In accordance with 35 U.S.C. §119, the applicants claim the priority of Austrian patent application No. A 2104/2007 dated 21 Dec. 2007.
1. Field of the Invention
The invention relates to an end piece for the front or rear end of a ski or snowboard as well as a co-operating ski or a snowboard equipped therewith, as specified in claims 1, 2 and 35.
2. Prior Art
End pieces or terminating elements for the front or rear end of skis or snowboards are known in principal from the prior art. These end pieces primarily fulfill the function of a cladding element for the tip or end portion of the corresponding gliding board body. For reasons pertaining to the production technology used, such end pieces are mostly fitted in the tip or end portion of a ski or snowboard in particular. These end pieces specifically provide a visually advantageous termination for the gliding board body. Especially if the gliding board body is made from a multi-layered composite body and is manufactured by a foam injection process, a known approach is to provide the end portions of the gliding board body with an end piece serving as a cladding element. This being the case, these end pieces may be adhered to the gliding board body during the production process already and/or secured to the end portion of the gliding board body by a positive connection or by means of fixing screws. These end pieces are therefore of fixed dimensions, adapted to the dimensions of the respective ski or snowboard. No provision is made for a variable width or thickness.
Document DE 202 01 963 U1 discloses an extension for the tip or shovel which can be fitted as and when necessary. This tip extension can be pushed onto the ski tip when necessary to enable skiing in deep snow. This push-on tip, which is primarily intended to impart greater buoyancy when moving on deep snow, can then be removed again by the user. This tip extension is therefore an accessory which can be fitted and removed as and when required and can be fitted on a plurality of skis with different shovel geometries. In particular, provision is made so that this fitting fits different dimensions of the front end of the skis, in particular the shovels, depending on manufacturer and ski model. To this end, the fitting is of an essentially U-shaped design as seen from above, and the distance between the two legs of the U-shaped fitting may be made bigger or smaller in order to adapt to the respective shovel widths of different ski models.
The underlying objective of this invention is to propose an end piece for the front or rear end of a ski or snowboard, by means of which the performance, in particular the control behavior of a ski or snowboard, can be improved, in particular of a ski or snowboard with variable geometry or sizing. Another objective is to specify a co-operating ski or a co-operating snowboard.
The first objective of the invention is achieved on the basis of an end piece as defined in claim 1 or 2. The advantage of this is that an end piece of this type improves the control behavior of a ski or snowboard on which it is fitted. In particular, the stability of the end portion of the ski or snowboard, which is variable in terms of the cross-sectional geometry or size, can be positively influenced. By means of the end piece proposed by the invention, it is possible to ensure that the intended cross-sectional variability is either totally unimpeded or barely impeded at all, whilst at the same time providing mutual support between the side edges of a ski or snowboard, which are uncoupled to a relatively high degree in terms of force. In particular, the end piece proposed by the invention constitutes a binding member between the side portions of the gliding board body lying to the left and right of the longitudinal mid-axis, thereby enabling the control behavior, in particular cornering stability, of a corresponding ski or snowboard to be significantly improved by means of the end piece. This end piece therefore has a multiple function in that it improves travel properties on the one hand and also increases the robustness of the ski or snowboard with variable geometry.
As a result of the features defined in claim 3, the end pieces can be connected to the respective end portion of a gliding board body so that they are particularly resistant to tearing off because the side portions of the end pieces can be rigidly and non-releasably connected to a gliding board body, whereas the middle portion of the end pieces assures the requisite relative adjustability.
The embodiment defined in claim 4 ensures that a snow gliding board which is variable in terms of its shovel geometry or the geometry of the side edges, in particular a ski or snowboard, is not obstructed in its positioning movements or is so as little as possible.
The advantage of the embodiment defined in claim 5 is that the side portions or legs of the essentially U-shaped or sickle-shaped end pieces can be fixedly or rigidly connected to the gliding board body, whereas the desired relative displaceability takes place starting from the middle portion or from the base portion of the U-shaped or sickle-shaped end pieces. In particular, instead of opening out the side portions of the end pieces, a variation in distance is achieved starting from the base of the U-shaped or sickle-shaped end pieces.
