This application claims priority to Chinese Patent Application No. 201710982829.X, filed Oct. 20, 2017, and all the benefits accruing therefrom under 35 U.S.C. § 119, the contents of which in its entirety are herein incorporated by reference.
The present invention belongs to the technical field of elevators, and relates to a pull rope head fixing apparatus that can automatically balance the tensions of multiple pull ropes and an elevator system using the same.
A pull rope is a common component in an elevator system, and is also a key component for the operation of the elevator system. The pull rope, when being driven by a tractor of the elevator system, can be used for lifting a car or the like.
At present, multiple pull ropes are generally used to lift a car simultaneously, especially when the pull ropes are flat ropes (e.g., steel belts) with the width of the cross section greater than the thickness thereof. As such, the multiple pull ropes are wound on, for example, a traction wheel and/or a sheave in parallel and may have different magnitudes of tensions respectively.
According to one aspect of the present invention, a pull rope head fixing apparatus for an elevator system is provided, which is configured to simultaneously fix rope heads of N pull ropes that are arranged in parallel, N being an integer greater than or equal to 2. The pull rope head fixing apparatus includes: a hydraulic cylinder body configured to form a hydraulic cylinder; N first hydraulic sub-cylinders arranged in parallel on the hydraulic cylinder body and communicated with the hydraulic cylinder; and first pistons each disposed corresponding to each of the first hydraulic sub-cylinders, wherein each of the first pistons is configured to fix a rope head of a corresponding pull rope and is movable in a corresponding first hydraulic sub-cylinder when the tension of the pull rope changes.
According to another aspect of the present invention, an elevator system is provided, including a car, a traction wheel, a sheave, and pull ropes configured to lift the car, and further including the pull rope head fixing apparatus, wherein the N pull ropes are wound on the traction wheel and the sheave in parallel, and N rope heads of at least one end of the N pull ropes are fixed to the pull rope head fixing apparatus.
The above features and operations of the present invention will become more apparent according to the following descriptions and accompanying drawings.
The above and other objectives and advantages of the present invention will be more complete and clearer from the following detailed descriptions with reference to the accompanying drawings, wherein identical or similar elements are represented by using identical reference numerals.
Some of multiple possible embodiments of the present invention are introduced in the following to provide basic understanding of the present invention, and it is not intended to determine key or crucial elements of the present invention or limit the scope to be protected. It is easily understood that those of ordinary skill in the art can propose other replaceable implementation manners according to the technical solution of the present invention without changing the essential spirit of the present invention. Therefore, the following specific implementation manners and the accompanying drawings are merely exemplary illustrations on the technical solutions of the present invention and should not be considered as all of the present invention or considered as definitions or limitations to the technical solution of the present invention.
In this text, a “tension balanced state” of multiple pull ropes refers to that tensions of the multiple pull ropes, in a static state, basically keep a predetermined proportional relationship. The tensions of the multiple pull ropes are kept to be basically the same in a tension balanced state in most cases; however, the “tension balanced state” of the present invention is not limited to this case. For example, the predetermined proportion relationship can be adjusted and set according to special requirements.
The applicant also noticed that, for an elevator system that uses multiple pull ropes to lift a car, performance differences such as flexibilities of the multiple pull ropes or other reasons may easily result in that the tension is not kept balance between the multiple pull ropes (e.g., not kept equal), that is, the multiple pull ropes are in a tension unbalanced state. The unbalanced tension may easily cause a traction wheel and/or sheave on which the pull ropes are wound to be worn, and may also easily cause the pull ropes themselves to be worn, thus reducing the service lives of these components, and even affecting the operating quality (e.g., large noise and increased vibration) of the elevator system and/or reducing the safety performance of the system. Therefore, the tensions between the multiple pull ropes need to be adjusted manually to achieve a tension balanced state. The process is very time consuming and labor consuming. Moreover, as the elevator system operates, it is difficult to keep the tension balanced sate, and multiple adjustments are required continuously, thus resulting in a large maintenance workload.
Particular, when the pull rope is a flat pull rope (e.g., a flat steel belt or a flat fiber belt) with the width of the cross section greater than the thickness thereof, it is well-known by those skilled in the art that the flat pull rope has poorer rigidity but better flexibility than a round rope; therefore, on one hand, the flat pull rope is easily stretched to be longer, thus being especially easy to cause unbalanced tensions between multiple flat pull ropes; on the other hand, more (e.g., 7 or more) flat pull ropes arranged in parallel are needed in the same case, and it is more difficult to achieve the tension balance between the more flat pull ropes. In other words, the above problem is especially severe in an elevator system applying flat pull ropes.
