End plate

Information

  • Patent Grant
  • 6825585
  • Patent Number
    6,825,585
  • Date Filed
    Friday, March 17, 2000
    25 years ago
  • Date Issued
    Tuesday, November 30, 2004
    20 years ago
Abstract
An end plate (1, 11) for a stator (31) wound with a cable in a rotating electric machine, the plate (1, 11) being provided with axially running winding slots (2) corresponding to the stator (31) and axially running apertures (19, 21, 22, 26) for cooling tubes corresponding to the stator (31), and that the plate (1, 11) is provided with at least one bending member (20, 23, 27) pre-shaped in the plate (1, 11) for cooling tubes (33) insertable into the cooling-tube apertures (19, 21, 22, 26) and also a procedure for supporting and protecting a cooling tube in a first axially running aperture at its exit from a stator in a rotating electric machine, whereby an end plate provided with bending members is applied at the end of the stator, the cooling tube being bent around the bending member before continuing, either by being fitted in a second axially running aperture in the stator or for extension out of the stator.
Description




TECHNICAL FIELD




The present invention relates to rotating electric machines such as synchronous machines, as well as dual-fed machines, applications in asynchronous static current converter cascades, outerpole machines and synchronous flow machines, and also alternating current machines intended in the first place as generators in a power station for generating electric power. The invention relates particularly to the stator of such machines concerning an embodiment for cooling stator teeth and thus indirectly also to the insulated electric conductors constituting the stator winding.




BACKGROUND ART




Similar machines have conventionally been designed for voltages in the range 6-30 kV, and 30 kV has normally been considered to be an upper limit. This generally means that a generator must be connected to the power network via a transformer which steps up the voltage to the level of the power network, i.e. in the range of approximately 130-400 kV. The machine is intended for use with high voltages. High voltages shall be understood here to mean electric voltages in excess of 10 kV. A typical operating range for a device according to the invention may be voltages from 36 kV up to 800 kV. In the second place the invention is intended for use in the stated technical area with voltages below 36 kV.




Two different systems exist for air cooling in conventional cooling: Radial cooling where the air passes the rotor through the hub and radial ducts in the rotor, and axial cooling where the air is blow into pole gaps by axial fans. The stator is then divided into radial air ducts by means of (usually straight) spacers which are welded in place. In view of the poor thermal conductivity axially through the stator laminations the air ducts must be frequently repeated. The drawback of air cooling is that the ventilation losses are often considerable and that the stator must be made longer to accommodate the ventilation ducts. The ventilation ducts may also cause a weaker mechanical structure, particularly in the case of the high-voltage generators with long teeth under discussion here.




Axial water cooling by means of cooling tubes in the stator yoke is well known. Electrically insulated metal tubes have then necessarily been used so as not to short-circuit the laminations of the stator. The drawback is that if the insulation is damaged the generator may be destroyed by the induced currents then appearing. It is also expensive to weld or bend the tubes at the joins. Another drawback is that eddy currents are induced in metal tubes in a time-varying magnetic flow, resulting in certain power losses when they are used in an electric machine.




A conductor is known through U.S. Pat. No. 5,036,165, in which the insulation is provided with an inner and an outer layer of semiconducting pyrolized glassfiber. It is also known to provide conductors in a dynamo-electric machine with such an insulation, as described in U.S. Pat. No. 5,066,881 for instance, where a semiconducting pyrolized glassfiber layer is in contact with the two parallel rods forming the conductor, and the insulation in the stator slots is surrounded by an outer layer of semiconducting pyrolized glassfiber. The pyrolized glassfiber material is described as suitable since it retains its resistivity even after the impregnation treatment.




OBJECT OF THE INVENTION




By using high-voltage insulated electric conductors, in the following termed high-voltage cables, with solid insulation similar to that used in cables for transmitting electric power in the stator winding (e.g. XLPE cables) the voltage of the machine can be increased to such levels that it can be connected directly to the power network without an intermediate transformer. The conventional transformer can thus be eliminated. This concept generally requires the slots in which the cables are placed in the stator to be deeper than with conventional technology (thicker insulation due to higher voltage and more turns in the winding). This entails new problems with regard to cooling, vibrations and natural frequencies in the region of the coil end, teeth and winding.




