The present disclosure is directed to improvements in the devices used for the handling of parent rolls of wound web materials. In particular, the present disclosure relates to an end effector suitable for use with devices capable of moving large parent rolls of convolutely wound web materials from a first location to a second location.
Clamps are normally required to handle paper rolls of widely-varying diameters in both vertical and horizontal orientations. A typical clamp comprises a pair of clamp arms either slidably or pivotally mounted upon a clamp frame and movable with respect to such frame selectively toward and away from each other to engage or release paper rolls of different diameters.
In the papermaking industry, it is generally known that paper to be converted into a consumer product such as paper towels, bath tissue, facial tissue, and the like is initially manufactured and wound into large rolls. By way of example only, these rolls, commonly known as parent rolls, may be on the order of 10 feet in diameter and 100 inches across and generally comprise a suitable paper wound on a core. In the usual case, a paper converting facility will have on hand a sufficient inventory of parent rolls to be able to meet the expected demand for the paper conversion as the paper product(s) are being manufactured.
However used, the compressive-type clamps, discussed supra, have numerous draw-backs. The most significant of these is the use of a compressive-type clamp for the pick-up and transport of convolutely wound web materials (e.g., a parent roll of paper) is the deformation of the cylindrical surface of the parent roll by the compressive-type clamp.
There are several factors that can contribute to the deformation of a parent roll of paper. First, because of the soft nature of the paper used to manufacture paper towels, bath tissue, facial tissue, and the like, it is common for parent rolls to become out-of-round. Second, not only the soft nature of the paper, but also the physical size of the parent rolls, the length of time during which the parent rolls are stored, and the fact that roll grabbers using these compressive-type clamps used to transport parent rolls grab them about their circumference can contribute to this problem. For example, because the weight of a parent roll is typically quite substantial, the compressive-type clamps must necessarily exert a significant amount of force upon the surface of the roll in order to maintain control of the roll during movement of the roll from one location to another.
As a result, by the time many parent rolls are placed on an unwind stand they have changed from the desired cylindrical shape to an out-of-round shape. An exemplary un-compressed parent roll is shown in
Even only slightly out-of-round parent rolls present considerable problems. In an ideal case with a perfectly round parent roll, the feed rate of a web material coming off of a rotating parent roll can be equal to the driving speed of a surface driven parent roll. However, with an out-of-round parent roll the feed rate can likely vary from the driving speed of a surface drive parent roll depending upon the radius at the web takeoff point at any moment in time. If the rotational speed remains substantially constant, the feed rate of a web material coming off of an out-of-round parent roll will necessarily vary during any particular rotational cycle depending upon the degree to which the parent roll is out-of-round. In practice, however, parent rolls are surface driven which means that if the radius at the drive point changes, the rotational speed can also change generally causing variations in the feed rate. Since the paper converting equipment downstream of the unwind stand is generally designed to operate based upon the assumption that the feed rate of a web material coming off of a rotating parent roll will always be equal to the driving speed of the parent roll, there are problems created by web tension spikes and slackening.
Additionally, it is believed that an out-of-round parent roll produces finally wound consumer products having inconsistent desired physical characteristics. Without desiring to be bound by theory, it is believed that a compressive-type clamp used for the conventional pick-up of a parent roll of wound web material effectively removes any caliper that may have been built into the product being produced for the parent roll. It is believed that this lost caliper cannot be recovered to any large degree due to the early stage of the life of the web material that is being so compressed. This lost and unrecoverable caliper can have a deleterious effect on the finally converted web material because the desired target values of the chosen parameters will be out of range even before the converting process has begun. Net—this clearly undesirable effect on the end product can be noticed by an end user of the product.
Regardless of the amount of pressure exerted by the compressive-type clamps on the parent roll, at least one point in the rotation of the parent roll exists where the relationship between the web take off point radius and the parent roll drive point radius that results in the minimum feed rate of paper to the line. At this point, the web tension can spike since the feed rate of the web material is at a minimum and less than what is expected by the paper converting equipment downstream of the unwind stand. Similarly, there can exist at least one point in the rotation of the parent roll where the relationship between the web take off point radius and the parent roll drive point radius results in the maximum feed rate of paper to the line. At this point, the web tension can slacken since the feed rate of the web material can be at a maximum and more than what is expected by the paper converting equipment downstream of the unwind stand. Since neither condition is conducive to efficiently operating paper converting equipment for manufacturing paper products such as paper towels, bath tissue and the like, and a spike in the web tension can even result in a break in the web material requiring a paper converting line to be shut down, there clearly is a need to overcome this problem.