Another advantageous embodiment defined in claim 6 ensures that the gliding faces or control edges of the ski or snowboard to the side of the longitudinal axis remain as far as possible constantly in a common plane. The common plane extends essentially parallel with the gliding face of the gliding board body. In particular, this prevents a height offset from occurring between individual gliding board tongues or gliding board part-portions in the front or rear end portion of the gliding board body during so-called “carving” or when traveling on the edge. The control or cornering behavior of a gliding board body that is fully or partially slotted in the longitudinal direction can therefore be significantly improved by the specified end piece, which simultaneously serves as a guide element.
As a result of the embodiment defined in claim 7, instead of a relative displaceability between two or more elements, use is made of an ability of the middle portion to stretch and rebound elastically so that the end piece can be adapted to varying widths due to an elastic deformability.
The embodiment defined in claim 8 results in an end piece based on a structurally compact design, and such an end piece is unlikely to be blocked due to snow or ice during its compensating movements or as the width varies.
As a result of the feature defined in claim 9, the end piece can be manufactured relatively inexpensively. Furthermore, warehouse management is simplified because only a single component is needed to form the front or rear end pieces of a ski or snowboard.
The advantage of the embodiment defined in claim 10 is that the end piece is made from relatively hard material at its side portions or along its legs and can therefore be fitted on a co-operating gliding board body in a particularly practical arrangement. The middle portion, on the other hand, is made from elastomeric or flexible plastic and thus ensures that the distance inside the base portion of the U-shaped or sickle-shaped end piece can be varied.
The advantage of the embodiment defined in claim 11 is that the end piece may be assembled as inexpensively as possible and also remains functionally reliable for a long time.
The features defined in claim 12 also permit a variation in the width of the end piece without causing a relative displacement between structurally independent elements. This avoids any gliding faces which might be susceptible to icing and correct functioning is guaranteed even under the worst usage conditions. Furthermore, a high maximum adjustment width can be achieved by means of an elasticity induced by a shape and type of material, for example in the form of an expandable folded arrangement, without the middle portion of the end piece being exposed to high stress or tearing forces. In particular, there are also no concerns with regard to material fatigue, even after numerous motion cycles.
The embodiment defined in claim 13 results in a weight-optimized design. It also affords extra personal protection because the tip or end region of the gliding board body is designed so that it is as blunt or rounded as possible.
The embodiment defined in claim 14 offers additional personal protection because the front end of the gliding board body is thicker and/or relatively flexible and/or designed with rounded edges. This also offers a durable protective feature which requires no particular maintenance or adaptation on the part of the end user.
The embodiment defined in claim 15 ensures that an end portion of a ski or snowboard which can be varied in geometry or cross-section has a visually attractive termination. The risk of the multi-layered structure of the respective gliding board body delaminating is also reduced.
As a result of the features defined in claim 16, the respective portions of the end pieces can be rigidly connected to the gliding board tongues of the gliding board body and are thus relatively resistant to tearing off. Furthermore, the variation in terms of plane or width or the variation between the side portions of the end pieces can be changed by means of the middle portion of the end piece.
As a result of another advantageous embodiment defined in claim 17, the end piece has a resilient elastic rebounding means which tends to always move back into a defined initial or non-operating position as soon as externally acting forces are removed. This active, resiliently elastic rebounding movement is conducive to the travel behavior of a ski or snowboard fitted with an end piece of this type. In a particularly advantageous manner, this elastically stretchable and rebounding bridging element may also service as a guide mechanism for preventing vertical deviating movements between the gliding board tongues of a split or longitudinally slotted ski or snowboard.
The features defined in claim 18 result in an end piece which is capable of fulfilling the intended function during the average period of usage of a ski or snowboard fitted with it. An end piece of this type also offers a sufficient amount of adjustment path so that the end piece does not obstruct the shovel or end region of a gliding board body which can be manually pre-set and/or which can vary in width due to stress or flexing.
Also of advantage is an embodiment defined in claim 19, because it is simply and effectively able to prevent a drop below a minimum distance between the two gliding board tongues of a gliding board body slotted in the longitudinal direction. In particular, it ensures that even in the event of strong forces between two gliding board tongues pushing them closer together, such as occur when traveling on one of the lateral control edges for example, a defined minimum distance is guaranteed between the gliding board tongues.
Based on the embodiment defined in claim 20, a stop element is provided, which simultaneously serves as a barrier element or a protective element for an expandable bridging element optionally disposed inside the gap. This projection specifically assumes a protective function for the flexible or rubber-like bridging element, which bridges the gap between the first and second gliding board tongue of a gliding board body. The robustness of a ski or snowboard with a geometry or size which can be varied can be enhanced still further.
