector during an ultrasonic treatment, to adjust a tissue cut based on the thickness and the type of the tissue.
  • 2. The apparatus of claim 1, wherein the first tube is an inner tube and the second tube is an outer tube, the outer tube being moveable relative to the inner tube, the inner tube being static relative to the outer tube.
  • 3. The apparatus of claim 1, wherein the first tube is an inner tube and the second tube is an outer tube, the inner tube being moveable relative to the outer tube, the outer tube being static relative to the inner tube.
  • 4. The apparatus of claim 1, further comprising: a magnet positioned on the first tube; andwherein the sensor is a Hall-effect sensor used to detect the signal based on a position of the magnet.
  • 5. The apparatus of claim 4, wherein the magnet positioned on the first tube moves relative to the Hall-effect sensor as the first tube drives movement of the clamp arm of the end effector.
  • 6. The apparatus of claim 1, wherein the transducer is an ultrasonic transducer configured to adjust the power output to the ultrasonic blade of the end effector based on a voltage change in a Hall-effect sensor.
  • 7. The apparatus of claim 1, wherein the transducer is configured to adjust the power output to the ultrasonic blade of the end effector based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
  • 8. The apparatus of claim 1, further comprising: a proportional-integral controller configured to adjust the power output to the ultrasonic blade of the end effector based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
  • 9. The apparatus of claim 1, wherein the type of the tissue comprises at least one of a fatty tissue, a mesentery tissue, and a vessel tissue.
  • 10. The apparatus of claim 1, wherein the transducer is configured to dynamically adjust the power output during the ultrasonic treatment based on a tissue treatment algorithm.
  • 11. The apparatus of claim 10, wherein the processor is further configured to: determine a second impedance of the ultrasonic blade;determine a second clamp arm position of the end effector relative to the ultrasonic blade; andadjust the tissue treatment algorithm based on the second impedance and the second clamp arm position.
  • 12. A control system for an ultrasonic surgical instrument, the ultrasonic surgical instrument comprising an ultrasonic blade, a clamp arm, a first tube movable relative to a second tube to cause the clamp arm to pivot towards the ultrasonic blade, and a transducer coupled to the ultrasonic blade and configured to ultrasonically oscillate the ultrasonic blade, the control system comprising: a sensor configured to detect a position of the first tube relative to the second tube; anda control circuit coupled to the sensor, the control circuit configured to: monitor the sensor to sense the position of the first tube;determine a clamp arm position of an end effector relative to an ultrasonic blade of the end effector based on the position of the first tube;determine a thickness of a tissue between the clamp arm and the ultrasonic blade according to the clamp arm position;determine an impedance of the ultrasonic blade in contact with the tissue;determine a type of the tissue based on the impedance; anddynamically adjust a power output via the transducer during an ultrasonic treatment, to adjust a tissue cut according to the thickness and the type of the tissue.
  • 13. The control system of claim 12, wherein the sensor comprises a Hall-effect sensor configured to detect a magnet positioned on the first tube.
  • 14. The control system of claim 12, wherein the control circuit is configured to adjust the power output via the transducer based on a travel ratio that changes as the clamp arm approaches the ultrasonic blade.
  • 15. The control system of claim 12, wherein the type of the tissue comprises at least one of a fatty tissue, a mesentery tissue, and a vessel tissue.
  • 16. The control system of claim 12, wherein the control circuit is configured to dynamically adjust the power output via the transducer during the ultrasonic treatment based on a tissue treatment algorithm.
  • 17. The control system of claim 16, wherein the control circuit is further configured to: determine a second impedance of the ultrasonic blade;determine a second clamp arm position of the end effector relative to the ultrasonic blade; anddynamically adjust the tissue treatment algorithm based on the second impedance and the second clamp arm position.