In particular, the fact that out-of-round parent rolls create variable web feed rates and corresponding web tension spikes and web tension slackening has required that the unwind stand and associated paper converting equipment operating downstream thereof be run at a slower speed in many instances thereby creating an adverse impact on manufacturing efficiency.
Thus, there is a long-felt need to provide a better manner for the handling of parent rolls that eliminates the problems experienced and observed by manufactures using current roll-handling technology such as the aforementioned typical compressive-type clamp arms. It would be beneficial if the long-felt need was resolved by equipment that assists in maintaining the desired cylindrical parent roll shape. It would also be beneficial if the new parent roll handling equipment also maintained better control of the parent roll during movement. Further, it would be beneficial if the new parent roll handling equipment provided greater flexibility in the options required by paper product manufacturing operations by providing a more direct interface with the dry end of parent roll production, the ability to manipulate parent roll orientation for parent storage, as well as the ability to manipulate parent roll orientation for insertion of the parent roll into a converting process.
The present disclosure provides for an end effector for a transport device for the movement of parent rolls of convolutely wound web materials. The end effector comprises a frame, a first radial member operably connected to the frame, a second radial member operably connected to the frame, a first core plug operably connected to the first longitudinal member, and a second core plug operably connected to the second longitudinal member. The first radial member has a first longitudinal member operably connected thereto and extending therefrom. The second radial member has a second longitudinal member operably connected thereto and extending therefrom so that the first radial member and the second radial member being rotatable about an axis of rotation. The first core plug is extensible from a first position to a second position relative to the first longitudinal member and the second core plug is extensible from a first position to a second position relative to the second longitudinal member. The first and second core plugs are capable of cooperative and penetrating engagement with a core of the parent roll when the first core plug is disposed proximate to a first portion of the core of the parent roll and the second core plug is disposed proximate to a second portion of the core of the parent roll disposed distal from the first portion of the core of the parent roll. When the first and second core plugs are cooperatively engaged with the first and second portions of the core of the parent roll respectively, the end effector is capable of changing an orientation of the core and the parent roll from a first position to a second position by rotating the parent roll about the axis of rotation.
When the parent roll produced by any papermaking process (including a through-drying process for making un-creped through-dried tissue sheets) has reached its final predetermined diameter, the new reel spool is lowered into position against the incoming sheet at some point along the free span of web material disposed between web material support rolls. At the appropriate time, the sheet of web material is severed and the incoming end of the severed web material is directed back toward the new reel spool in order to attach the sheet to the new reel spool. As the sheet is transferred to the new reel spool, the finished parent roll is kicked out to continue the winding process with a new reel spool.
Next, an up-ender (not shown) can then “upend” each parent roll downstream of the reel spool. Generally, an up-ender upends each parent roll typically onto a conveyor (not shown) to position the longitudinal axis of each parent roll vertically, i.e. orthogonal, to the plane of the winding process. In practice, rolls with small axial dimensions can be upended spontaneously, while those with larger axial dimensions can be upended by an up-ender.
The upended rolls can be fed via a conveyor system towards a parent roll conveyor from which they can be singly picked up by a parent roll transporter. Generally a parent roll transporter will comprise a motivator having an end effector operatively, cooperatively, and pivotably connected thereto. An end effector suitable for cooperative and associated engagement with a motivator to provide a parent roll transporter suitable for translating and/or transporting a parent roll will be provided in greater detail infra.
Additionally, platform 1110 can be provided with at least one secondary conveyor belt 1175. A parent roll 125 disposed upon parent roll conveyor 150 can be continuously conveyed from a first position external to parent roll transporter 1000 and end effector 1100 and into contacting engagement with the at least one conveyor belt 1170 and the at least one secondary conveyor belt 1175 of platform 1110. It is envisioned that each of the at least one secondary conveyor belts 1175 can rotate about and be supported by a plurality of rollers 1120. Secondary conveyor belts 1175 can assist with the ability to present the parent roll 125 at any orientation relative to parent roll transporter 1000. This can be beneficial by, for example, providing motive force to the portion of the parent roll disposed within the region disposed between adjacent conveyor belts forming the at least one conveyor belt 1170. This can reduce the overall drag experienced by the parent roll 120 in the region disposed between adjacent conveyor belts thus reducing any observed surface deformities of parent roll 125.