Therefore, a pull rope head fixing apparatus and an elevator system in the following embodiments of the present invention are illustrated by taking the pull rope used being a flat pull rope as an example.
In an embodiment, there may be multiple sheaves. For example, resistive sheaves 15a and 15b are included, and a return sheave 16a is also disposed corresponding to the car 12. When a counter-weight is used, the elevator system 10 further includes a counter-weight 13, and the sheave 15 further includes a return sheave 16b disposed corresponding to the counter-weight 13. It should be understood that the specific arrangements of the sheaves 15 and 16 are not limitative, and can be changed as a lifting method is changed.
In an embodiment, there are N (N is greater than or equal to 2, e.g., equal to 3) pull ropes 19. The N pull ropes 19 are respectively provided with a pull rope head fixing apparatus 200 to fix rope heads 191 at two ends thereof, thus being more conducive to implementing the tension balanced state of the N pull ropes 19. In another alternative embodiment, the pull rope head fixing apparatus 200 can also be disposed merely at one end of the N pull ropes 19.
For simplicity,
Still referring to
Specifically, the hydraulic cylinder body 210 can form a hydraulic cylinder 219 in a closed manner Specifically, the hydraulic cylinder body 210 can be fixedly mounted in a basically horizontal manner An accommodation chamber of the hydraulic cylinder 219 accommodates hydraulic oil, and the hydraulic oil can be injected or discharged through an oil hole 211 disposed on the hydraulic cylinder body 210. The specific liquid type of the hydraulic oil is not limited. Still referring to
Each first piston 221 fixes a rope head 191 of a corresponding pull rope 19. For example, the first piston 221-1 fixes a rope head 191-1 at one end of the pull rope 19-1, the first piston 221-2 fixes a rope head 191-2 at one end of the pull rope 19-2, and the first piston 221-3 fixes a rope head 191-3 at one end of the pull rope 19-3. In an embodiment, a piston rod 222 (e.g., a piston rod 222-1 or 222-3 or 222-3) is disposed corresponding to each first piston 221. A first end of the piston rod 222 is connected to the corresponding first piston 221, and a second end of the piston rod 222 is connected to the rope head 191 of the corresponding pull rope 19. Specifically, for example, a clamp can be disposed at the second end of the piston rod 222 to fix the rope head 191. Therefore, when the tension of each pull role 19 is changed, the corresponding first piston 221 can move in the corresponding first hydraulic sub-cylinder 220.
According to a tension ratio of the pull ropes 19-1, 19-2, and 19-3 in the tension balanced state, piston areas of the first hydraulic sub-cylinders 220-1, 220-2, and 220-3 can be preset. For example, piston areas of the first piston 221-1, the first piston 221-2, and the first piston 221-3 are set. If the tension ratio is equal to 1 (i.e., the tensions are equal), the piston areas of the first piston 221-1, the first piston 221-2, and the first piston 221-3 are constructed to be equal. Specifically, for example, the first hydraulic sub-cylinders 220-1, 220-2, and 220-3 are all cylindrical cylinders, and inner diameters of the first hydraulic sub-cylinders 220-1, 220-2, and 220-3 are all set to D. In other words, a ratio of the inner diameters is equal to 1. Therefore, the first hydraulic sub-cylinders 220-1, 220-2, and 220-3 can be constructed into sub-cylinders having the same structure.
In an embodiment, still referring to
Therefore, even if the tensions between the N pull ropes 19 are unbalanced, e.g., unequal, at a certain instant, the pull rope head fixing apparatus 200 in the embodiment shown in
Still referring to
The specific magnitude of the hydraulic force Fs depends on the intensity of pressure of the hydraulic oil in the through chamber in the hydraulic cylinder 210 with which the second hydraulic sub-cylinder 240 is communicated, and the magnitude of the intensity of pressure is affected by the magnitude of the tension between the pull ropes 19. For example, when the elevator system is braked to stop, the tension of each pull rope 19 may be increased instantly, each first piston 221 transmits the tension from the pull rope 19 to the hydraulic oil in the through chamber, and the intensity of pressure of the hydraulic oil is increased. Further, the hydraulic force Fs received by the second piston 241 in, for example, the increased pressure condition is also increased correspondingly, such that a force (basically equal to Fs) applied by the second piston 241 to the elastic component 250 is also increased. Meanwhile, the elastic component 250 is compressed to generate a larger bounce to the second piston 241 until a balance is achieved. Therefore, the elastic component 250 can absorb energy from the pull ropes 19-1, 19-2, and 19-3, reduce the instant maximum tension of the pull ropes 19-1, 19-2, and 19-3, and/or alleviate the tension changes in the pull ropes 19-1, 19-2, and 19-3, thereby reducing the stretch length of the pull ropes 19-1, 19-2, and 19-3 and/or alleviating the stretch length changes in the pull ropes 19-1, 19-2, and 19-3, reducing the vibration amplitude of the car 12, and improving use experience of passengers. It will be understood that the elastic component 250 can be, for example, but is not limited to, an energy absorption component such as a spring.