US Referenced Citations (2619)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4244371 Farin Jan 1981 A
4281785 Brooks Aug 1981 A
4300083 Helges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4353371 Cosman Oct 1982 A
4409981 Lundberg Oct 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4593691 Lindstrom et al. Jun 1986 A
4608981 Rothfuss et al. Sep 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5009661 Michelson Apr 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatia Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451161 Sharp Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5626608 Cuny et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5854590 Dalstein Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5987344 West Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205383 Hermann Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6232899 Craven May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405184 Bohme et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6459363 Walker et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6632221 Edwards et al. Oct 2003 B1
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6730080 Harano et al. May 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083613 Treat Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7113831 Hooven Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7166103 Carmel et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226447 Uchida et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Ke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckal et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507239 Shadduck Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7649410 Andersen et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7744615 Couture Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815238 Cao Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7862561 Swanson et al. Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8002770 Swanson et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8055208 Lilia et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Esky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8170717 Sutherland et al. May 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398394 Sauter et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430874 Newton et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8437832 Govari et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8471685 Shingai Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512337 Francischelli et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535308 Govari et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8597287 Benamou et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8617194 Beaupre Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663214 Weinberg et al. Mar 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8777945 Floume et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8874220 Draghici et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8945126 Garrison et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968296 McPherson Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
8998891 Garito et al. Apr 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9037259 Mathur May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039696 Assmus et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060778 Condie et al. Jun 2015 B2
9066720 Ballakur et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072538 Suzuki et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198718 Marczyk et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364171 Harris et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9393070 Gelfand et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9427279 Muniz-Medina et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9442288 Tanimura Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9474568 Akagane Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603669 Govari et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9636167 Gregg May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9649173 Choi et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724120 Faller et al. Aug 2017 B2