The embodiment defined in claim 21 avoids increased fatigue of the elastically stretchable and rebounding bridging element over time, at least to a certain extent.
The features defined in claim 22 result in a robust end piece which can be connected to the to the respective end portion of the gliding board body particularly reliably and so that it will not tear off if the end piece is of a structurally slim or structurally relatively compact design.
An embodiment defined in claim 23 is of particular advantage because a central element or middle part is incorporated, which always remains centrally positioned. As a result, the middle part is always retained in an unchanged relative position with respect to a gliding board body, whilst the side portions of the end pieces can be moved relative to the central middle part. This ensures that the two side portions of the end pieces can be moved apart from one another and back towards one another starting from a middle part disposed in a defined position.
As a result of the embodiment defined in claim 24, middle parts of different types can be selectively positioned on the bridging element. In particular, this offers an easy way of fitting easily mounted and interchangeable middle parts with a guiding function and/or middle parts with a damping function between the two side portions of the end pieces.
The embodiment defined in claim 25 ensures that the middle part is centrally retained when the side portions of the end piece are moved in the direction towards the middle part or away from the middle part.
The features defined in claim 26 result in a stable retaining system for the middle part on the elastically stretchable and rebounding bridging element that is resistant to tearing off.
As a result of the features defined in claim 27, undesired relative movements between the first and second portion of the end pieces can be reliably prevented. In particular, deviating movements between the first and second portion by reference to a direction extending vertically with respect to the bottom and top face of the end piece can be suppressed.
The features defined in claim 28 result in a spring element which is very robust and of a simple construction. Furthermore, the requisite adjustment widths can be achieved without the need for structurally complex or structurally bulky helical springs.
An embodiment defined in claim 29 is also of advantage because an end piece can be produced which is as lightweight and inexpensive as possible.
The embodiment defined in claim 30 is of advantage because a spring element of this type is particularly robust and is also able to assume an exact guiding function in order to prevent undesired relative movements between the portions of the end pieces.
As a result of the features defined in claim 31, the elastically stretchable and rebounding bridging element fulfils a dual function, thereby reducing the number of components needed and keeping the weight of the end piece low.
The embodiment defined in claim 32 prevents a gap from forming in the middle portion of the end piece. This prevents any mutual jamming or trapping of foreign bodies or ice build-up between the mutually moving portions of the end piece.
As a result of the features defined in claim 33, the shovel or end portion of the gliding board body can be opened out or closed without the end piece opposing such controlled movements, which can be manually pre-set and/or are induced by flexing but controlled due to a blocking or preventing resistance.
The advantage of the feature defined in claim 34 is that a robust, but structurally simple guide mechanism is provided, which is conducive to the guiding or control behavior of a ski or snowboard fitted with such an end piece. Furthermore, with an embodiment of this type, the tip or base region of the U-shaped or sickle-shaped end piece can be closed or bridged so that the gap or optionally a folded element bridging this gap can be better protected against damage. In particular, this reduces the probability of or avoids the risk of hard foreign bodies or clumps of ice or similar getting into the gap between the two gliding board tongues from the front end portion of the gliding board body.
Independently of the above, the objective of the invention is also achieved by means of a ski or a snowboard as defined in claim 35. The advantages and technical effects which can be achieved as a result may be found in the parts of the description given above. Another advantage is the fact that a gliding board body of this type affords better personal protection because the tip and end portions are at least partially clad or covered by means of the end piece.
An extraordinary and interesting travel behavior of the gliding board body is achieved if it has a geometry-influencing means for varying the cross-sectional geometry or changing the size, as specified in claim 36.
Also of advantage is an embodiment defined in claim 37 because a ski or snowboard is provided, the size or cross-sectional geometry of which can be changed in a particularly simple but nevertheless effective manner. Furthermore, the geometry of a ski or snowboard of this type can be influenced to a sufficiently significant degree with relatively low adjusting forces.
Finally, an embodiment as defined in claim 38 is of advantage because the gliding behavior or suitability of the gliding board body for the piste can be significantly improved.
