Minimally invasive surgical (MIS) instruments are often preferred over traditional open surgical devices due to reduced post-operative recovery time and minimal scarring. During MIS procedures, a variety of instruments and surgical tools may be introduced into the abdominal cavity to engage and/or treat tissue in a number of ways to achieve a diagnostic or therapeutic effect. Various robotic systems have recently been developed to assist in MIS procedures by controlling such MIS instruments. A user (e.g., a surgeon) is able to remotely operate an MIS instrument's end effector by grasping and manipulating in space one or more controllers of the robotic system that communicate with a tool driver coupled to the surgical instrument. User inputs are processed by a computer system incorporated into the robotic surgical system and the tool driver responds by actuating the cable driven motion system and, more particularly, the drive cables. Moving the drive cables articulates the end effector to desired positions and configurations.
MIS instruments have limited life spans. For example, some MIS instruments are designed to expire after a predetermined number of uses or after a set period of time. In some cases, MIS instruments may include an indicator that provides indication when the useful life of the MIS instruments has been exhausted. Conventional instrument indicators are mechanically powered by one of the MIS instrument's tool drivers, which necessarily decreases overall functionality of the MIS instrument as such tool driver could instead be utilized for other tool functions. Moreover, conventional instrument indicators are not easily recognized and, consequently, sterilization workers often do not notice expired MIS instruments and are accidentally cleaned, sterilized, stored, and later sent to the operating room, despite having no useful operational life remaining. Once discovered in the operating room, personnel will be required to discard the MIS instrument and obtain a replacement. This results in frustration, procedural delay, and possible additional sedation time for the patient. Thus, it may be beneficial to provide indicators that do not utilize tool drivers and indicators that are more easily recognized.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function.
The present disclosure is related to robotic surgical systems and, more particularly, to tool life indicators for surgical tools.
Embodiments discussed herein describe a surgical tool that provides a visual indicator to a user, operator, or technician when the useful life of the surgical tool has been exhausted. The surgical tool can include a drive housing defining an indicator aperture, a drive input rotatably coupled to a bottom of the drive housing, and an indicator assembly arranged within the drive housing and actuatable to provide visual indication that the surgical tool has exhausted its useful life. The indicator assembly may include a coil spring operatively coupled to the drive input such that rotation of the drive input correspondingly torques the coil spring, and an indicator shaft extending from the indicator mount along a longitudinal axis coaxially aligned with the indicator aperture. The indicator shaft may be raised or lowered by the drive input to actuate the indicator assembly between a non-activated state, where the indicator shaft is recessed into the indicator aperture, and an activated state, where the indicator shaft extends out of the drive housing via the indicator aperture to provide the visual indication.
In some embodiments, a second set of user input controllers 102b (shown in dashed line) may be operated by a second clinician 112b to direct operation of the robotic arms 106 and tools 108 via the control computer 104 and in conjunction with the first clinician 112a. In such embodiments, for example, each clinician 112a,b may control different robotic arms 106 or, in some cases, complete control of the robotic arms 106 may be passed between the clinicians 112a,b as needed. In some embodiments, additional robotic manipulators having additional robotic arms may be utilized during surgery on the patient 110, and these additional robotic arms may be controlled by one or more of the user input controllers 102a,b.
The control computer 104 and the user input controllers 102a,b may be in communication with one another via a communications link 114, which may be any type of wired or wireless telecommunications means configured to carry a variety of communication signals (e.g., electrical, optical, infrared, etc.) according to any communications protocol. In some applications, for example, there is a tower with ancillary equipment and processing cores designed to drive the robotic arms 106.
The user input controllers 102a,b generally include one or more physical controllers that can be grasped by the clinicians 112a,b and manipulated in space while the surgeon views the procedure via a stereo display. The physical controllers generally comprise manual input devices movable in multiple degrees of freedom, and which often include an actuatable handle for actuating the surgical tool(s) 108, for example, for opening and closing opposing jaws, applying an electrical potential (current) to an electrode, or the like. The control computer 104 can also include an optional feedback meter viewable by the clinicians 112a,b via a display to provide a visual indication of various surgical instrument metrics, such as the amount of force being applied to the surgical instrument (i.e., a cutting instrument or dynamic clamping member).