Alternative, as shown in
As shown in
As would be readily recognized by one of skill in the art, the system shown can facilitate the transport of parent rolls to locations distal from the papermaking operation and/or the dry end of a paper machine. A parent roll provided in contacting engagement with platform 1110 and/or first core plug 1130 can be conveyed to a location for storage of the parent roll and then disengaged from any of first core plug 1130 and conveyed off platform 1110 by the at least one conveyor belt 1170. One of skill in the art will recognize the viability of such a unique core transport system.
The parent roll transporter can be utilized to transport the cooperatively engaged parent roll to a storage area with the parent roll core oriented in either a horizontal or vertical orientation. Upon reaching the storage area, the parent roll while disposed upon platform 1110 can be disassociated from the first core plug 1130. Platform 1110 can then be operatively disconnected from either the end effector or the parent roll transporter to provide a storage means for the upright storage of the parent roll. This can result in a combined parent roll/platform 1110 assembly as shown in
Alternatively, if a parent roll is to be picked up directly from the dry end of a paper machine and taken directly to a parent roll storage facility, the parent roll transporter can be provided with a motivator operatively connected to an end effector having a platform 1110A in the form of a pallet 1170A as shown in
By way of example, a parent roll transporter can approach a parent roll disposed in the reel-up section of the dry end of the papermaking equipment so that the end effector presents the first core plug 1130 to cooperatively and insertingly engage the horizontally oriented core of the wound parent roll. As shown, the first core plug 1130 is preferably provided with any length desired to effect the desired insertion engagement into the respective end of the core cooperatively associated thereto in order to provide the required support, lifting ability, and the like for the parent roll.
Parent roll transporter can then transport the cooperatively engaged parent roll to the storage area with the parent roll core oriented in either a horizontal or vertical orientation. Upon reaching the storage area, the parent roll while disposed upon platform 1110A can be disassociated from the first core plug 1130. Platform 1110A can then be operatively disconnected from either the end effector or the parent roll transporter to provide a storage means for the upright storage of the parent roll. This can result in a combined parent roll/platform 1110A assembly as shown in
As shown in
Platform 1110 can be operatively and cooperatively connected to an end effector 1100 and/or parent roll transporter 1000. The end effector 1100 generally comprises a frame 1145 comprising opposed first and second collinear radial members 1150 and 1155 and parallel longitudinal members 1160 and 1165 secured together orthogonally thereto. In a preferred embodiment, first and second radial members 1150 and 1155 and longitudinal member 1160 can be secured together as by welding. In another preferred embodiment, longitudinal member 1165 can be extensibly connected to second radial member 1155 so that longitudinal member 1165 is provided with an adjustable displacement, H, relative to longitudinal axis 1140 (also referred to herein as axis of rotation 1140).
End effector 1100 is generally provided with the ability to rotate about axis of rotation 1140 in a radial direction, R, relative to motivator 1200. Having end effector 1100 rotate about axis of rotation 1140 can provide with the ability to orient radial members 1150 and 1155 and longitudinal members 1160 and 1165 into virtually any opposed relationship for the cooperative placement of radial members 1150 and 1155 and longitudinal members 1160 and 1165 relative to parent roll 125 and/or core 175. An end effector 1100 with the ability to rotate about axis of rotation 1140 can provide with the ability to orient parent roll 125 from a first position to any desired second orientation relative to the axis of rotation 1140. Further, providing the second radial member 1155 with an adjustable displacement, H, relative to longitudinal axis 1140 can facilitate the positioning of longitudinal member 1165 relative to parent roll 125 to accommodate a parent roll 125 having any longitudinal length. The desired adjustable displacement, H, can be provided by any means understood by one of skill in the art for providing such adjustment. This can include linear actuators, pneumatic actuators, hydraulic actuators, mechanical actuators (such as chain drives, gear drives, rack-and-pinion drives), combinations thereof, and the like.