The invention will be explained in more detail below with reference to examples of embodiments illustrated in the appended drawings. The drawings provide a simplified, highly schematic illustration of the following:
a is a plan view on an enlarged scale showing the front end portion of the gliding board body illustrated in
Firstly, it should be pointed out that the same parts described in the different embodiments are denoted by the same reference numbers and the same component names and the disclosures made throughout the description can be transposed in terms of meaning to same parts bearing the same reference numbers or same component names. Furthermore, the positions chosen for the purposes of the description, such as top, bottom, side, etc., relate to the drawing specifically being described and can be transposed in terms of meaning to a new position when another position is being described. Individual features or combinations of features from the different embodiments illustrated and described may be construed as independent inventive solutions or solutions proposed by the invention in their own right.
The end piece 2, 2′ proposed by the invention is primarily designed for skis or snowboards which have at least one geometry-influencing means 4 for changing the width or size and/or cross-sectional geometry of the front and/or rear end portion of the gliding board body 3. This geometry-influencing means 4 on the gliding board body 3 preferably comprises at least one slot, gap 5, 5′ or some other weakening or split in the cross-section of the gliding board body 3. This cross-sectional weakening, which is be provided in the form of a slot or gap 5, 5′ in the embodiment illustrated as an example, extends in the longitudinal direction of the gliding board body 3. It is provided either in the form of a weakening of the cross-section of the gliding board body 3 based on a plurality of mutually aligned orifices or slots or alternatively by a partial slit and extends from at least one end of the gliding board body 3 in the direction towards the middle portion of the gliding board body 3. It is preferable if both the front end portion and the rear end portion of the gliding board body 3 are slotted, in which case these cross-sectional weakened areas extend from the two ends, each in the direction towards the middle portion of the gliding board body 3. These cross-sectional weakened areas each expediently terminate at a predefined distance from the mounting portion for a binding mechanism 3a which is coupled with the foot of a user as and when necessary.
The essential aspect is that the end pieces 2, 2′ described in detail below may be used with skis 1 or snowboards, the width of which in the shovel region and/or in the rear end region is variable depending on load and/or can be individually pre-adjusted by a user. As regards the technical design options for this gliding board body 3 with a variable geometry or size and as regards the technical design options of the geometry-influencing means 4, reference may be made to the detailed disclosures of Austrian patent applications A 173/2007 and A 174/2007 filed by this applicant and included herein as part of the subject matter of this disclosure. Also included in the subject matter of this disclosure is the disclosure of EP 1 297 869 B1.
The end pieces 2, 2′ described below are therefore specifically designed for designs of skis 1 or snowboards which have a variable geometry, whereby a change is brought about in the width of the front and/or rear end portion by at least one longitudinally extending cut or slot in the front and/or rear end portion of the gliding board body 3. The end piece 2, 2′ is therefore designed so that the changes in the width of the respective end portion of the gliding board body 3 can be varied as a function of load and/or can be pre-set individually by the user and at the same time have a positive effect on the performance which can be achieved with such a ski or snowboard, in particular its travel or control behavior. The end pieces 2, 2′ may essentially help to increase the torsional stiffness of the front and/or rear end portion of the gliding board body 3, thereby having a positive effect on its travel or control behavior. Particularly in the case of a design based on slots or gaps 5, 5′ in the gliding board body 3, the end pieces 2, 2′ may function as a load-transferring coupling or stabilizing element between the individual tongues or legs in the front and/or rear end portion of the gliding board body 3. In other words, the torsional stiffness of adjacent gliding board tongues 23, 24 respectively 23′, 24′ of the front and/or rear end portion of the gliding board body 3 can be significantly increased by the end pieces 2, 2′. This in turn results in a more exact controllability and in improved cornering behavior of the gliding board body 3.
As may best be seen from the enlarged diagram illustrated in
In order to satisfy the above-mentioned requirements, the end piece 2, 2′ has at least a first and a second portion 6, 7, and the position or relative position of the first portion 6 with respect to the position of the second portion 7 can be varied. The end pieces 2, 2′ may be of a one-part design, i.e. made as a single part or element, which forms the two side portions 6, 7. However, the end pieces 2, 2′ may also be of a multi-part design, in which case the individual portions 6, 7 are joined to form a single piece. Both embodiments, i.e. the single-part design and the multi-part design joined to form a single piece, will be described in more detail below. In principle, the first and second portion 6, 7 could also each constitute separate end or terminating parts, structurally independent of one another, for the at least two tongues or legs in the front and/or rear end portion of the gliding board body 3.