The object of the invention is to provide a stator in a rotating electric machine with an end plate for use in direct cooling of the stator, particularly the stator teeth in a rotating electric machine of the type described, said cooling being achieved by means of cooling tubes running axially in the stator. The purpose of the stator plate is to provide protection for the cooling tubes at the ends of the stator. The cooling tubes are exposed to mechanical stress at each end of the stator during assembly, which is eliminated through the present invention.




Another object of the invention is for the stator plate to constitute a bending template for the cooling tubes during assembly. Additional advantageous further developments of the invention are indicated in the following description. The invention is in the first place intended to be used with a high-voltage cable defined in more detail below, and its advantages are particularly noticeable therewith.




SUMMARY OF THE INVENTION




The present invention relates to a stator end plate in connection with axial cooling of the stator and its laminated stack, particularly the stator teeth, and thus indirectly the stator winding in a rotating electric machine such as a high-voltage alternating current generator.




The plate is provided with axially running winding slots corresponding to the stator, and axially running apertures for inlet and outlet cooling tubes. The plate is also provided with slits in which bending members are situated, around which bending members the cooling tubes are arranged to be bent.




The end plate is also provided with assembly grooves intended to retain sealing member at the exit of each winding slot from the end plate.




In the device according to the invention the windings are preferably composed of cables having solid, extruded insulation, of a type now used for power distribution, such as XLPE-cables or cables with EPR-insulation. Such a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer. Such cables are flexible, which is an important property in this context since the technology for the device according to the invention is based primarily on winding systems in which the winding is formed from cable which is bent during assembly. The flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter. In the present application the term “flexible” is used to indicate that the winding is flexible down to a radius of curvature in the order of four times the cable diameter, preferably eight to twelve times the cable diameter.




The winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal stress during operation. It is vital that the layers retain their adhesion to each other in this context. The material properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion. In a XLPE-cable, for instance, the insulating layer consists of cross-linked, low-density polyethylene, and the semiconducting layers consist of polyethylene with soot and metal particles mixed in. Changes in volume as a result of temperature fluctuations are completely absorbed as changes in radius in the cable and, thanks to the comparatively slight difference between the coefficients of thermal expansion in the layers in relation to the elasticity of these materials, the radial expansion can take place without the adhesion between the layers being lost.




The material combinations stated above should be considered only as examples. Other combinations fulfilling the conditions specified and also the condition of being semiconducting, i.e. having resistivity within the range of 10


—1


-10


6


ohm-cm, e.g. 1-500 ohm-cm, or 10-200 ohm-cm, naturally also fall within the scope of the invention.




The insulating layer may consist, for example, of a solid thermoplastic material such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) polybutylene (PB), polymethyl pentene (PMP), cross-linked materials such as cross-linked polyethylene (XLPE), or rubber such as ethylene propylene rubber (EPR) or silicon rubber.




The inner and outer semiconducting layers may be of the same basic material but with particles of conducting material such as soot or metal powder mixed in.




The mechanical properties of these materials, particularly their coefficients of thermal expansion, are affected relatively little by whether soot or metal powder is mixed in or not—at least in the proportions required to achieve the conductivity necessary according to the invention. The insulating layer and the semiconducting layers thus have substantially the same coefficients of thermal expansion.




Ethylene-vinyl-acetate copolymers/nitrile rubber, butyl graft polyethylene, ethylene-butyl-acrylate-copolymers and ethylene-ethyl-acrylate copolymers may also constitute suitable polymers for the semiconducting layers.




Even when different types of material are used as base in the various layers, it is desirable for their coefficients of thermal expansion to be substantially the same. This is the case with combination of the materials listed above.




The materials listed above have relatively good elasticity, with an E-modulus of E<500 MPa, preferably <200 MPa. The elasticity is sufficient for any minor differences between the coefficients of thermal expansion for the materials in the layers to be absorbed in the radial direction of the elasticity so that no cracks appear, or any other damage, and so that the layers are not released from each other. The material in the layers is elastic, and the adhesion between the layers is at least of the same magnitude as the weakest of the materials.