9724152 Horiie et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861381 Johnson Jan 2018 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9878184 Beaupre Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901383 Hassler, Jr. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10004527 Gee et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080609 Hancock et al. Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10123835 Keller et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
10154848 Chernov et al. Dec 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172665 Heckel et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10188455 Hancock et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10194999 Bacher et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10245104 McKenna et al. Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10271840 Sapre Apr 2019 B2
10507033 Dickerson et al. Dec 2019 B2
10561560 Boutoussov et al. Feb 2020 B2
10617420 Shelton, IV et al. Apr 2020 B2
RE47996 Turner et al. May 2020 E
10677764 Ross et al. Jun 2020 B2
10856896 Eichmann et al. Dec 2020 B2
10874465 Weir et al. Dec 2020 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20020177862 Aranyi et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109778 Rashidi Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107777 West et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Iino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iijima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060259026 Godara et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070066971 Podhajsky Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20070299895 Johnson et al. Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090030412 Willis Jan 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100036379 Prakash Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110015650 Choi et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110071523 Dickhans Mar 2011 A1
20110106141 Nakamura May 2011 A1
20110112400 Emery et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110273465 Konishi et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120136279 Tanaka et al. May 2012 A1
20120136386 Kishida et al. May 2012 A1
20120143182 Ullrich Jun 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120191091 Allen Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120239066 Levine et al. Sep 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296325 Takashino Nov 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140114327 Boudreaux Apr 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140180274 Kabaya et al. Jun 2014 A1
20140194868 Sanai et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140276659 Juergens et al. Sep 2014 A1
20140276754 Gilbert et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276806 Heim Sep 2014 A1
20140330271 Dietz et al. Nov 2014 A1
20150032100 Coulson et al. Jan 2015 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150094703 Zikorus et al. Apr 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150282879 Ruelas Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20150320480 Cosman, Jr. et al. Nov 2015 A1
20150320481 Cosman, Jr. et al. Nov 2015 A1
20160030076 Faller et al. Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160144204 Akagane May 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287311 Friedrichs Oct 2016 A1
20160296249 Robertson Oct 2016 A1
20160296250 Olson et al. Oct 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160317217 Batross et al. Nov 2016 A1
20160324537 Green et al. Nov 2016 A1
20160338726 Stulen et al. Nov 2016 A1
20160346001 Vakharia et al. Dec 2016 A1
20160367273 Robertson et al. Dec 2016 A1
20160367281 Gee et al. Dec 2016 A1
20160374708 Wiener et al. Dec 2016 A1
20160374709 Timm et al. Dec 2016 A1
20160374712 Stulen et al. Dec 2016 A1
20170000512 Conlon et al. Jan 2017 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170000554 Yates et al. Jan 2017 A1
20170056056 Wiener et al. Mar 2017 A1
20170056058 Voegele et al. Mar 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170086910 Wiener et al. Mar 2017 A1
20170086911 Wiener et al. Mar 2017 A1
20170086912 Wiener et al. Mar 2017 A1
20170086913 Yates et al. Mar 2017 A1