As illustrated, the surgical tool 200 includes an elongated shaft 202, an end effector 204, a wrist 206 (alternately referred to as a “wrist joint” or an “articulable wrist joint”) that couples the end effector 204 to the distal end of the shaft 202, and a drive housing 208 coupled to the proximal end of the shaft 202. In applications where the surgical tool is used in conjunction with a robotic surgical system (e.g., the robotic surgical system 100 of
The terms “proximal” and “distal” are defined herein relative to a robotic surgical system having an interface configured to mechanically and electrically couple the surgical tool 200 (e.g., the housing 208) to a robotic manipulator. The term “proximal” refers to the position of an element closer to the robotic manipulator and the term “distal” refers to the position of an element closer to the end effector 204 and thus further away from the robotic manipulator. Alternatively, in manual or hand-operated applications, the terms “proximal” and “distal” are defined herein relative to a user, such as a surgeon or clinician. The term “proximal” refers to the position of an element closer to the user and the term “distal” refers to the position of an element closer to the end effector 204 and thus further away from the user. Moreover, the use of directional terms such as above, below, upper, lower, upward, downward, left, right, and the like are used in relation to the illustrative embodiments as they are depicted in the figures, the upward or upper direction being toward the top of the corresponding figure and the downward or lower direction being toward the bottom of the corresponding figure.
During use of the surgical tool 200, the end effector 204 is configured to move (pivot) relative to the shaft 202 at the wrist 206 to position the end effector 204 at desired orientations and locations relative to a surgical site. To accomplish this, the housing 208 includes (contains) various drive inputs and mechanisms (e.g., gears, actuators, etc.) designed to control operation of various features associated with the end effector 204 (e.g., clamping, firing, cutting, rotation, articulation, etc.). In at least some embodiments, the shaft 202, and hence the end effector 204 coupled thereto, is configured to rotate about a longitudinal axis A1 of the shaft 202. In such embodiments, at least one of the drive inputs included in the housing 208 is configured to control rotational movement of the shaft 202 about the longitudinal axis A1.
The shaft 202 is an elongate member extending distally from the housing 208 and has at least one lumen extending therethrough along its axial length. In some embodiments, the shaft 202 may be fixed to the housing 208, but could alternatively be rotatably mounted to the housing 208 to allow the shaft 202 to rotate about the longitudinal axis A1. In yet other embodiments, the shaft 202 may be releasably coupled to the housing 208, which may allow a single housing 208 to be adaptable to various shafts having different end effectors.
The end effector 204 can exhibit a variety of sizes, shapes, and configurations. In the illustrated embodiment, the end effector 204 comprises a combination tissue grasper and vessel sealer that include opposing first (upper) and second (lower) jaws 210, 212 configured to move (articulate) between open and closed positions. As will be appreciated, however, the opposing jaws 210, 212 may alternatively form part of other types of end effectors such as, but not limited to, a surgical scissors, a clip applier, a needle driver, a babcock including a pair of opposed grasping jaws, bipolar jaws (e.g., bipolar Maryland grasper, forceps, a fenestrated grasper, etc.), etc. One or both of the jaws 210, 212 may be configured to pivot to articulate the end effector 204 between the open and closed positions. In other embodiments, the end effector 204 may not include opposing jaws, but may instead comprise other types of surgical end effectors such as a stapler, a cauterizer, a suction tool, an irrigation tool, and the like.
The pivoting motion can include pitch movement about a first axis of the wrist 206 (e.g., X-axis), yaw movement about a second axis of the wrist 206 (e.g., Y-axis), and combinations thereof to allow for 360° rotational movement of the end effector 204 about the wrist 206. In other applications, the pivoting motion can be limited to movement in a single plane, e.g., only pitch movement about the first axis of the wrist 206 or only yaw movement about the second axis of the wrist 206, such that the end effector 204 moves only in a single plane.
Referring again to
In some embodiments, the surgical tool 200 may be supplied with electrical power (current) via a power cable 214 coupled to the housing 208. In other embodiments, the power cable 214 may be omitted and electrical power may be supplied to the surgical tool 200 via an internal power source, such as one or more batteries, capacitors, or fuel cells. In such embodiments, the surgical tool 200 may alternatively be characterized and otherwise referred to as an “electrosurgical instrument” capable of providing electrical energy to the end effector 204.
The power cable 214 may place the surgical tool 200 in electrical communication with a generator 216 that supplies energy, such as electrical energy (e.g., radio frequency energy), ultrasonic energy, microwave energy, heat energy, or any combination thereof, to the surgical tool 200 and, more particularly, to the end effector 204. Accordingly, the generator 216 may comprise a radio frequency (RF) source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source that may be activated independently or simultaneously.
In applications where the surgical tool 200 is configured for bipolar operation, the power cable 214 will include a supply conductor and a return conductor. Current can be supplied from the generator 216 to an active (or source) electrode located at the end effector 204 via the supply conductor, and current can flow back to the generator 216 via a return electrode located at the end effector 204 via the return conductor. In the case of a bipolar grasper with opposing jaws, for example, the jaws serve as the electrodes where the proximal end of the jaws are isolated from one another and the inner surface of the jaws (i.e., the area of the jaws that grasp tissue) apply the current in a controlled path through the tissue. In applications where the surgical tool 200 is configured for monopolar operation, the generator 216 transmits current through a supply conductor to an active electrode located at the end effector 204, and current is returned (dissipated) through a return electrode (e.g., a grounding pad) separately coupled to a patient's body.