The conductivity of the two semiconducting layers is sufficient to substantially equalize the potential along each layer. The conductivity of the outer semiconducting layer is sufficiently large to enclose the electrical field in the cable, but sufficiently small not to give rise to significant losses due to currents induced in the longitudinal direction of the layer.




Thus, each of the two semiconducting layers essentially constitutes one equipotential surface, and these layers will substantially enclose the electrical field between them.




There is, of course, nothing to prevent one or more additional semiconducting layers being arranged in the insulating layer.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will now described in more detail with reference to the accompanying drawings.





FIG. 1

shows a perspective view of an upper end plate according to the invention, in a rotating electric machine with vertical axis of rotation,





FIG. 2



a


shows a perspective view of a lower end plate according to the invention, in a rotating electric machine with vertical axis of rotation,





FIG. 2



b


shows a casting device according to the present invention,





FIG. 2



c


shows a section through a high-voltage cable used in conjunction with the present invention,





FIG. 3

shows a radial side view of the upper end plate in

FIG. 1

,





FIG. 4

shows a radial top view of the end plate in

FIG. 3

,





FIG. 5

shows an axial section A—A through the plate, taken as shown in

FIG. 4

,





FIG. 6

shows a radial section B—B through the plate, taken as shown in

FIG. 4

,





FIG. 7

shows a radial side view of the lower end plate in

FIG. 2

,





FIG. 8

shows a radial top view of the end plate in

FIG. 7

,





FIG. 9

shows an axial section C—C through the plate, taken as shown in

FIG. 8

,





FIG. 10

shows a radial section D—D through the plate, taken as shown in

FIG. 8

,





FIG. 11

shows a how the cooling tubes are drawn through the upper end plate, fitted at the upper end of the stator, and





FIG. 12

shows a cooling circuit in conjunction with the present invention.











DESCRIPTION OF THE INVENTION





FIG. 1

shows an upper stator end plate


1


provided with 10-12 axially running winding slots


2


corresponding to a stator, arranged radially, the number depending on the design of the stator, said winding slots forming a radial chain slot


3


. The stator end plate is also provided with an inlet slit


4


and an outlet slit


5


for cooling tubes with flows to and from the laminated stack. The stator end plate


1


is in the form of a circle sector with one, two or more chain slots. The sectors are assembled side by side to form a whole circular plate covering one end of the stator (the upper end if the axis of the machine is vertical). The plate


1


is also provided with two upper casting channels


6


,


7


arranged radially in the chain slot


3


in order to embed an upper sealing member


8


at the exit of each winding slot


2


from the plate


1


(only one sealing member is shown in

FIG. 1

)

FIG. 1

also shows a transverse slit


9


for cooling tubes running in the stator yoke. A recess


10


is also provided for the fixing bar of the “core”.





FIG. 2



a


shows a lower stator end plate


11


which, in equivalent manner to the upper stator end plate in

FIG. 1

, is provided with the same number of axially running winding slots


2


corresponding to the stator as in the upper plate (


10


-


12


), arranged radially and in equivalent manner forming a radial chain slot


3


. The lower stator end plate


11


is provided with one or more turn-around slits


12


in which cooling tubes are arranged to run out of the laminated stack, turn and run into it again. As described for the upper plate, the lower stator end plate


11


is designed as a circle sector with one, two or more chain slots. The sectors are assembled side by side to form a whole circular plate covering one end of the stator (in this case the lower end if the axis of the machine is vertical). The stator end plate


11


is also provided with two lower casting channels


13


,


14


arranged radially in the chain slot


3


in order to embed a lower sealing member


15


at the exit of each winding slot


2


from the plate


1


(only one sealing member is shown in this Figure as well). As can be seen in the Figures, these sealing members may be shaped differently depending on which plate they belong to. They may also protrude different lengths from the plate depending on the protection each member is to provide. The lower stator end plate


11


is also provided with a recess


10


for the fixing bar of the “core”.