As shown in
Alternatively, if space constraints require minimizing (or even restraining) the extension of radial member 1155 relative to longitudinal axis 1140, one of skill in the art may desire to provide second core plug 1135 in a manner that permits the extensible displacement of second core plug 1135 relative to the distal end of parallel longitudinal member 1165. In a first position, second core plug 1135 can be positioned to have a profile that is flush with the surface of parallel longitudinal member 1165 in order to present second core plug 1135 to the respective end of parent roll 125 and core 175. Upon the positioning of second core plug 1135 at the respective end of parent roll 125 and core 175, second core plug 1135 can then be extended relative to the distal end of parallel longitudinal member 1165 into core 175 as may be required. In any regard, one of skill in the art will readily recognize the benefits associated with the flexibility of the above-described arrangements possible for the second core plug for cooperative association and engagement with the core 175 of parent roll 125.
As shown in
Without desiring to be bound by theory, it is believed that an end effector 1100 having the spaced-apart core plugs (i.e., first core plug 1130 and second core plug 1135 discussed supra) helps maintain any caliper that may have been built into the product being produced for the parent roll because the spaced-apart core plugs of end effector 1100 do not actually contact the surface of the web material disposed about the core 175 of parent roll 125. This is quite the opposite of the prior art compressive-type parent roll clamps. In this manner, it is reasonably believed that a round parent roll handled by the end effector 1100 of the present disclosure will produce a finally wound consumer products having consistent desired physical characteristics. As discussed supra, it is believed that a compressive-type clamp used for the conventional pick-up of a parent roll of wound web material effectively removes any caliper that may have been built into the product being produced for the parent roll. This lost caliper cannot be recovered to any large degree due to the early stage of the life of the web material that is being so compressed. This lost and unrecoverable caliper can have a deleterious effect on the finally converted web material because the desired target values of the chosen parameters will be out of range even before the converting process has begun. Net—this clearly undesirable effect on the end product can be noticed by an end user of the product. Clearly, the parent roll transporter 1000 having the end effector 1100 of the present disclosure eliminates and clearly remedies this awful and detrimental side-effect.
Additionally, the end effector 1100 of the present disclosure, when operatively connected to a parent roll transporter 1000, can eliminate any eccentricity developed by the parent roll due to the handling caused by previous parent roll transport mechanisms. Eccentricity is a parameter associated with every conic section. It can be thought of as a measure of how much the conic section deviates from being circular. For example, a desirable parent roll that causes minimal disruptions during a converting operation will be perfectly cylindrical and have a circular cross-section where the eccentricity is zero (or nearly zero). Previous roll transport devices using end effectors that effectively compressed the parent roll introduce a degree of eccentricity to the cross-section of the parent roll—i.e., the eccentricity is greater than zero. For purposes of this disclosure, a parent roll having any cross-sectional shape other than a circle has an eccentricity of greater than zero. Thus, a parent roll having, for example, a cross-sectional shape resembling a flat tire, a figure-eight, a polygon, or any other non-circular cross section, has an eccentricity of greater than zero. In certain cases, the eccentricity can be significantly greater than zero.
Thus, another goal of the present disclosure is to provide a process that can provide for an increase in the convertibility of a convolutely wound parent roll by reducing the eccentricity in the parent roll caused by end effectors (such as the exemplary prior art paper roll handling clamp shown in
As parent roll 125 assumes contacting engagement with the at least one conveyor belt 1170 upon exiting contacting engagement with parent roll conveyor 150, the at least one conveyor belt 1170 can transport and position the parent roll 125 into a region proximate to the centroid of platform 1110 so that the core 175 is disposed coaxially relative to first core plug 1130. This positioning will then facilitate the insertion of first core plug 1130 into the corresponding end of core 175 as required.
Alternatively, it may be advantageous to transport a parent roll 125 from the dry end of a papermaking process directly to a parent roll converting operation as discussed supra. To satisfy this need, one of skill in the art will recognize that parent roll transporter 1000 can provide the end effector 1100 cooperatively attached thereto can effectively rotate, R, parent roll 125 about the axis of rotation 1140. As shown in
Also as shown in
Thus, in practice, a parent roll 125 disposed upon parent roll conveyor 150 can be continuously conveyed from a first position external to parent roll transporter 1000 and end effector 1100 and into contacting engagement with the at least one conveyor belt 1170 of platform 1110. As parent roll 125 assumes contacting engagement with the at least one conveyor belt 1170 upon exiting contacting engagement with parent roll conveyor 150, the at least one conveyor belt 1170 can transport and position the parent roll 125 into a region proximate to the centroid of platform 1110 so that the core 175 is disposed coaxially relative to first core plug 1130. This positioning will then facilitate the insertion of first core plug 1130 and second core plug 1135 into the corresponding end of core 175 as required. The parent roll transporter can then rotate, R, end effector 1100 about the axis of rotation 1140 as required. The rotated parent roll 125 can then be disposed as required by the converting process. As the parent roll is positioned for the converting process desired, first core plug 1130 and second core plug 1135 can then be retracted (e.g., withdrawn) from inserted engagement within core 175 thereby removing contacting engagement of parent roll 125 from end effector 1100. The disengaged roll can then be processed as required.