The surgical tool 200 may further include a manual release switch 218 that may be manually actuated by a user (e.g., a surgeon) to override the cable driven system and thereby manually articulate or operate the end effector 204. The release switch 218 is movably positioned on the drive housing 208, and a user is able to manually move (slide) the release switch 218 from a disengaged position, as shown, to an engaged position. In the disengaged position, the surgical tool 200 is able to operate as normal. As the release switch 218 moves to the engaged position, however, various internal component parts of the drive housing 208 are simultaneously moved, thereby resulting in the jaws 210, 212 opening, which might prove beneficial for a variety of reasons. In some applications, for example, the release switch 218 may be moved in the event of an electrical disruption that renders the surgical tool 200 inoperable. In such applications, the user would be able to manually open the jaws 210, 212 and thereby release any grasped tissue and remove the surgical tool 200. In other applications, the release switch 218 may be actuated (enabled) to open the jaws 210, 212 in preparation for cleaning and/or sterilization of the surgical tool 200.
According to embodiments of the present disclosure, the surgical tool 200 may further include a tool end of life indicator assembly 220 that may be automatically activated (triggered) to provide a visual indication that the useful life of the surgical tool 200 has been exhausted and/or that the recommended lifespan of the surgical tool 200 has expired. The tool of life indicator assembly 220 may be alternately referred to herein as “the indicator assembly 220”. Upon activation of the indicator assembly 220, the user will be visually notified that the service life of the surgical tool 200 has been exhausted and should not be cleaned for re-use but instead decommissioned (e.g., discarded).
In some examples, the surgical tool 200 may include a single tool end of life indicator assembly 220. In other examples, the surgical tool 200 may include a plurality of tool end of life indicator assemblies 220, where a first is activated after a first use, a second is activated after a second use, and so on; and activation of all of the plurality of tool end of life indicator assemblies 220 indicates that the surgical tool 200 has reached the end of its life. In at least one embodiment, the tool end of life indicator assembly 220 may provide a visual indication that the surgical tool 200 has a certain amount of life (or uses or hours of use) remaining.
Various metrics may be implemented to measure the useful life of the surgical tool 200. For example, the “useful life” may be determined by the number of procedures that the surgical tool 200 has been utilized (e.g., twenty procedures). In such embodiments, once the number of uses of the surgical tool 200 reaches a predetermined threshold, the indicator assembly 220 may be activated to visually inform the user. Alternatively, the “useful life” may be determined by the number of hours that the surgical tool 200 has been utilized, the number of articulations or movements that the surgical tool 200 has made, or any combination thereof. The indicator assembly 220 may provide a visually perceivable indication that the surgical tool 200 has exhausted its useful life or is expired, and/or that the surgical tool 200 has a certain amount of life (e.g., uses, hours of use, etc.) remaining.
As described in more detail below, the tool end of life indicator assembly 220 may include a mechanically actuated indicator button or shaft 222 that becomes visible (exposed) once the useful life of the surgical tool 200 has been exhausted or reached. In one or more embodiments, as illustrated, the indicator assembly 220 may be located on the drive housing 208, such as on a top surface of the drive housing 208. The indicator assembly 220, however, may be located at any location on the surgical tool 200 that sufficiently enables a user to visually notice the indicator shaft 222. During normal operation of the surgical tool 200, and before reaching the predetermined useful life threshold, the indicator shaft 222 may be recessed into the interior of the drive housing 208 and otherwise not visible. Once it is determined that the useful life of the surgical tool 200 has been exhausted, however, the indicator assembly 220 may be actuated (activated), which results in the indicator shaft 222 extending (protruding) a short distance out of the drive housing 208 to provide a visual indication to the user. The indicator assembly 220 is shown in
The tool mounting portion 402 includes and otherwise provides an interface 404 configured to mechanically, magnetically, and/or electrically couple the drive housing 208 to the tool driver. As illustrated, the interface 404 includes and supports a plurality of drive inputs, shown as drive inputs 406a, 406b, 406c, 406d, 406e, and 406f. Each drive input 406a-f comprises a rotatable disc configured to align with and couple to a corresponding actuator or “drive output” of a tool driver, such that rotation (actuation) of a given drive output drives (rotates) a corresponding one of the drive inputs 406a-f. Each drive input 406a-f may provide or define one or more surface features 408 configured to align with mating surface features provided on the corresponding drive output. The surface features 408 can include, for example, various protrusions and/or indentations that facilitate a mating engagement. In some embodiments, some or all of the drive inputs 406a-f may include one surface feature 408 that is positioned closer to an axis of rotation of the associated drive input 406a-f than the other surface feature(s) 408. This may help to ensure positive angular alignment of each drive input 406a-f.