FIG. 2

also shows that the lower stator end plate


11


is provided with a number of attachment holes


16


for a casting device


100


, see

FIG. 2



b


, and assembly holes


17


for a locking bolt that locks the plate


11


to a lower thick metal sheet constituting an annular part of the stator frame.





FIG. 2



b


shows the casting device


100


provided with nipples


110


in the region of the turn-around slits


12


. The casting device


100


is arranged to be connected to the lower stator end plate


11


by attachment bolts


120


. The casting device


100


is also provided with rubber seals


125


against the end plate, at silicon embedment of the cooling tubes.




The procedure for embedding the sealing members is for detachable tools in the form of cylindrical plugs for casting the members to be fitted on the end plate and casting compound injected into a casting inlet in the plate, the compounding then spreading to all the cable positions.




The procedure for casting cooling tubes is that the casting device is sealingly connected to a first laminar plate and silicon is then forced in around the cooling tubes until the silicon “runs out” at the upper end plate. The casting device is then removed and attached to another laminar plate and the injection procedure is repeated, and so on until all cooling tubes have been embedded in silicon. The cooling tubes are thus embedded both inside the end plates and inside the stator. Furthermore, the casting device can be used again.




Two separate casting processes are thus used, one for sealing members and the other for cooling tubes. Different types of silicon are often used for these processes.





FIG. 2



c


shows a cross section through a high-voltage cable


111


for use in connection with the present invention. The high-voltage cable


111


is composed of a number of strand parts


112


made of copper (Cu), for instance, and having circular cross section. These strand parts


112


are arranged in the middle of the high-voltage cable


111


. Around the strand parts


112


is a first semiconducting layer


113


. Around the first semiconducting layer


113


is an-insulating layer


114


, e.g. XLPE-insulation, and around the insulating layer


114


is a second semiconducting layer


115


. The concept “high-voltage cable” in the present application thus does not include the outer sheath that normally surrounds such a cable for power distribution. The high-voltage cable has a diameter within the interval 20-250 mm and a conducting area within the interval 40-3000 mm


2


.





FIG. 3

shows both casting channels


6


,


7


of the upper stator end plate


1


, and a casting inlet


18


for injecting the casting compound.





FIG. 4

shows the upper stator end plate


1


from above, with an inlet aperture


19


for a cooling tube in the inlet slit


4


, and a first bending member


20


for this cooling tube. Cooling tube apertures for returning cooling tubes are also shown, with turning members


23


between them. As indicated in the Figure, the outlet slit


5


is arranged in corresponding manner, with an outlet aperture


24


and corresponding first and second bending members


20


,


23


. The inlet and outlet slits


4


,


5


are also provided with turned cavities


25


of thicker diameter on the yoke side of the stator, to enable connection of the cooling tube to a thicker tube for extra protection.




In an axial section through the plate;

FIG. 5

shows a winding slot


2


and the upper casting channels


6


,


7


.




In a radial section through the plate,

FIG. 6

shows the inlet slit


4


which extends from the inlet aperture


19


to the turned cavity


25


. It can be seen from this Figure that the


35


first bending member


20


is higher than the second bending member


23


so that the cooling tube acting as inlet to the stator is closer to the surface than the cooling tube that. returns in this plate, i.e. the cooling tubes are situated one above the other in the inlet slit


4


.




For the upper stator end plate


1


the plate thickness t


u


, is such that t


u


≧2F


r


, where F


r


is the external diameter of the cooling tube so that all cooling tubes are covered by the plate.





FIG. 7

shows the two casting channels


13


,


14


of the lower stator end plate


11


, and a casting inlet


18


for injection of casting compound. What differentiates the lower plate from the upper plate is that the plate thickness t


l


is less and that the casting channels


13


,


14


are closer together.





FIG. 8

shows the lower stator end plate


11


from its outer side, revealing its turn-around slits


12


, the cooling-tube apertures


19


,


21


,


22


and a cooling-tube aperture


26


located in the stator yoke. All these cooling-tube apertures


19


,


21


,


22


,


26


constitute openings in this plate for returning cooling tubes with third bending members


27


between them.