20170086914 Wiener et al. Mar 2017 A1
20170095267 Messerly et al. Apr 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170105782 Scheib et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170105791 Yates et al. Apr 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170143371 Witt et al. May 2017 A1
20170143877 Witt et al. May 2017 A1
20170164994 Smith Jun 2017 A1
20170164997 Johnson et al. Jun 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170189096 Danziger et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170196587 Witt et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202592 Shelton, IV et al. Jul 2017 A1
20170202593 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170202609 Shelton, IV et al. Jul 2017 A1
20170207467 Shelton, IV et al. Jul 2017 A1
20170209167 Nield Jul 2017 A1
20170238991 Worrell et al. Aug 2017 A1
20170245875 Timm et al. Aug 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170319228 Worrell et al. Nov 2017 A1
20170319265 Yates et al. Nov 2017 A1
20170325874 Noack et al. Nov 2017 A1
20170348064 Stewart et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180036061 Yates et al. Feb 2018 A1
20180036065 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180064961 Wiener et al. Mar 2018 A1
20180078277 Illizaliturri-Sanchez et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180098808 Yates et al. Apr 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20180280083 Parihar et al. Oct 2018 A1
20190021783 Asher et al. Jan 2019 A1
20190105067 Boudreaux et al. Apr 2019 A1
20190201048 Stulen et al. Jul 2019 A1
20190209201 Boudreaux et al. Jul 2019 A1
20190262030 Faller et al. Aug 2019 A1
20190274700 Robertson et al. Sep 2019 A1
20190282288 Boudreaux Sep 2019 A1
20190282292 Wiener et al. Sep 2019 A1
20200015883 Batross et al. Jan 2020 A1
20200022724 Worrell et al. Jan 2020 A1
20200030021 Yates et al. Jan 2020 A1
20200054382 Yates et al. Feb 2020 A1
20200078085 Yates et al. Mar 2020 A1
20200078609 Messerly et al. Mar 2020 A1
20200085465 Timm et al. Mar 2020 A1
20200113624 Worrell et al. Apr 2020 A1
20200138473 Shelton, IV et al. May 2020 A1
20200222135 Stulen et al. Jul 2020 A1
20200229833 Vakharia et al. Jul 2020 A1
20200229834 Olson et al. Jul 2020 A1
20200237434 Scheib et al. Jul 2020 A1
20200261141 Wiener et al. Aug 2020 A1
20200268433 Wiener et al. Aug 2020 A1
Foreign Referenced Citations (453)
Number Date Country
2003241752 Sep 2003 AU
2535467 Apr 1993 CA
1233944 Nov 1999 CN
1253485 May 2000 CN
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1640365 Jul 2005 CN
1694649 Nov 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
1951333 Apr 2007 CN
101035482 Sep 2007 CN
101040799 Sep 2007 CN
101396300 Apr 2009 CN
101467917 Jul 2009 CN
101474081 Jul 2009 CN
101516285 Aug 2009 CN
101674782 Mar 2010 CN
101883531 Nov 2010 CN
102100582 Jun 2011 CN
102149312 Aug 2011 CN
102160045 Aug 2011 CN
202027624 Nov 2011 CN
102834069 Dec 2012 CN
101313865 Jan 2013 CN
103281982 Sep 2013 CN
103379853 Oct 2013 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
4323585 Jan 1995 DE
19608716 Apr 1997 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
102012109037 Apr 2014 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0342448 Nov 1989 EP
0443256 Aug 1991 EP
0456470 Nov 1991 EP
0238667 Feb 1993 EP
0340803 Aug 1993 EP
0598976 Jun 1994 EP
0630612 Dec 1994 EP
0424685 May 1995 EP
0677275 Oct 1995 EP
0482195 Jan 1996 EP
0695535 Feb 1996 EP
0705571 Apr 1996 EP
0741996 Nov 1996 EP
0612570 Jun 1997 EP
0557806 May 1998 EP
0640317 Sep 1999 EP
1108394 Jun 2001 EP
1138264 Oct 2001 EP
0908148 Jan 2002 EP
1229515 Aug 2002 EP
0722696 Dec 2002 EP
1285634 Feb 2003 EP
0908155 Jun 2003 EP
0705570 Apr 2004 EP
0765637 Jul 2004 EP
0870473 Sep 2005 EP
0624346 Nov 2005 EP
1594209 Nov 2005 EP
1199044 Dec 2005 EP
1609428 Dec 2005 EP
1199043 Mar 2006 EP
1293172 Apr 2006 EP
0875209 May 2006 EP
1433425 Jun 2006 EP
1256323 Aug 2006 EP
1698289 Sep 2006 EP
1704824 Sep 2006 EP
1749479 Feb 2007 EP
1767157 Mar 2007 EP
1254637 Aug 2007 EP
1815950 Aug 2007 EP
1839599 Oct 2007 EP
1844720 Oct 2007 EP
1862133 Dec 2007 EP
1875875 Jan 2008 EP
1878399 Jan 2008 EP
1915953 Apr 2008 EP
1532933 May 2008 EP
1199045 Jun 2008 EP
1707143 Jun 2008 EP
1943957 Jul 2008 EP
1964530 Sep 2008 EP
