1. Field of the Disclosure
The present disclosure relates to end fittings for flexible pipe and methods to install the same.
2. Description of the Related Art
A flexible pipe, or flow line, may be utilized as a dynamic riser to couple a rigid flow line or another flexible pipe on a seabed to a floating vessel or buoy to convey production fluids such as oil, gas or oil/gas mixtures under pressure from an oil/gas well or platform to the vessel or buoy. An end fitting may be utilized to couple the flexible pipe at each end to an adjacent pipe or wellhead and the vessel or buoy. An end fitting may also be used on land-based operations to connect pipe to wellheads and/or other equipment used in oil/gas production.
When crude oil, gas, or other similar fluids are transported through pipes and/or risers in subsea environments, several challenges are presented with respect to designing the pipes and risers for transporting the fluids, and providing proper end fittings for same. For example, the pipes and risers must provide a fluid barrier while being resistant to internal and external pressure and tension loading, yet must be flexible and connectable to other equipment. The end fitting must provide a suitable transition between the flexible pipe body and a connector flange or hub such that the different pipe layers are terminated in the end fitting so as to transfer the loads between the flexible pipe and the connector. There must also be effective sealing components in the end fitting to prevent leakage of conveyed fluids to the environment. To this end, many designs of this type require sophisticated sealing, anchoring, and load transfer components between the pipe and its end fitting, which designs are expensive and require extensive amounts of labor to assemble.
In one aspect, the present disclosure relates to a method to install an end fitting to a flexible pipe. The method includes disposing a shell mandrel at a free end of the flexible pipe external to a jacket of the flexible pipe and performing a cutback of layers of the flexible pipe to expose an internal pressure sheath of the flexible pipe. An armor layer of the flexible pipe is flared radially outward from an axial direction of the flexible pipe. At least one internal pressure containment transition component and at least one internal pressure sheath seal are installed on the exposed free end of the flexible pipe. The end fitting is assembled such that the at least one internal pressure containment transition component and at least one seal are assembled with non-radial fasteners having a backward facing direction.
In another aspect, the present disclosure relates to an end fitting for a flexible pipe assembly. The end fitting includes one or more internal pressure containment transition components, one or more internal pressure sheath seals, a shell mandrel, and a plurality of fasteners configured to connect the elements of the end fitting. The elements of the end fitting are configured to be assembled such that non-radial fasteners of the plurality of fasteners have a backward facing direction.
In another aspect, the present disclosure relates to an end fitting for a flexible pipe assembly. The end fitting includes one or more means for internal pressure containment transition, one or more means for sealing an internal pressure sheath, a shell mandrel, and a plurality of means for connecting configured to connect the elements of the end fitting. The elements of the end fitting are configured to be assembled such that non-radial means for connecting of the plurality of means for connecting have a backward facing direction.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
Features of the present disclosure will become more apparent from the following description in conjunction with the accompanying drawings.
Embodiments of the present disclosure are explained below, referring to the attached figures. In embodiments described herein, numerous specific details are set forth in order to provide a more thorough understanding. However, it will be apparent to one of ordinary skill in the art that the claimed invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid obscuring the invention.
It should be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, however, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
Historically, during installation of end fittings on flexible pipe, structural damage may occur to elements of the flexible pipe due to a bend back of the tensile armor layers of the flexible pipe necessary to install components of the end fitting. Where the tensile armor layers of the pipe are bent back, stress concentrations and/or excess strains may result, causing structural deformities and/or damage (i.e., fiber breakage or matrix cracking in composite tensile armor layers and strain hardening in steel tensile armor layers that may result in lower fatigue resistance). This may occur in both steel armored flexible pipes and composite armored flexible pipe, such as fiber reinforced composite armored flexible pipe.
Accordingly, one or more embodiments of the present disclosure allow for minimizing the structural stresses and/or strains imposed on the tensile armor elements of the flexible pipe during installation of an end fitting, and also result in an end fitting that is shorter in length than other flexible pipe end fittings known in the art. Although embodiments discussed herein will be in reference to a composite armored flexible pipe, those skilled in the art will appreciate that the procedures and end fittings disclosed herein may be used with steel armored flexible pipe, or other pipe structures known to those having skill in the art.