In an axial section through the plate in

FIG. 8

,

FIG. 9

shows a winding slot


2


and the lower casting channels


13


,


14


. The section also reveals that the lower plate is provided with an opening


28


for the casting device.





FIG. 10

shows a radial section through the lower stator end plate


11


and through a lower, thick metal sheet


30


connected to the plate by a locking bolt


29


. The three bending members


27


are also shown recessed in the turn-around slits


12


, as well as the attachment holes for the casting device. The lower plate is thus designed for cooling tubes that return inside the plate. Since no inlets or outlets are arranged in the lower plate, the thickness of this plate can be kept to a minimum. For the stator end plate


11


, therefore, the plate thickness t


l


is such that t


l


≧F


r


, where F


r


is the outer diameter of the cooling tube, so that all cooling tubes are covered by the plate.





FIG. 11

shows a section through a part of a stator


31


provided with cooling tubes, with its stator core


32


, at one end of which the stator end plate


1


is fitted. It is clear from the Figure that all the cooling tubes


33


running in the inlet and outlet slits are recessed in the stator end plate


1


so that they are protected from mechanical stress. The cooling tubes


33


are also connected to an inlet circuit


132


for inlet medium and an outlet circuit


133


for outlet medium.





FIG. 12

shows that all cooling tubes are connected to a closed cooling circuit


129


which, in the embodiment shown, comprises a tank


30


containing the coolant


131


which may be water, hydrogen or other coolant. The tank


130


is provided with a level indicator for controlling and monitoring the level of the coolant. The tank


130


is also connected to two annular tubes consisting of the inlet circuit


132


and outlet circuit


133


. Between the inlet circuit


132


and the outlet circuit


133


a number parallel circuits is connected, the number often corresponding to the number of stator teeth or tooth sides provided with cooling tubes, One of these parallel circuits


134


is shown in FIG.


12


. The coolant


131


is arranged to circulate from the inlet circuit


132


, simultaneously through all the parallel circuits


134


, to the outlet circuit


133


and on to a circulation pump


135


, to a circulation filter


136


through a heat-exchanger


137


, e.g. a plate heat-exchanger, and then back to the inlet circuit


132


. Water from a water supply is fed by an exchanger pump


138


through one end of the heat-exchanger


137


via a filter, not shown. The water is pumped through the exchanger and back to the water supply.




The stator end plates described are preferably made from laminated material. They may be in the form of a completely circular plate instead of being divided into sectors as described above. Furthermore, all cooling tubes are embedded in silicon rubber in the stator, in order to improve the heat transfer between the laminated stack and cooling tubes.




The stator end plate, either upper or lower, has an axial thickness t such that t≧F


r


, where F


r


is the outer diameter of the cooling tube. The designation t may here represent either t


l


or t


u


.




The second and third bending members


23


,


27


of the stator end plates are bent in one or two steps, each step constituting an angle of 90° as shown in

FIGS. 6 and 10

, or in one step with an angle of 180°, i.e. as a semi-circle, if the distance between the cooling tubes corresponds to the diameter of the bending circle. The first bending member


20


at the inlet aperture and outlet aperture is bent in one step at an angle of 90°. The bending members


20


,


23


,


27


are thus bent in one or two steps, each step constituting an angle of 90°.