1972264 Sep 2008 EP
1974771 Oct 2008 EP
1435852 Dec 2008 EP
1498082 Dec 2008 EP
1707131 Dec 2008 EP
1477104 Jan 2009 EP
2014218 Jan 2009 EP
1849424 Apr 2009 EP
2042112 Apr 2009 EP
2042117 Apr 2009 EP
2060238 May 2009 EP
1832259 Jun 2009 EP
2074959 Jul 2009 EP
1810625 Aug 2009 EP
2090256 Aug 2009 EP
2092905 Aug 2009 EP
2105104 Sep 2009 EP
1747761 Oct 2009 EP
2106758 Oct 2009 EP
2111813 Oct 2009 EP
2131760 Dec 2009 EP
1769766 Feb 2010 EP
2151204 Feb 2010 EP
2153791 Feb 2010 EP
2200145 Jun 2010 EP
1214913 Jul 2010 EP
2238938 Oct 2010 EP
2243439 Oct 2010 EP
2298154 Mar 2011 EP
2305144 Apr 2011 EP
1510178 Jun 2011 EP
1946708 Jun 2011 EP
2335630 Jun 2011 EP
1502551 Jul 2011 EP
1728475 Aug 2011 EP
2353518 Aug 2011 EP
2361562 Aug 2011 EP
2365608 Sep 2011 EP
2420197 Feb 2012 EP
2422721 Feb 2012 EP
1927321 Apr 2012 EP
2436327 Apr 2012 EP
2529681 Dec 2012 EP
1767164 Jan 2013 EP
2316359 Mar 2013 EP
2090238 Apr 2013 EP
2578172 Apr 2013 EP
1586275 May 2013 EP
1616529 Sep 2013 EP
1997438 Nov 2013 EP
2668922 Dec 2013 EP
2508143 Feb 2014 EP
2583633 Oct 2014 EP
2076195 Dec 2015 EP
2113210 Mar 2016 EP
2510891 Jun 2016 EP
2227155 Jul 2016 EP
2859858 Dec 2016 EP
2115068 Jun 1998 ES
1482943 Aug 1977 GB
2032221 Apr 1980 GB
2317566 Apr 1998 GB
2379878 Nov 2004 GB
2472216 Feb 2011 GB
2447767 Aug 2011 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04150847 May 1992 JP
H04152942 May 1992 JP
H 0541716 Feb 1993 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H06217988 Aug 1994 JP
H06507081 Aug 1994 JP
H 07500514 Jan 1995 JP
H07508910 Oct 1995 JP
H07308323 Nov 1995 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336544 Dec 1996 JP
H08336545 Dec 1996 JP
H09503146 Mar 1997 JP
H09130655 May 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
10127654 May 1998 JP
H10295700 Nov 1998 JP
H11501543 Feb 1999 JP
H11128238 May 1999 JP
H11192235 Jul 1999 JP
H11253451 Sep 1999 JP
H11318918 Nov 1999 JP
2000041991 Feb 2000 JP
2000070279 Mar 2000 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2001502216 Feb 2001 JP
2001309925 Nov 2001 JP
2002059380 Feb 2002 JP
2002177295 Jun 2002 JP
2002186901 Jul 2002 JP
2002204808 Jul 2002 JP
2002238919 Aug 2002 JP
2002263579 Sep 2002 JP
2002301086 Oct 2002 JP
2002306504 Oct 2002 JP
2002330977 Nov 2002 JP
2002542690 Dec 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003510158 Mar 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003530921 Oct 2003 JP
2003310627 Nov 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005040222 Feb 2005 JP
2005066316 Mar 2005 JP
2005074088 Mar 2005 JP
2005507679 Mar 2005 JP
2005534451 Nov 2005 JP
2005337119 Dec 2005 JP
2006006410 Jan 2006 JP
2006068396 Mar 2006 JP
2006075376 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006512149 Apr 2006 JP
2006116194 May 2006 JP
2006158525 Jun 2006 JP
2006217716 Aug 2006 JP
2006218296 Aug 2006 JP
2006288431 Oct 2006 JP
2007037568 Feb 2007 JP
2007050181 Mar 2007 JP
2007-524459 Aug 2007 JP
2007229454 Sep 2007 JP
2007527747 Oct 2007 JP
2007296369 Nov 2007 JP
200801876 Jan 2008 JP
2008018226 Jan 2008 JP
200833644 Feb 2008 JP
2008036390 Feb 2008 JP
2008508065 Mar 2008 JP
2008119250 May 2008 JP
2008515562 May 2008 JP
2008521503 Jun 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2008212679 Sep 2008 JP
2008536562 Sep 2008 JP
2008284374 Nov 2008 JP
2009511206 Mar 2009 JP
2009082711 Apr 2009 JP
2009517181 Apr 2009 JP
4262923 May 2009 JP
2009523567 Jun 2009 JP
2009148557 Jul 2009 JP
2009236177 Oct 2009 JP
2009254819 Nov 2009 JP
2010000336 Jan 2010 JP
2010009686 Jan 2010 JP
2010514923 May 2010 JP
2010121865 Jun 2010 JP
2010534522 Nov 2010 JP
2010540186 Dec 2010 JP
2011505198 Feb 2011 JP
2012075899 Apr 2012 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
5208761 Jun 2013 JP
5714508 May 2015 JP
2015515339 May 2015 JP
5836543 Dec 2015 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2304934 Aug 2007 RU
2405603 Dec 2010 RU
2013119977 Nov 2014 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9222259 Dec 1992 WO
WO-9307817 Apr 1993 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9316646 Sep 1993 WO
WO-9320877 Oct 1993 WO
WO-9322973 Nov 1993 WO
WO-9400059 Jan 1994 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9509572 Apr 1995 WO
WO-9510978 Apr 1995 WO
WO-9534259 Dec 1995 WO