Alternatively, the parent roll transporter 1000 can be destined to transport the cooperatively engaged parent roll 125 to a storage area with the parent roll core 175 disposed thereon. Upon reaching the storage area, the parent roll 125 while disposed upon platform 1110 can be disassociated from the first and second core plugs. Platform 1110 can then be operatively disconnected from either end effector 1100 or parent roll transporter 1000 to provide a storage means for the upright storage of parent roll 125. This can result in a combined parent roll 125/platform 1110 assembly as shown in
Alternatively, if the parent roll 125 is to be picked up directly from the dry end of a paper machine and taken directly to a parent roll 125 storage facility, the parent roll transporter 1000A can be provided with a motivator 1200 operatively connected to end effector 1100A having platform 1110A in the form of a pallet as shown in
Parent roll transporter 1000A can approach parent roll 125 disposed in the reel-up section of the dry end of the papermaking equipment so that the end effector 1100A presents the first core plug (not shown) and second core plug 1135 to cooperatively and insertingly engage the horizontally oriented core 175 of the wound parent roll 125. As shown, first core plug (not shown) is preferably fixably attached to the distal end of a longitudinal member (not shown) and second core plug 1135 is rigidly affixed to longitudinal member 1165. The first and second core plugs are preferably provided with any length desired to effect the desired insertion engagement into the respective end of core 175 cooperatively associated thereto in order to provide the required support, lifting ability, and the like for the parent roll 125.
Parent roll transporter 1000A can then transport the cooperatively engaged parent roll 125 to the storage area with the parent roll core 175 oriented in either a horizontal or vertical orientation. Upon reaching the storage area, the parent roll 125 while disposed upon platform 1110A can be disassociated from the first and second core plugs. Platform 1110A can then be operatively disconnected from either end effector 1100A or parent roll transporter 1000 to provide a storage means for the upright storage of parent roll 125. This can result in a combined parent roll 125/platform 1110A assembly as shown in
One of skill in the art will recognize that the parent roll transporter 1000 of the present disclosure, as discussed supra, can be operatively connected or associated with a motivator 1200. One of skill in the art will appreciate that motivator 1200 could be provided as an automatic guided vehicle (AGV), as a more traditional forklift, or with some other form of robotic systems. In any regard, the motivator 1200 is used to move the end effector 1100, with or without a parent roll 125 cooperatively engaged thereto, between various points along a desired route in a manufacturing process.
The parent roll transporter 1000 of the present disclosure is especially suitable with a motivator 1200 provided as an AGV. A plurality of AGVs can function as a system having a number of battery powered, wheeled, operatorless vehicles (i.e., AGV) which are automatically guided along the floor in a warehouse or other commercial or industrial site, where guide path wires are embedded in the floor, and under the control of on-board computers. Each AGV can be provided with accurate and reliable guidance and routing where a controller may be operated either on-board or remotely from the vehicle.
It is the purpose of the motivator 1200 to move material between various points along a route on vehicles which can be programmed to follow a preset choice of routes and to carry out various operations along the route, such as stops and turns. Most systems which have been proposed use induction guidance where the guide path is defined by a wire embedded in the floor. An AC current, fed through the wire, generates an electromagnetic field which is detected by coils on the vehicle which track the wire. Two coils are used in most cases which provide a differential current when the vehicle deviates from the wire which is used to control the steering of the vehicle so as to return it to its proper track. The guide path is usually in the form of a loop. By using two or more different frequencies of the AC current for different legs of the route, complex routes can be built up. Route selection is, in some systems, controlled by a computer on board each vehicle which programs the vehicle to follow a preset route. Typically, permanent magnets or electromagnetic loops and floor controllers installed in the floor divide the route into sections. In a typical installation, the program control computer instructs the vehicle to count its way along the route and to respond to different frequencies so as to follow different legs of the route.