The first side portion 6 of the end pieces 2, 2′ has a zone 8 which lies next to or is adjacent to the second side portion 7 of the end pieces 2, 2′. The second portion 7 of the end pieces 2, 2′ has a zone 9 which lies next to the first portion 6 and is directly adjacent to the first portion 6. The mutually facing zones 8, 9 of the portions 6, 7 may be structurally separate portions 6, 7 or alternatively may be disposed on a single-part end piece 2, 2′ with a continuous or uninterrupted transition portion between the zones 8, 9, as illustrated in
This adjustment path between the first and second portion 6, 7 of the end pieces 2, 2′ corresponding to the distance 10, 10′ is preferably disposed in the middle portion 12 between the outer ends of the end pieces 2, 2′. This adjustment path or variable distance 10, 10′ between the mutually adjacent zones 8, 9 is selected so that a prizing open or increase in width and a narrowing or reduction in width of the outer ends of the gliding board body 3 are able to influence the control behavior of the gliding board body 3′ to a positive or perceptible degree. In particular, the end piece 2, 2′ is designed so that the distance 10, 10′ between the mutually adjacent zones 8, 9 is variable depending on a varying width of the front and rear end of the ski 1 or snowboard during travel or during use, as may be seen in particular from comparing
As may also be seen from the embodiment illustrated in
A guide mechanism 11 between the two portions 6, 7 is preferably provided in the middle portion 12. This guide mechanism 11 has at least two telescopically guided or at least two mutually overlapping guide elements 14, 15. The mutually co-operating guide elements 14, 15, which may be provided in the form of a guide pin and co-operating guide groove or a guide projection 16 and guide recess 17, are designed and oriented so that the end piece 2, 2′, in particular its middle portion 12, can be laterally widened and re-set, i.e. made bigger and smaller, so that the width 13 of the end pieces 2, 2′ is variable depending on the varying width of the gliding board body 3. By preference, this variation in the width of the end pieces 2, 2′, which occurs during travel with the ski 1 or snowboard and/or can be individually pre-set, takes place starting from the tip region or from the central portion of the end pieces 2, 2′.
Instead of the linear guide mechanism 11 between the portions 6, 7 described above, another option would be for at least the middle portion 12 of the end pieces 2, 2′ to be made from an elastomeric plastic 18, in particular a soft plastic or rubber. This would also enable the width 13 of the end pieces 2, 2′ to be varied depending on a prized-open angle of the end portion of the gliding board body 3. An elastic middle portion 12 of this type made from an elastomeric plastic 18 is illustrated in the diagram shown in
As also best illustrated by the embodiment shown in
The middle portion 12 of the end pieces 2, 2′ may therefore be provided in the form of an elastic stretchable portion 21, and this stretchable portion 21 imparts to the end pieces 2, 2′ the ability to stretch and rebound due to the shape and/or material. This shape-based and/or material-based stretchable portion 21 may be provided in the form of an expandable folded arrangement 22 with at least one elastically stretching fold, as illustrated by way of example in
Especially if it is to be used on the front end of a ski 1 or snowboard, the end piece 2, 2′ is essentially arch-shaped or sickle-shaped as seen from above, as may be seen from the embodiments illustrated as examples in
The two side portions 6, 7 of the end pieces 2, 2′ are permanently joined to a left and right gliding board tongue 23, 24 respectively 23′, 24′ of a gliding board body 3. The left and right gliding board tongue 23, 24 respectively 23′, 24′ of the gliding board body 3 is formed by at least one slot or gap 5, 5′ in the gliding board body 3, which extends essentially parallel with its longitudinal mid-axis and at least partially splits the top face of the gliding board body 3 or provides an at least partial slot in the gliding board body 3, as may best be seen from
As may be seen from the embodiments illustrated in
The bridging element 25, which may be either a separate component or an integral element on the side portions 6, 7, is designed so that it is capable of withstanding an elastic extension and rebound amounting to up to 15 mm without being damaged. In particular, the bridging element 25 should be able to overcome an adjustment path of up to 15 mm even after many, in particular hundreds of motion cycles without being damaged. An adjustment path of the elastic bridging element 25 and guide mechanism 11 and/or the elastic stretchable portion 21 is 0 mm to 10 mm, in particular 0 mm to 5 mm, as a rule.