Referring initially to
Referring now to
Although
Referring again to
The armor layers 104 and 108 may comprise helically wrapped stacks of laminated material. The stacks may be made of non-metallic fiber-reinforced tapes that may be laminated and bonded together as a single structural member. The individual layers of the stacks may include UD (unidirectional) tape and/or other structural and/or reinforced tape. Examples of this structure may be found, for example, in U.S. Pat. No. 6,491,779, issued on Dec. 12, 2002, entitled “Method of Forming a Composite Tubular Assembly,” U.S. Pat. No. 6,804,942, issued on Oct. 19, 2004, entitled “Composite Tubular Assembly and Method of Forming Same,” and U.S. Pat. No. 7,254,933, issued on Aug. 14, 2007, entitled “Anti-collapse System and Method of Manufacture,” all of which are hereby incorporated by reference in their entireties. Alternatively, if flexible pipe 100 represents a flexible steel pipe, armor layers 104 and 108 may be helically wrapped steel windings of steel wires. Examples of this structure may be found in ISO 13628-2/API 17J Specification for Unbonded Flexible Pipe, incorporated by reference in its entirety.
In former termination processes, the tensile armor layer 108 is bent back to accommodate installation of the end fitting. The bending back of the elements of tensile armor layer 108 may result in relatively high amounts of strain on the elements of the layers, thereby causing matrix cracking or fiber breakage in composite armor, or strain hardening, and/or other types of damage in steel and/or composite armor, all of which may reduce structural capacity or fatigue life of the tensile armor. In order to obtain access to the components of the end fitting, the outer structural layers of the flexible pipe must be bent back significantly from the terminal end of the flexible pipe. The bend back of the outer structural layer allows for access to the underlying layers for installing end fitting components during installation of the end fitting.
One or more embodiments of the present disclosure are directed to installation of an end fitting in order of components from a point along the length of the pipe towards a free end or terminal end of the flexible pipe. Further, one or more embodiments of the present disclosure are directed to installation of end fitting components in a configuration such that any connecting bolts of components of the end fitting are not facing towards the free end of the flexible pipe. For example, when using threaded bolts and/or screws, the treaded end of the bolts and/or screws are not facing towards the free end of the flexible pipe, i.e., facing away from the free end of the flexible pipe. As such, one or more embodiments of the present disclosure may minimize and/or eliminate reduction of structural capacity or fatigue life of the elements of the flexible pipe during installation of an end fitting. Because the direction of installation of elements of the end fitting are reversed, the tensile armor of the flexible pipe may not need to be bent back, but only may require a flaring radially outward from the terminal end of the flexible pipe. When flared, lower strains may be imposed on the flared elements, and fatigue and/or damage may be minimized and/or eliminated.
As used herein, the term “radially” is characterized by a direction extending in a generally radial (or perpendicular) direction to an axis of the pipe and “axially” is characterized as a direction extending along the axis of the pipe. However, it should be understood that items wrapped helically around the pipe may not be purely radially extended from the axis of the pipe during the end fitting installation process, but instead may be moved away in a hybrid direction that is both radial and helical with respect to the longitudinal axis of the pipe (axial direction). Therefore, for purposes of this disclosure, such radial and helical extension will be simply referred to as “radial.” Furthermore, for purposes of this disclosure “forward” will refer to the direction towards a terminal end of the flexible pipe in the axial direction and “backward” will refer to a direction away from a terminal end of the flexible pipe in the axial direction.
Now referring to
Referring now to
As described above, the armor layers may be formed from strips of flexible steel or stacks of composite material and may be tensile layers, hoop strength layers, burst layers, and/or other armor layers. The type of armor layer may be determined by the lay angle of the elements of the armor layer with respect to the X-axis.
As shown in
Now, referring to
As further shown in
The membrane seal 126 is shown in
Now with reference to
The membrane seal 126 may be energized by securing the inner cone 132 to the push plate 124 by fasteners 133, such as bolts, screws, or other connectors and/or securing means known in the art. Although shown with bolts or screws 133, those skilled in the art will appreciate that other securing means may be used to join the inner cone 132 with the push plate 124 and/or energize the membrane seal 126. The fasteners 133 are installed such that the fasteners 133 face away-from the terminal end of the flexible pipe, in a backward facing orientation, facing in the negative X direction. The fasteners 133 may have threading configured such that the fastener is threaded in a negative X direction or in a backward facing orientation.