An exemplary AGV suitable for use as a motivator 1200 can travel along a track formed on a floor by a white line or aluminum foil while detecting the track by means of an optical track sensor. In this type of conventional vehicle having, for example, three wheels, one front wheel and a pair of rear wheels, the front wheel can be driven through a connection to a driving system and can be automatically steered by a steering system while the rear wheels are freely rotatable but incapable of being driven by any driving system being steered.
Another exemplary AGV suitable for use as a motivator 1200 is a four-wheel vehicle having front and rear wheels and on the opposite sides of a center axis having left and right wheels each of which is provided with a driving motor. In this example, all wheels are set in the forward direction and the left and right wheels are driven by the driving motors so as to perform the ordinary travelling operation of the vehicle. The vehicle moves straight by equalizing the speeds of rotation of the left and right wheels and turns left or right by changing the speed ratio therebetween. At least the direction of the front wheels among the front and rear wheels can be freely changed so as to follow the motion caused when the left and right wheels are steered by changing the speed ratio therebetween. If the front and rear wheels are rotated in the reverse directions at the same rotational speed while the front and rear wheels are being fixed such as to be perpendicular to the direction of the front and rear of the vehicle body, the body of the vehicle can be turned about the point of intersection of the lines which connect the front wheel to the rear wheel and the left wheel to the right wheel.
Alternatively, the parent roll transporter 1000 of the present disclosure is also suitable with a motivator 1200 provided as a forklift truck. An exemplary forklift truck could comprise a forklift truck known in the art for the moving of large and/or heavy objects such as articles commonly found in warehouses, manufacturing facilities, and/or the like.
An exemplary forklift would comprise an undercarriage with an operator cabin including an operator seat unit pivotally supported therein. A load lifting unit including a lifting frame and a lifting fork is mounted to the front end of the undercarriage. Two front wheels and two steerable rear wheels and further a rear box structure with a lid can also be mounted to the under carriage. The forklift truck can be operated by an electric motor, natural gas, propane, gasoline, diesel fuel, and the like. The forklift can be energized by a battery, which can be disposed in a box structure that also serves as a counterweight for loads lifted by the load lifting unit.
In any regard, the motivator 1200 is operatively and cooperatively engaged with end effector 1100 to form parent roll transporter 1000. Such cooperative and operative engagement can be provided by a mechanical, electrical, and/or hydraulic latching mechanisms. It may be preferred to use pneumatic connections since pneumatic systems due to the ease of installation, maintenance, low cost, and light weight. Hydraulic systems may be preferred if the parent roll transporter 1000 will necessarily be used to lift and/or move large and/or heavy parent rolls 125. Electric systems can prove for more quiet connections.
Suitable means for attaching end effector 1100 to motivator 1200 can be provided by a mounting plate attached at a position suitable for cooperative engagement between end effector 1100 and motivator 1200. The mounting plate can contain threaded or clearance holes arranged in a pattern for suitable attachment with a coupling device. An adapter plate can be used for interconnection with a common lock-in position for pick-up by the motivator 1200. The coupling device may also contain the power source for the end effector 1100 and may automatically connect the power when the motivator 1200 picks up and connects to the end effector 1100. Alternatively, the end effector 1100 may have a power connection permanently connected thereto and the motivator 1200 simply picks up the end effect 1100 by connecting to an appropriate adapter plate with common lock-in points.
As would be recognized by one of skill in the art, any of the parent roll transporter 1000, motivator 1200, end effector 1100, and/or parent roll 125 can be provided with an RFID device, such as a tag, in order to assist with the transport, storage, connection, placement, location, etc. of any of parent roll 125 or platform 1110 or motivator 1200, or end effector 1100 or parent roll transporter 1000 relative to any of the initial pick-up of the parent roll 125 or storage or transport of parent roll 125 relative to the papermaking, storage, and/or parent roll converting processes.
Such an RFID system can assist with and is known and understood by those skilled in the art, and a detailed explanation thereof is not necessary for purposes of describing the method and system according to the present invention. As discussed above, RFID or other smart tag technology is finding increasing uses in material handling and processing environments, particularly in warehouse or other storage facilities wherein articles are stored and moved in the process of converting raw materials to finished products. RFID tags containing any manner of information related to the articles may be attached directly to the articles (such as parent roll 125), or associated with pallets, racks, bins, or any type of article packaging.