The specific magnitude of the hydraulic force Fs further depends on the area size of the second piston 241. The area of the second piston 241 can be determined by calculation according to the elastic coefficient of the elastic component 250, the area of the first piston 221, and the like. Specifically, for example, the second hydraulic sub-cylinder 240 can be configured into a cylindrical shape, and the area of the second piston 241 can be determined by determining an inner diameter d of the second hydraulic sub-cylinder 240 through calculation. For example, the second hydraulic sub-cylinder 240 can be disposed to be protruded leftward horizontally.
Still referring to
Still referring to
In a process that the intensity of pressure of the hydraulic oil in the hydraulic cylinder 219 is increased, the hydraulic force Fs received by the second piston 241 is also increased correspondingly in, for example, the condition of an increased intensity of pressure, such that the second piston 241 moves leftward. At this instant, the damping plate 260 can reduce the speed of the hydraulic oil being injected into the space between the damping plate 260 and the second piston 241 through the circulation holes 261. Therefore, the increase of the hydraulic force Fs transmitted to the second piston 241 is slowed down. Similarly, in a process that the intensity of pressure of the hydraulic oil in the hydraulic cylinder 219 is reduced, the damping plate 260 slows down the reduction of the hydraulic force Fs transmitted to the second piston 241. Therefore, the damping plate 260 can alleviate the changes in the hydraulic force Fs transmitted from the hydraulic cylinder 219 to the second piston 241, further reduce the changes in the stretch lengths of the pull ropes 19-1, 19-2, and 19-3, reduce the vibration amplitude of the car 12, and further improve the experience of passengers.
In an embodiment, as shown in
Specifically, corresponding to the tension detection component 232, a third hydraulic sub-cylinder 230 in communication with the hydraulic cylinder 219 can be arranged on the hydraulic cylinder body 210, and a third piston 231 disposed corresponding to the third hydraulic sub-cylinder 230 is further arranged. The tension detection component 232 is disposed on a piston rod of the third piston 231. During detection, the third piston 231 receives a hydraulic force transmitted from the hydraulic oil in the through chamber, and transmits the hydraulic force to the piston rod. The hydraulic force is then detected by the tension detection component 232. When the piston area of the third piston 231 is known, the hydraulic force Ft can be calculated based on the hydraulic force, such that the magnitudes of the tensions of the N pull ropes 19 can be obtained by calculation. Therefore, in the pull rope head fixing apparatus 200 according to the embodiment of the present invention, the magnitudes of the tensions of the N pull ropes 19 can be detected conveniently; this is obviously different from the prior art in which the magnitudes of the tensions of the multiple pull ropes 19 may be different and need to be detected manually, which is very time consuming and labor consuming.
In an embodiment, as shown in
It should be noted that the pull rope 19 used in the above embodiments of the present invention can be, for example, a flat steel belt formed by wrapping multiple steel wires with polyurethane, or can be a flat carbon fiber belt. However, the pull rope can also be other various types of flat ropes with the width of the cross section greater than the thickness of the cross section, or even can be various flat ropes developed subsequently after the present application. As for a flat steel belt, a major reinforcing component for carrying is a steel wire or a steel rope, and can further include, for example, a wrap layer using polyurethane and the like, or even can further include other reinforcing fibers or the like arranged in a longitudinal direction of the rope to serve as assistant reinforcing components. As for a flat carbon fiber belt, a major reinforcing component for carrying is a carbon fiber or other reinforcing fibers having performances similar to that of the carbon fibers. Definitely, it should be understood that the flat carbon fiber belt can, but is not limited to, include a substrate material configured to distribute or fix carbon fibers, and the carbon fibers are fixedly distributed in the substrate material to form the major carrying component of the flat fiber belt. It should be further understood that, in addition to assistant fibers, the flat carbon fiber belt can further include other types of reinforcing fibers or the like arranged in a longitudinal direction of the rope to serve as assistant reinforcing components.
The above examples mainly illustrate the pull rope head fixing apparatus and the elevator system using the same according to the present invention. Merely some implementation manners of the present invention are described; however, those of ordinary skill in the art should understand that the present invention can be implemented in many other forms without departing from the substance and scope of the present invention. Therefore, the presented examples and implementation manners are considered as illustrative rather than limitative. The present invention can cover various modifications and replacements without departing from the spirit and scope of the present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201710982829.X | Oct 2017 | CN | national |