WO-9630885 Oct 1996 WO
WO-9635382 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9710764 Mar 1997 WO
WO-9800069 Jan 1998 WO
WO-9816156 Apr 1998 WO
WO-9826739 Jun 1998 WO
WO-9835621 Aug 1998 WO
WO-9837815 Sep 1998 WO
WO-9840020 Sep 1998 WO
WO-9847436 Oct 1998 WO
WO-9857588 Dec 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-9940857 Aug 1999 WO
WO-9940861 Aug 1999 WO
WO-9952489 Oct 1999 WO
WO-0024330 May 2000 WO
WO-0024331 May 2000 WO
WO-0025691 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0074585 Dec 2000 WO
WO-0124713 Apr 2001 WO
WO-0128444 Apr 2001 WO
WO-0154590 Aug 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-0224080 Mar 2002 WO
WO-0238057 May 2002 WO
WO-02062241 Aug 2002 WO
WO-02080797 Oct 2002 WO
WO-03001986 Jan 2003 WO
WO-03013374 Feb 2003 WO
WO-03020339 Mar 2003 WO
WO-03028541 Apr 2003 WO
WO-03030708 Apr 2003 WO
WO-03068046 Aug 2003 WO
WO-03082133 Oct 2003 WO
WO-03095028 Nov 2003 WO
WO-2004011037 Feb 2004 WO
WO-2004012615 Feb 2004 WO
WO-2004026104 Apr 2004 WO
WO-2004032754 Apr 2004 WO
WO-2004032762 Apr 2004 WO
WO-2004032763 Apr 2004 WO
WO-2004037095 May 2004 WO
WO-2004060141 Jul 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2004112618 Dec 2004 WO
WO-2005052959 Jun 2005 WO
WO-2005117735 Dec 2005 WO
WO-2005122917 Dec 2005 WO
WO-2006012797 Feb 2006 WO
WO-2006021269 Mar 2006 WO
WO-2006036706 Apr 2006 WO
WO-2006042210 Apr 2006 WO
WO-2006055166 May 2006 WO
WO-2006058223 Jun 2006 WO
WO-2006063199 Jun 2006 WO
WO-2006083988 Aug 2006 WO
WO-2006101661 Sep 2006 WO
WO-2006119139 Nov 2006 WO
WO-2006119376 Nov 2006 WO
WO-2006129465 Dec 2006 WO
WO-2007008703 Jan 2007 WO
WO-2007008710 Jan 2007 WO
WO-2007038538 Apr 2007 WO
WO-2007040818 Apr 2007 WO
WO-2007047380 Apr 2007 WO
WO-2007047531 Apr 2007 WO
WO-2007056590 May 2007 WO
WO-2007087272 Aug 2007 WO
WO-2007089724 Aug 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008016886 Feb 2008 WO
WO-2008020964 Feb 2008 WO
WO-2008042021 Apr 2008 WO
WO-2008045348 Apr 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008051764 May 2008 WO
WO-2008089174 Jul 2008 WO
WO-2008099529 Aug 2008 WO
WO-2008101356 Aug 2008 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2009010565 Jan 2009 WO
WO-2009018067 Feb 2009 WO
WO-2009018406 Feb 2009 WO
WO-2009022614 Feb 2009 WO
WO-2009027065 Mar 2009 WO
WO-2009036818 Mar 2009 WO
WO-2009039179 Mar 2009 WO
WO-2009046234 Apr 2009 WO
WO-2009059741 May 2009 WO
WO-2009073402 Jun 2009 WO
WO-2009082477 Jul 2009 WO
WO-2009088550 Jul 2009 WO
WO-2009120992 Oct 2009 WO
WO-2009141616 Nov 2009 WO
WO-2009149234 Dec 2009 WO
WO-2010017149 Feb 2010 WO
WO-2010017266 Feb 2010 WO
WO-2010027109 Mar 2010 WO
WO-2010068783 Jun 2010 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044338 Apr 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2011084768 Jul 2011 WO
WO-2011089717 Jul 2011 WO
WO-2011100321 Aug 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044597 Apr 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2012061722 May 2012 WO
WO-2012088535 Jun 2012 WO
WO-2012128362 Sep 2012 WO
WO-2012135705 Oct 2012 WO
WO-2012135721 Oct 2012 WO
WO-2012150567 Nov 2012 WO
WO-2012166510 Dec 2012 WO
WO-2013018934 Feb 2013 WO
WO-2013034629 Mar 2013 WO
WO-2013062978 May 2013 WO
WO-2013102602 Jul 2013 WO
WO-2013154157 Oct 2013 WO
WO-2014092108 Jun 2014 WO
WO-2015197395 Dec 2015 WO
WO-2016009921 Jan 2016 WO
Non-Patent Literature Citations (60)
Entry
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008], Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
http://www.apicalinstr.com/generators.htm.
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . .
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html.
http://www.valleylab.com/product/es/generators/index.html.
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
http://www.megadyne.com/es_generator.php.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
http://www.dotmed.eom/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724.
http:/www.ethicon.com/GB-en/healthcare-professionals/products/energy-devices/capital//ge . . . .
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 Erbe En VIO 200 S D027541.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220.
Related Publications (1)
Number Date Country
20180146976 A1 May 2018 US