The dimensions and/or values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension and/or value is intended to mean both the recited dimension and/or value and a functionally equivalent range surrounding that dimension and/or value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1874904 | Crafts | Aug 1932 | A |
2714463 | Fraser | Aug 1955 | A |
2815878 | Vance | Dec 1957 | A |
2981429 | Williamson | Apr 1961 | A |
3134620 | Blaisdell | May 1964 | A |
3332715 | Hickman et al. | Jul 1967 | A |
3730368 | Dalglish | May 1973 | A |
3734328 | Dalflish | May 1973 | A |
3753505 | Ouska | Aug 1973 | A |
3758144 | Dalglish | Sep 1973 | A |
3771666 | Fournier | Nov 1973 | A |
4090624 | Krein et al. | May 1978 | A |
4120405 | Jones et al. | Oct 1978 | A |
4154470 | Dalglish | May 1979 | A |
4279567 | Thompson | Jul 1981 | A |
4358143 | Cullen | Nov 1982 | A |
4687244 | Cullen et al. | Aug 1987 | A |
4718813 | Kehlenbach | Jan 1988 | A |
4784398 | Lund | Nov 1988 | A |
4863335 | Herigstad et al. | Sep 1989 | A |
4941798 | Meier | Jul 1990 | A |
5192003 | Pipes | Mar 1993 | A |
5308217 | Pienta | May 1994 | A |
5316436 | Main | May 1994 | A |
5513944 | Cullen et al. | May 1996 | A |
5688009 | Pienta | Nov 1997 | A |
5697756 | Wheaton | Dec 1997 | A |
5938392 | Duck | Aug 1999 | A |
5947407 | Quigley | Sep 1999 | A |
6010171 | Margiottiello | Jan 2000 | A |
6022183 | Walters et al. | Feb 2000 | A |
6276628 | Focke | Aug 2001 | B1 |
6443688 | Komdeur | Sep 2002 | B1 |
6789995 | Manzi | Sep 2004 | B1 |
9701503 | Yamada | Jul 2017 | B2 |
20020054811 | Lofgren | May 2002 | A1 |
20030002971 | Gibson | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
7360355 | Sep 1973 | AU |
2226040 | Dec 1997 | CA |
2845369 | Sep 2014 | CA |
201713269 | Jan 2011 | CN |
202609567 | Dec 2012 | CN |
204211427 | Mar 2015 | CN |
204237513 | Apr 2015 | CN |
2118260 | Oct 1978 | DE |
2544752 | Jan 1979 | DE |
2903696 | Aug 1979 | DE |
20201163 | Apr 2002 | DE |
10201246 | Jul 2003 | DE |
0055195 | Jun 1982 | EP |
0321887 | Jun 1989 | EP |
1195347 | Apr 2002 | EP |
1900677 | Mar 2008 | EP |
884640 | Apr 1989 | FI |
2509272 | Jan 1983 | FR |
2503678 | Jan 1986 | FR |
2728885 | Feb 1997 | FR |
2736337 | Aug 1997 | FR |
2780049 | Dec 1999 | FR |
2893319 | Feb 2008 | FR |
1185632 | Mar 1970 | GB |
2081670 | Feb 1982 | GB |
2422591 | Sep 2008 | GB |
BO930326 | Jan 1995 | IT |
FI20030303 | Jun 2005 | IT |
03115098 | May 1991 | JP |
H0332529 | May 1991 | JP |
9255274 | Sep 1997 | JP |
2003020190 | Jan 2003 | JP |
2003020191 | Jan 2003 | JP |
100820589 | Apr 2008 | KR |
20130121577 | Nov 2013 | KR |
1126535 | Nov 1984 | SU |
WO 9425388 | Nov 1994 | WO |
WO06102527 | Sep 2006 | WO |
WO2007129782 | Nov 2007 | WO |
WO 2008010251 | Jan 2008 | WO |
9810195 | Apr 1999 | ZA |
Entry |
---|
U.S. Appl. No. 15/415,074, filed Jan. 25, 2017, Christopher Nicholas Gonzales, et al. |
U.S. Appl. No. 15/415,787, filed Jan. 25, 2017, Christopher Nicholas Gonzales, et al. |
Number | Date | Country | |
---|---|---|---|
20180002151 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62356782 | Jun 2016 | US |