Claims
  • 1. An end plate for a stator of a rotating electric machine wound with a cable, comprising:axially running winding slots corresponding to winding slots in the stator; axially running apertures configured to receive a cooling tube; and at least one bending member pre-shaped in the end plate and configured to direct the cooling tube into the apertures, wherein the axially running winding slots are configured as a radial chain slot having at least one slot, each of the at least one slots having a round shape corresponding to a cross section of the cable, and the axially running apertures are configured to provide cooling to at least stator teeth forming the winding slots.
  • 2. An end plate as claimed in claim 1, wherein the end plate is radially divided into sectors, each sector corresponding to one or more slot divisions.
  • 3. An end plate as claimed in claim 1, wherein the end plate comprises a laminated material.
  • 4. An end plate as claimed in claim 1, wherein the end plate has an axial thickness t such that t>Fr, Fr being an external diameter of the cooling tubes.
  • 5. An end plate as claimed in claim 1, wherein the end plate has casting channels for receiving a sealing member, at an exit of each winding slot from the end plate.
  • 6. An end plate as claimed in claim 1, wherein the cable comprises a high-voltage cable.
  • 7. An end plate as claimed in claim 1, wherein the end plate is dimensioned for receiving a high-voltage cable having a diameter of about 20 mm to about 250 mm and a conducting area of about 40 mm2 to about 3000 mm2.
  • 8. An end plate as claimed in claim 1, wherein the cable comprises a conductive core and an electric field confining insulating covering surrounding the core.
  • 9. An end plate as claimed in claim 1, wherein the bending member is bent in at least one step of 90°.
  • 10. An end plate as claimed in claim 9, wherein the cooling tube has an outlet and the end plate has at least one inlet slit for the outlet of the cooling tube.
  • 11. An end plate as claimed in claim 10, wherein the end plate has attachment holes for insertion of a casting device.
  • 12. An end plate as claimed in claims 11, having at least one turn around slot therein, and wherein the casting device is shaped to seal at least one of the turn-around slits of the end plate and includes a nipple for pressing a casting compound therein.
  • 13. An end plate as claimed in claim 9, wherein the end plate has a turn-around slit for at least one bending member.
  • 14. An end plate as claimed in claim 1, wherein the winding is flexible and comprises an electrically conducting core surrounded by an inner semiconducting layer, an insulating layer surrounding the inner semiconducting layer formed of solid material, and an outer semiconducting layer surrounding the insulating layer, said layers being adhered to each other.
  • 15. An end plate as claimed in claim 14, wherein a material of the inner semiconducting layer, a material of the insulating layer, and a material of the outer semiconducting layer each having an elasticity and a coefficient of thermal expansion such that a change in volume in the layers caused by temperature fluctuations during operation is absorbed by the elasticity of the materials so that the layers retain their adhesion to each other at the temperature fluctuations occurring during operation.
  • 16. An end plate as claimed in claim 14, wherein a material of the inner semiconducting layer, a material of the insulating layer, and a material of the outer-semiconducting layer each having an E-modulus less than about 500 MPa.
  • 17. An end plate as claimed in claim 14, wherein the coefficients of thermal expansion for the materials in said layers are substantially the same.
  • 18. An end plate as claimed in claim 14, wherein an adhesion between the layers is of at least a same magnitude as a strength of a weakest one of a material of the inner semiconducting layer, a material of the insulating layer, and a material of the outer semiconducting layer.
  • 19. An end plate as claimed in claim 14, wherein each of the semiconducting layers comprises an equipotential surface.
  • 20. An end plate as claimed in claim 14, wherein a material of the inner semiconducting layer, a material of the insulating layer, and a material of the outer semiconducting layer each having an E-modulus less than about 200 MPa.