Actuation of the first drive input 406a may be configured to control actuation of the tool end of life indicator assembly 220 (
Actuation of the second drive input 406b may be configured to control rotation of the shaft 202 about its longitudinal axis A1. The shaft 202 may be rotated clockwise or counter-clockwise depending on the rotational actuation of the second drive input 406b. In some embodiments, actuation of the second, third, fourth, and fifth drive inputs 406b-e may be configured to operate movement (axial translation) of drive cables that form part of a cable driven motion system, which results in the actuation of the wrist 106 (
The drive housing 208 may house electronics that store unique identification data for the surgical tool 200 (
The surgical tool 200 (
When the indicator assembly 220 is in the non-activated state, as shown in
Embodiments disclosed herein include:
A. A surgical tool including a drive housing, an indicator assembly arranged within the drive housing and actuatable to provide visual indication that the surgical tool has exhausted its useful life. The indicator assembly includes a drive input rotatably coupled to the bottom of the drive housing. The drive input further including a riser and a rim where the riser contains a passage therethrough. The indicator assembly further includes an indicator shaft extending through the passage along a longitudinal axis coaxially aligned with the drive input. The drive input is rotated to actuate the indicator assembly between a non-activated state, where the indicator shaft is recessed into the drive housing, and an activated state, where the indicator shaft extends out of the drive housing to provide the visual indication.
B. A method of operating a surgical tool that includes determining that a useful life of the surgical tool has been exhausted. The surgical tool includes a drive housing and an indicator assembly arranged within the drive housing. The indicator assembly includes a drive input rotatably coupled to a bottom of the drive housing and an indicator shaft extending through the drive input along a longitudinal axis, and a coil spring anchored between the housing and the drive input. Rotating the drive input actuates the indicator assembly between a non-activated state, where the indicator shaft is recessed into the drive housing, and an activated state, where the indicator shaft extends out of the drive housing. The activation of the indicator assembly providing a visual indication with the indicator shaft that the useful life of the surgical tool has been exhausted.
Each of embodiments A and B may have one or more of the following additional elements in any combination: Element 1: wherein the rim forms a helical path. Element 2: wherein the indicator shaft includes a guide pin that follows the helical path so that rotation of the drive input actuates the indicator shaft along the longitudinal axis. Element 3: wherein the rim further includes a flat face and a vertical face on opposing sides of said helical path. Element 4: wherein the guide pin is adjacent to the vertical face when indicator assembly is in a non-activated state and resting on the flat face when said indicator assembly is in an activated state. Element 5: wherein the indicator assembly further includes a coil spring extending about the indicator shaft and operable to build spring force as guide pin progressively and sequentially engages the helical path. Element 6: wherein a bottom of the coil spring engages the drive input, and a top of the coil spring engages a static portion of the drive housing. Element 7: wherein said indicator shaft includes a visible upper section, said visible upper section is concealed within the drive housing and not visible in a non-activated state and extended beyond the drive housing and visible in an activated state. Element 8: wherein the visible upper section is distinctly colored, wherein the color is indicative of an end-of-life status of the tool. Element 9: wherein the visible upper section is illuminated. Element 10: wherein the passage contains a neck portion that separates a smaller diameter portion and a larger diameter portion. Element 11: wherein the indicator shaft includes at least two limb bodies, wherein the limb bodies are contained in the larger diameter portion of the passage in a non-activated state of said indicator assembly and contained within the smaller diameter portion of the passage when said indicator assembly is in an activated state. Element 12: wherein the limb bodies are compressed towards each other by the neck portion of said passage while transitioning from said non-activated state to said activated state. Element 13: wherein the limbs of said indicator shaft, once within the smaller diameter portion of said passage are prevented from moving back to the larger diameter portion said passage.
By way of non-limiting example, exemplary combinations applicable to A and B include: Element 1 with Element 2; Element 2 with Element 3; Element 3 with Element 4; Element 4 with Element 5; Element 5 with Element 6; Element 6 with Element 7; Element 7 with Element 8; Element 8 with Element 9; Element 10 with Element 11; Element 11 with Element 12; Element 12 with Element 13; Element 14 with Element 15; Element 15 with Element 16; Element 17 with Element 18; Element 17 with Element 19; Element 15 with Element 19; Element 19 with Element 20; and Element 21 with Element 22.
This application claims priority to U.S. Provisional Pat. App. No. 63/528,218, filed on Jul. 21, 2023.
Number | Date | Country | |
---|---|---|---|
63528218 | Jul 2023 | US |