In the case of the embodiment illustrated as an example in
In the case of the embodiment illustrated in
In the case of the embodiment illustrated in
Instead of a pivot bearing 31, 32 of this type, it would also be possible for the elastically stretchable and rebounding bridging element 25 to be joined to the side portions 6, 7 via elastic deformation zones, as best illustrated in
In the embodiments illustrated, the bridging element 25 or guide mechanism 11 or middle portion 12 extends either in a straight line or in an arc across a gap or across the region between the portions 6, 7, as a result of which these components also afford reliable mechanical protection for an elastic bridging element 5a which may optionally be disposed inside a gap 5, 5′ in the gliding board body 3, as may best be seen from
The essential aspect is that the bridging elements 25 illustrated in
As may best be seen from
As may be seen from the embodiment illustrated in
A width of the elastically stretchable and rebounding bridging element 25 is preferably less than half the total width 13 of the end piece 2.
As may also be seen from the embodiment illustrated in
As may be seen from the embodiment illustrated as an example, the middle portion of the elastically stretchable and rebounding bridging element 25 may have a block-type support element 29 for retaining or accommodating the middle part 28.
The elastically stretchable and rebounding bridging element 25 may comprise a spring element 30 extending in a meandering shape, as may be seen from
The co-operating spring elements 30 may be made from plastic, from spring steel or from some other material with adequate elastic properties.
In addition to the design based on a separate stop element 26, another option is for the elastically stretchable and rebounding bridging element 25 to serve as a stop element in order to limit the minimum distance 10 between the first and second portion 6, 7, as may be seen in the embodiment illustrated as an example in
As in the case of the embodiment illustrated in
The essential aspect of the described end pieces 2, 2′ is that the first and second portion 6, 7 move into one another in a mutually and telescopically guided arrangement and/or are elastically coupled with one another so that the width of the U-shaped sickle-shaped end pieces 2, 2′ is variable starting from the central apex point or starting from its middle portion 12. In this respect, it is of practical advantage if a guide mechanism 11 is provided between the first and second portion 6, 7, which enables a relative displacement between the first and second portion 6, 7 in a direction extending parallel with the gliding or standing plane and transversely to the longitudinal direction of a ski or snowboard. The guide mechanism 11 between the first and second portion 6, 7 may be provided in the form of a groove-spring connection or in the form of a groove-spring-groove connection. This guide mechanism 11 is also designed so that relative displacements between the first and second portion 6, 7 of the end pieces 2, 2′ are prevented in the direction perpendicular to the bottom face or gliding face of a ski or snowboard. In particular, the end piece 2, 2′ prevents or reduces relative movements or shifting between the gliding board tongues 23, 24 respectively 23′ 24′ in the direction perpendicular to the bottom and top face of the gliding board body 3, as may be seen in particular from the diagrams shown in
The end piece 2, 2′ therefore acts as a load- or force-transmitting coupling between the two gliding board tongues 23, 24 respectively 23′, 24′, thereby enabling the stability and bending behavior of the respective end portion of the gliding board body 3 to be positively influenced. With the specified end pieces 2, 2′, therefore, the performance of a gliding board body 3 with a variable geometry or size can be further enhanced. In particular, improved cornering behavior and a more exact controllability of the gliding board body 3, in particular the ski or snowboard, can be achieved by means of the specified end pieces 2, 2′.
It is of advantage if at least the front end piece 2, in particular its first and second portion 6, 7, is of an essentially U-shaped or L-shaped cross-section. This results in a good hold of the end pieces 2 in the respective end portion of the gliding board body 3. This shape also provides a cladding or cover for the front end face or the rear end face of the gliding board body 3. In particular, the end piece 2 can be push-fitted or clinched round the terminal end of the gliding board body 3, thereby enabling it to be fitted during the process of manufacturing the gliding board body 3 or ski 1 or snowboard so that it is as strong as possible and particularly resistant to tearing off.
The elastically deformable middle portion 12 is preferably designed so that it affords as low as possible a resistance to the variations in the width of the gliding board body 3 which occur during travel and/or are induced as a result of individual initial settings.
The elastically deformable middle portion 12 in the embodiment illustrated in
A distance or a gap 41 between the terminal end of the gliding board body 3 and the terminal end internal wall or front boundary wall of the end pieces 2 permits a relative displaceability between the end piece 2 and the end portion of the gliding board body 3. This gap 41 or this freedom of movement is primarily necessary when the width of the gliding board body 3 is made bigger or smaller. Particularly during lateral alternating movements of gliding board tongues 23, 24 relative to the longitudinal mid-axis of the gliding board body 3, this results in a front bearing or rear bearing of the tip and middle portion 12 by reference to the direction of travel of the gliding board body 3, as symbolized by the double arrows.
