The present invention relates to an end face polishing system of a rod-shaped member.
For end face polishing machines traditionally used for polishing the end face of ferrules, a machine has been known in which a polishing jig fixed with ferrules is disposed on a rotary and revolutionary polishing plate for polishing. In addition, ferrule polishing has been conducted according to a plurality of steps having different process conditions from a rough surface state to a final finish state.
However, the traditional polishing machine has conducted input control for polishing and polishing conditions by a single machine. Thus, it has been difficult to change the polishing conditions varied from each of a plurality of ferrules and the conditions for each of polishing steps, to adjust conditions according to changes in the number of ferrules and to input data, because of the size of the overall machine and the configuration of indication and input.
Therefore, skilled workers have to manipulate operations of the polishing machine, causing the factor that hinders producing a wide variety of products.
Traditionally, the correction operation for the polishing conditions takes effort and time because a user stops and manipulates the machine at each event. Errors in correction tend to occur, and yields in products are reduced as well. There have been problems that the user has to stay the position to know the number of products, the kinds of ferrules and the operation status of the polishing machine, and that investigations for causes are not simple when defects are generated in products because correction conditions are not recorded.
Then, an object of the invention is to provide an end face polishing system of ferrules capable of configuring a system for polishing a plurality of ferrules in various kinds under a plurality of process conditions, shortening input time for the process conditions of polishing steps, storing the process conditions, and structuring a LAN system allowing a plurality of machines to be remotely operated.
In the invention, a polishing system has been formed of a polishing machine and a computer; the polishing machine includes a polishing plate, a pressing part for pressing the end face of a rod-shaped member onto a polishing sheet disposed over the polishing plate, and a pressing force control part for controlling the pressure of the pressing part, and the computer is connected to the polishing machine with a communication line for transmitting pressing force information to the pressing force control part.
In the invention, an end face polishing machine has been configured as a first embodiment, the end face polishing machine includes:
Furthermore, as a second embodiment, the first embodiment can be added with a pressure detecting part for detecting the pressure in pressing, and a pressing force information output part for outputting pressure information of the pressure detecting part through the communication line.
As a third embodiment, it is the end face polishing machine in which the pressing force set value is a pressure in pressing and pressing time in the first or second embodiment.
As a fourth embodiment, it is a ferrule polishing control machine including:
As a fifth embodiment, a ferrule polishing method includes the steps of:
As a sixth embodiment, it is a ferrule polishing program including the steps of:
As a seventh embodiment of the invention, it is an end face polishing machine including:
As an eighth embodiment, the temperature control unit is a heating unit in the seventh embodiment.
As a ninth embodiment, the temperature control unit is a cooling unit in the seventh embodiment.
Furthermore, the invention has been a polishing system including a polishing machine and a computer, the polishing machine including:
Moreover, it has been the polishing system, wherein the computer indicates set values and actual measurements for pressure in pressing controlled by the pressing force control part.
Besides, it has been the polishing system, wherein the computer controls set values for pressure in pressing controlled by the pressing force control part.
It has been the polishing system, wherein the computer has a unit adapted to input the number of the rod-shaped members and a unit adapted to indicate the number inputted.
It has been the polishing system, wherein the computer has a unit adapted to input and indicate a connector type for disposing the rod-shaped member.
It has been the polishing system, the computer has a unit adapted to input a type indicating the shape of the rod-shaped member and a shape, and a unit adapted to indicate the type and the shape.
It has been the polishing system, wherein the computer has a unit adapted to input an end face shape of the rod-shaped member and a unit adapted to indicate it.
It has been the polishing system, wherein the computer has a unit adapted to input and indicate a process condition for a plurality of polishing steps.
It has been the polishing system, wherein the process condition is polishing time.
It has been the polishing system, wherein the process condition is an indication to indicate a step being implemented among the plurality of polishing steps.
It has been the polishing system, wherein the process condition is remaining time for the polishing step.
It has been the polishing system, wherein the process condition is a pressure in pressing.
It has been the polishing system, wherein the process condition is an actual measurement for pressure in pressing.
It has been the polishing system, wherein the process condition is the rotation number of the polishing plate.
It has been the end face polishing machine including:
The end face polishing machine includes a polishing plate having a polishing sheet over the top face and a heating unit for heating the polishing sheet, and a method of controlling the hardness of the polishing sheet by the heating unit has been used.
It has been the polishing machine including:
It has been the polishing machine, wherein the difference is a difference in magnitudes of pressure. It has been the polishing machine, wherein the difference is a phase difference of pressure.
It has been the polishing machine including:
Hereafter, embodiments of the invention will be described in accordance with the drawings in detail.
In
Subsequently, near the end part opposed to the end part of the lever 10 connected to the jig plate 50, a lower spring 24 for pushing up the lever 10 from under is placed. Then, above the position facing to the lower spring 24 of the lever 10, a pressure sensor 23 for detecting pressure applied to the jig plate 50 is placed. Here, a load cell is used as the pressure sensor.