The inner cone 132 may be configured to house a pressure armor layer clamp 134. The pressure armor layer clamp 134 may hold a pressure armor layer 104 and anti-extrusion layers 101 and 103 within the internal pressure containment transition components and may be installed radially external to the armor layer 104.
Now referring to
A ring assembly 136 may be installed forward of and abutting the end of the armor layer 104 and may be positioned between components of the flange assembly 160 and the armor layer 104. The ring assembly 136 may be installed radially external to the internal pressure sheath 102. As such, the ring assembly 136 may be configured to cover and/or support a portion of the internal pressure sheath 102 that is not in contact with a portion of the flange assembly 160 and also not covered by a portion of the armor layer 104.
Prior to installation of the flange assembly 160, a liner support ring 166 may be positioned underneath and interior to the internal pressure sheath 102. A push ring 162 and a seal 164 may be installed on the internal pressure sheath 102. The flange assembly 160 may be installed on the free end of the flexible pipe and secured to the inner cone 132 by backward facing fasteners 161, such as bolts, screws, and/or other means. During this installation the flange assembly to the inner cone 132 may drive the push ring 162 against seal 164, thereby energizing the seal 164.
Now referring to
When the end fitting is assembled with the shell mandrel 152, the flange assembly 160, and the internal pressure containment transition components, the flared armor layers 108 may be released to contact the external surfaces of the internal pressure containment transition components, as shown in
As described herein, the end fitting components may include an aft cone, an inner cone, push plates, seals, rings, and fasteners. However, although described with a limited number of components, those skilled in the art will appreciate that the end fitting may include any number of components and/or other elements not described herein without departing from the scope of the present disclosure.
As shown in
Referring now to
Next, at step 720, a cutback of the layers (e.g., 102, 104, 106, 108, and 110 of
Although described herein as a sequence of cuts occurring at a single time, within the installation process, those skilled in the art will appreciate that the cutback process at step 720 may occur throughout the installation process, with cutting of particular layers only occurring when necessary. Further, although described herein with the locations of the cuts each occurring at a different location, those skilled in the art will appreciate that some adjacent layers of the flexible pipe may be cut at a single location relative to the free end or terminal end of the flexible pipe.
Next, at step 730, the first armor layer, or load bearing layer, may be flared outward from the terminal end of the flexible pipe. The flaring process may involve spreading the individual elements of the armor layer, hereinafter referred to as stacks or wires, radially with respect to the axial direction (i.e., X-axis of
At step 730, prior to flaring, in order to support the jacket when the armor layer is flared, a jacket support ring (e.g., 115 of
Next, at step 740, internal elements of the end fitting may be installed (e.g., 122, 124, and 132 of
At step 750, once the internal elements of the end fitting have been installed on the terminal end of the flexible pipe, the membrane seal within the internal pressure containment transition components may be energized. To energize the membrane seal, an element of the internal pressure containment transition components may be pulled toward the free end or terminal end of the flexible pipe, or, alternatively, an element of the internal pressure containment transition components may be pushed and/or forced in a direction away from the free end of the flexible pipe, towards the push plate. For example, a push plate of the internal pressure containment transition components (e.g., 124 of
When the membrane seal is energized, a portion of the membrane seal may engage with the membrane, thereby providing a fluid seal between the end fitting and the membrane. In one or more embodiments of the present disclosure, the membrane seal may be a wedge shape and/or triangular in cross-section, as discussed above. When energizing the membrane seal at step 750, the push plate or other element may be pulled toward the free end or terminal end of the flexible pipe (forward), or another element may be pushed away from the free end or terminal end of the flexible pipe toward the push plate. As the membrane seal is pulled against the push plate, the membrane seal may compress a surface of the membrane, thereby forming a fluid seal.
Now, with reference to
The procedure described in
At step 810, after the armor layer of the flexible pipe is flared, an aft cone and a push plate may be disposed external to an intermediate sheath layer beneath the flared armor layer. The intermediate sheath layer is disposed between two armor layers of the flexible pipe. The aft cone may be installed first, followed by the push plate, with the two elements axially adjacent to and contacting each other. The aft cone and the push plate may be secured together, for example, by bolts, pins, and/or other means known in the art. Further, the two elements may be secured together prior to installation onto the flexible pipe or may be secured together after installation onto the flexible pipe. Moreover, those skilled in the art will appreciate that the two elements need not be secured together during the installation process of the end fitting.