In the embodiment illustrated in
The embodiments illustrated as examples represent possible variants of end pieces 2, 2′ and skis 1, and it should be pointed out at this stage that the invention is not specifically limited to the variants specifically illustrated, and instead the individual variants may be used in different combinations with one another and these possible variations lie within the reach of the person skilled in this technical field given the disclosed technical teaching. Accordingly, all conceivable variants which can be obtained by combining individual details of the variants described and illustrated are possible and fall within the scope of the invention.
For the sake of good order, finally, it should be pointed out that, in order to provide a clearer understanding of the structure of the end pieces 2, 2′ and the skis 1, they and their constituent parts are illustrated to a certain extent out of scale and/or on an enlarged scale and/or on a reduced scale. The objective underlying the independent inventive solutions may be found in the description.
Above all, the individual embodiments of the subject matter illustrated in
Number | Date | Country | Kind |
---|---|---|---|
A 2104/2007 | Dec 2007 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
2367271 | Habostad | Jan 1945 | A |
3326564 | Heuvel | Jun 1967 | A |
3534972 | Salerno | Oct 1970 | A |
3549162 | Coutts | Dec 1970 | A |
3567239 | Kitterman | Mar 1971 | A |
3703299 | Kutchma | Nov 1972 | A |
3820802 | Davis | Jun 1974 | A |
3921994 | Locati | Nov 1975 | A |
4071264 | Legrand et al. | Jan 1978 | A |
4180275 | Montoya | Dec 1979 | A |
4211433 | Pedersen | Jul 1980 | A |
4275904 | Pedersen | Jun 1981 | A |
4340241 | Crocket | Jul 1982 | A |
4509771 | Nussbaumer | Apr 1985 | A |
4616842 | Echevin et al. | Oct 1986 | A |
4828288 | Humbert | May 1989 | A |
4951960 | Sadler | Aug 1990 | A |
4981455 | Tubens | Jan 1991 | A |
5292146 | Palau | Mar 1994 | A |
5299822 | Mayr et al. | Apr 1994 | A |
5310221 | Schmidt | May 1994 | A |
5360228 | Palau | Nov 1994 | A |
5435589 | Fagot | Jul 1995 | A |
5551728 | Barthel et al. | Sep 1996 | A |
5558354 | Lion | Sep 1996 | A |
5649722 | Champlin | Jul 1997 | A |
5785342 | Bronson | Jul 1998 | A |
5984324 | Wariakois | Nov 1999 | A |
6000711 | Fey et al. | Dec 1999 | A |
6082747 | Parmentier | Jul 2000 | A |
6345455 | Greer et al. | Feb 2002 | B1 |
6393736 | Greer et al. | May 2002 | B1 |
6523851 | Maravetz | Feb 2003 | B1 |
6682083 | Melcher | Jan 2004 | B2 |
6945563 | Clausing | Sep 2005 | B2 |
7014206 | Donze | Mar 2006 | B2 |
7052044 | Streeter | May 2006 | B1 |
7213828 | Riepler et al. | May 2007 | B2 |
7258360 | Vallet et al. | Aug 2007 | B2 |
7344148 | Donze et al. | Mar 2008 | B2 |
7393255 | Wilhelmi | Jul 2008 | B1 |
7484738 | Belt | Feb 2009 | B2 |
20030173769 | Clausing | Sep 2003 | A1 |
20040119264 | Vallet et al. | Jun 2004 | A1 |
20050269801 | Carlson et al. | Dec 2005 | A1 |
20070267847 | Carlson et al. | Nov 2007 | A1 |
20070296181 | Alary et al. | Dec 2007 | A1 |
20080073875 | Krafft | Mar 2008 | A1 |
20090011667 | Hayward et al. | Jan 2009 | A1 |
20100171288 | Nicosia et al. | Jul 2010 | A1 |
20100187795 | Binder | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
2704858 | Aug 1978 | DE |
20101963 | Sep 2001 | DE |
1334752 | Aug 2003 | EP |
2794374 | Dec 2000 | FR |
Number | Date | Country | |
---|---|---|---|
20090261544 A1 | Oct 2009 | US |