The lower end part of a pressing head is placed so as to contact the top face of the pressure sensor 23. Above the pressing head 21, an upper spring 22 for pressing the pressing head 21 is placed.
In the invention, the top face and the lower face of the lever 10 are pressed by the lower spring 24 and the upper spring 22, respectively. Thus, the lower spring 24 allows the load of the lever 10 or the load combined with the lever 10 and the jig plate 50 to be cancelled to achieve zero balance. Consequently, the pressure sensor 23 can detect only the load applied from above the lever 10. Accordingly, even when the types of the lever 10 or jig plate 50 and the types and number of ferrules W are changed, the polishing load can be detected accurately.
In the drawing, the lever 10, the upper spring 22, the pressing head 21, the pressure sensor 23, and the lower spring are configured of a part of the pressing part 20.
Here, under the polishing sheet 70, an elastic member 71 made of a rubber sheet is disposed for use in forming a convex surface. Under the elastic member or near the polishing plate 60, a heater 61 such as a silicon rubber hater or film heater is disposed, whereby the temperatures of the rubber sheet can be kept constant, and the hardness of the rubber sheet can be varied softer or harder, allowing changes in polishing conditions, pressure conditions, and conditions for finishing and lapping. In addition, it is also possible to adjust changes in the elasticity of the rubber sheet over time to prolong the lifetime. The deformation of the rubber sheet is varied, whereby the end face shape of the rod-shaped member can be formed flat or formed to have convex surface, allowing flat polishing, APC polishing, and PC polishing. Furthermore, instead of the heater 61, it is possible that a cooling device 62 formed of a cooling pipe having water or a cooling medium communicated inside thereof, or of a bismuth-tellurium based Peltier element is disposed to cool the rubber sheet and the hardness is varied. Other than this, it is also possible that an infrared heater or cooling pipe is disposed from above the jig plate 50 to control temperatures. Besides, both mechanisms for cooling and heating are disposed to control temperatures more accurately and in the wider temperature range, whereby the end face shape can be finished precisely.
Next,
The pressing part 20 has a mechanism for reciprocating the lever 10. The lever 10 is connected to the pressing head 24 through the pressure sensor 23 for detecting pressure, and the pressing head 21 and the lever 10 are moved vertically by the rotation of a screw 26, which serves to transmit the force to press the lever 10 to the jig plate 50.
The lever 10 is provided with a guide 28 so as to accurately reciprocate vertically. For the guide 28, a linear guide arranged in parallel to the axis of the upper spring 22 or lower spring 24 is used. Accordingly, detecting the pressure due to the transverse movement of the lever 10 can be eliminated to allow improving the SN ratio.
The screw 26 transmits the rotation of a motor 25 through a shaft 25a, a pulley 27a, a belt 29, and a pulley 27b for rotation, and then it moves the lever 10 vertically. The pressure sensor 23 detects the load applied by the rotation of the motor 25, and a pressing force control part 40 feeds electric power for driving the motor 25 to configure a pressing force control circuit.
According to the invention, pressure applied to the end part of the ferrule can be controlled so as to be a predetermined set value. Consequently, the load applied to the ferrule end part can be kept constant in polishing.
Furthermore, in the initial polishing state of the ferrule, when the end part of an optical fiber is exposed from the ferrule end part, the load is reduced to have the optical fiber end face and the ferrule end face in a nearly equal plane. When cracks or chips are not generated in the optical fiber end part, the polishing load is increased to allow rapid polishing. Here, switching loads is also feasible by a method of specifying them by a timer inside the pressing force control part 40, or a method of operating values of a real time clock. In addition, it is possible that the electric power of the motor 25 or the electric power of the motor for driving the polishing plate 60 is detected, and the drive load of the motor detects the start of polishing the ferrule end part, i.e. the state that the initial polishing of the optical fiber end part is finished to be in the same plane as the ferrule.
Moreover, as another method for detecting the polished state, the relationship between the feed of the screw 26 and changes in pressure can determine the contact state of the ferrule end part to the polishing sheet 70 according to the relationship between the drive of the motor 25 and the output of the pressure sensor 23. This method can detect the point of matching the optical fiber end face with the ferrule end face and the generation of cracks or chips in the optical fiber. When pressure values equal to or above the specified values are detected, it is determined abnormal to stop operations of the polishing machine, and waste time due to polishing defectives can be reduced.
Besides, the pressure values for polishing loads to be set are reduced as the steps proceed, a greater value in rough finish to be reduced in middle finish and then in fine finish, allowing the improvement in polishing rates and preventing polishing scratches from being generated.
In addition to this, according to differences in the types and particle diameters of abrasives, and differences in the materials, end face shape and diameters of ferrules, pressure to be set can be varied, and the object optimal conditions can be selected.