At step 820, a membrane seal and a membrane support ring may then be installed axially forward of the push plate. The membrane support ring may be disposed radially beneath the first membrane, and the membrane seal may be disposed radially external to an intermediate sheath layer between two armor layers, such that the intermediate sheath layer is disposed between the membrane support ring and the membrane seal. The membrane support ring may provide rigidity and/or support to the intermediate sheath layer at the time of energizing of the membrane seal. Furthermore, the membrane support ring may prevent the membrane seal from excessive inward deformation of the intermediate sheath layer thereby preventing damage to a layer beneath the intermediate sheath layer. Accordingly, the membrane support ring may also provide a protective barrier for the layer radially beneath the membrane support ring.
Next, at step 830, an inner cone of the internal pressure containment transition components may be installed axially forward of the membrane seal, and at least a portion of the inner cone may contact a surface and/or a portion of the push plate. The inner cone and the push plate may be secured together to energize the membrane seal. As such, the membrane seal may be energized during step 830.
Next, at step 840, a pressure armor clamp and/or a ring assembly may be disposed radially within the inner cone. A sleeve may be disposed radially beneath an internal pressure sheath of the flexible pipe. The sleeve may be installed prior to installation of the ring assembly.
The pressure armor clamp may be disposed within the inner cone and may contact a surface of an inner armor layer, hereinafter referred to as a pressure armor layer. Further, the ring assembly may be disposed within the inner cone and may contact a surface of an internal pressure sheath of the flexible pipe. The ring assembly may contact a terminal end of the pressure armor layer such that the ring assembly may be axially forward of and adjacent to an end of the pressure armor layer. Next, at step 850, a flange assembly may be installed axially forward of the inner cone, the ring assembly, and the armor layer clamp. The flange assembly may be secured to the inner cone and/or the internal pressure containment transition components of the end fitting. When installed, the flange assembly may be in contact with a surface of the inner cone. A face seal may be disposed between a forward-facing surface of the inner cone and a backward-facing surface of the flange assembly. When energized, the face seal may form a fluid seal between the inner cone and the flange assembly. Further, the flange assembly may be configured to connect with oil/gas production equipment, enabling a flexible pipe to be connected to the oil/gas production equipment.
At step 860, after the flange assembly is secured to the internal pressure containment transition components of the end fitting, the stacks or wires of the armor layer that were flared may be released and the shell mandrel may be secured to the flange assembly. When the shell mandrel is slid forward, the shell mandrel may cover the stacks or wires of the armor layer that were flared. The layers of the armor layer that were flared may be disposed and/or wedged between the internal pressure containment transition components and the shell mandrel of the end fitting. Accordingly, the external armor layer may be covered by the shell mandrel.
Finally, at step 870, the armor layers and other layers of the flexible pipe may be secured and/or anchored to the end fitting. The anchoring may occur by filling the volume 175, as shown in
Advantageously, an end fitting and methods in accordance with one or more embodiments of the present disclosure may allow for simple installation of an end fitting onto a terminal end of a flexible pipe. The end fitting, in accordance with one or more embodiments of the present disclosure may allow for fasteners, such as bolts, screws, or other connection means to be installed backward facing, such that the internal pressure sheath seal and intermediate sheath seal may be energized. Forward facing bolts as in the prior art require clearance for bolts between the flared or bent back armor layers and the aft cone or internal pressure containment components. Thus, the end fitting can be shorter with backward facing bolts, since this additional clearance is not required.
Further, an end fitting and methods in accordance with one or more embodiments of the present disclosure may allow for minimized and/or eliminated strains imposed on the armor layers of the flexible pipe during end fitting installation. Advantageously, the end fitting and method may provide for flaring of the tensile armor layers. Accordingly, minimal bend back and/or severe strains need be imposed on the armor layers, thereby minimizing potential damage to the tensile armor layers during end fitting installation.
While the disclosure has been presented with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the present disclosure. Accordingly, the scope of the invention should be limited only by the attached claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/060963 | 11/16/2011 | WO | 00 | 7/1/2014 |