Furthermore, pressure in pressing is slightly varied to apply shifts in the vertical direction of the ferrule by free decay vibration or forced vibration, or pressure variations are applied to give modulation in the vertical direction, whereby changes in elasticity, complex elastic modules, and dynamic elastic modules due to modulation frequencies and a magnitude of pressure changes or phase shifts allow monitoring the degraded states of the polishing sheet or changes in the polishing state. Moreover, the temperatures near the polishing sheet are kept constant by the heater, whereby polishing monitor based on changes in elastic modules can be performed from the relationship between a logarithm LOG (F) for a modulation frequency F and an inverse number 1/(T) for a temperature absolute value T, allowing variations in the polishing states to be reduced, and yields to be controlled from remote locations.
Furthermore, a type indication part 400 for indicating ferrule shapes has type indications 410, 411, 412, 413, and 414 for indicating φ 1.25, φ 2.0, φ 2.5 Flat, φ 2.5 Predome, and the others. When input buttons 401, 402, 403, 404 and 405 corresponding thereto are inputted, the selected button turns red.
In addition, a condition indication part 500 has condition indications for indicating FLAT Polishing, ANGLED FLAT Polishing, APC Polishing, PC Polishing, SPC Polishing, UPC Polishing, and UPC 55 dB Polishing, and input buttons 501, 502, 503, 504, 505, 506, 507 and 508 for selecting and indicating each condition.
Moreover, a process indication part 600 for indicating polishing processes displays a process table 601. Disposed are process step indication parts 610, 611, 612, 613 and 614 for indicating a first polishing step to a fifth polishing step, and item indications for indicating process conditions for each of steps and parameters: a polishing time 620 for indicating process time for each step, an on process 621 for indicating the step now being implemented, a remaining polishing time 622 for indicating remaining time for each step, a programmed pressure 623 for setting a polishing pressure, an actual pressure measurement 624 for indicating measurements of pressure actually applied, and a rotation number 625 for indicating the rotation number of the polishing plate.
Besides, a condition input and indication part 650 indicates values for indicating the polishing conditions to be set and actual numeric values, also serving as an input screen.
In addition to these, there are an alarm 700 for signaling abnormal circumstances, an indication part for a massage 710, an operation status 720 for indicating operation states, an on process indication 730 for indicating during polishing, a finish indication 740 for indicating the completion of polishing, a manual switch 750 for switching operation modes, an online control 760 for indicating an online state, and a select indication 770 for indicating selections.
There are a start button 800 for initiating the operation of the polishing machine to start the polishing process after the settings are performed, and a stop button 810 for indicating stop operation.
The input method of the polishing conditions are that a ferrule type, φ 1.25 mm, for example, is first selected, and then the ferrule polishing condition is selected for APC polishing. Here, the polishing process steps and polishing time for each step are determined. Subsequently, the number of ferrules fixed to the jig is selected. The manipulations described above determine the load applied by the polishing machine.
In addition to this, a rotation control part for controlling the rotation speed of rotation and revolution for the polishing plate and a rotation number input part for inputting the rotation number to the rotation control part are disposed to control the rotation number of the polishing plate other than polishing pressure and polishing time, whereby further accurate end face polishing can be performed.
Examples of input by each button, changes in the display colors of the buttons, and indications by lighting have been described so far, but addition of a speech generation device or speech recognition process may allow speech input, speech announce, and calling attention.
Furthermore, the window size, arrangement, and screen switching of each indication part can be performed freely such that the display screens are rotated forward by the hour and that actual values in process conditions are displayed in graph to indicate a red line for easy observation of variations in status when a greater undershoot or overshoot causes a large deviation from the set value. Moreover, when particularly abnormal circumstances are generated, the control machine allows e-mail transmission to a cellular phone that an operator in charge has or another terminal that the operator has for sure emergency stop.
In this manner, according to the end face polishing machine of the invention, the control of a pressure in pressing the end face of the ferrule W onto the polishing sheet 70 is allowed. When the pressure in pressing the end face of the ferrule W is set low in starting polishing, scratches on the end face of the ferrule W can be prevented from being generated.
According to the invention, the polishing operation status such as the number of products can be decided and controlled from remote locations immediately because of the connection to the communication system through the LAN or Internet. Furthermore, the process management and production control over the respective factories having a plurality of subunits are allowed to facilitate the overall time management from order to production. Moreover, order and accounting systems are connected to complete the production control system for the overall factories.
Besides, variations in row material properties due to material lots of ferrules, and variation due to polishing media, temperatures, humidities, frictions of the polishing machine, and moments of the jig are finely adjusted, allowing improvement in yields.
Number | Date | Country | Kind |
---|---|---|---|
2001-214310 | Jul 2001 | JP | national |
2002-203739 | Jul 2002 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10194644 | Jul 2002 | US |
Child | 10970202 | Oct 2004 | US |