  • 21. A procedure for supporting and protecting a cooling tube in a first axially running aperture at its exit from a stator in a rotating electric machine, comprising the steps of applying an end plate provided with bending members at the end of the stator, bending the cooling tube around the bending member before continuing, by at least one of being fitted in a second axially running aperture in the stator and for extension out of the stator, whereinthe end plate includes axially running winding slots corresponding to winding slots in the stator and configured as radial chain slots having at least one slot, each of the at least one slots having a round shape corresponding to a cross section of a cable winding, and the first axially running aperture and the second axially running aperture are configured to provide cooling to at least stator teeth forming the winding slots.
  • 22. A rotating electric machine, comprising:a stator having stator slots, each stator slot including a plurality of winding slots formed by stator teeth running axially, the plurality of winding slots being arranged radially along the stator slot; a winding of a high-voltage cable drawn through the winding slots; and an end plate including a plurality of winding slots running axially and corresponding to the plurality of winding slots, a plurality of apertures running axially and configured to receive a cooling tube, and at least one bending member pre-shaped in the end plate and configured to direct the cooling tube into the plurality of apertures, wherein the plurality of apertures are configured to provide cooling to at least the stator teeth.
Priority Claims (2)
Number Date Country Kind
9700349 Feb 1997 SE
9704422 Nov 1997 SE
PCT Information
Filing Document Filing Date Country Kind
PCT/SE98/00163 WO 00
Publishing Document Publishing Date Country Kind
WO98/34323 8/6/1998 WO A
US Referenced Citations (336)
Number Name Date Kind
681800 Lasche Aug 1901 A
847008 Kitsee Mar 1907 A
1304451 Burnham May 1919 A
1418856 Williamson Jun 1922 A
1481585 Beard Jan 1924 A
1508456 Lenz Sep 1924 A
1728915 Blankenship et al. Sep 1929 A
1742985 Burnham Jan 1930 A
1747507 George Feb 1930 A
1756672 Barr Apr 1930 A
1762775 Ganz Aug 1930 A
1781308 Vos Nov 1930 A
1881182 Hendey et al. May 1932 A
1904885 Seeley Apr 1933 A
1974406 Apple et al. Sep 1934 A
2006170 Juhlin Aug 1935 A
2206856 Shearer Jul 1940 A
2217430 Baudry Oct 1940 A
2241832 Wahlquist May 1941 A
2251291 Reichalt Jun 1941 A
2256897 Davidson et al. Sep 1941 A
2295415 Monroe Sep 1942 A
2409893 Pendleton et al. Oct 1946 A
2415652 Norton Feb 1947 A
2424443 Evans Jul 1947 A
2436308 Johnson Feb 1948 A
2446999 Carnilli Jun 1948 A
2459322 Johnston Jan 1949 A
2462651 Lord Feb 1949 A
2498238 Berberich et al. Feb 1950 A
2650350 Heath Aug 1953 A
2721905 Monroe Oct 1955 A
2749456 Luenberger Jun 1956 A
2780771 Lee Feb 1957 A
2846599 McAdam Aug 1958 A
2885581 Pileggi May 1959 A
2943242 Schaschi et al. Jun 1960 A
2947957 Spindler Aug 1960 A
2959699 Smith et al. Nov 1960 A
2962679 Stratton Nov 1960 A
2975309 Seidner Mar 1961 A
3014139 Shildneck Dec 1961 A
3098893 Pringle et al. Jul 1963 A
3130335 Rejda Apr 1964 A
3143269 Van Eldik Aug 1964 A
3157806 Wiedemann Nov 1964 A
3158770 Coggeshall et al. Nov 1964 A
3197723 Dortort Jul 1965 A
3268768 Amos Aug 1966 A
3304599 Nordin Feb 1967 A
3354331 Broeker et al. Nov 1967 A
3365657 Webb Jan 1968 A
3372283 Jaecklin Mar 1968 A
3392779 Tilbrook Jul 1968 A
3411027 Rosenberg Nov 1968 A
3418530 Cheever Dec 1968 A
3435262 Bennett et al. Mar 1969 A
3437858 White Apr 1969 A
3444407 Yates May 1969 A
3447002 Ronnevig May 1969 A
3484690 Wald Dec 1969 A
3541221 Aupoix et al. Nov 1970 A
3560777 Moeller Feb 1971 A
3571690 Lataisa Mar 1971 A
3593123 Williamson Jul 1971 A
3619674 Daimo et al. Nov 1971 A
3631519 Salahshourian Dec 1971 A
3644662 Salahshourian Feb 1972 A
3651244 Silver et al. Mar 1972 A
3651402 Leffmann Mar 1972 A
3660721 Baird May 1972 A
3666876 Forster May 1972 A
3670192 Andersson et al. Jun 1972 A
3675056 Lenz Jul 1972 A
3684821 Miyauchi et al. Aug 1972 A
3684906 Lexz Aug 1972 A
3699238 Hansen et al. Oct 1972 A
3716652 Lusk et al. Feb 1973 A
3716719 Angelery et al. Feb 1973 A
3727085 Goetz et al. Apr 1973 A
3740600 Turley Jun 1973 A
3743867 Smith, Jr. Jul 1973 A
3746954 Myles et al. Jul 1973 A
3758699 Lusk et al. Sep 1973 A
3778891 Amasino et al. Dec 1973 A
3781739 Meyer Dec 1973 A
3787607 Schiafly Jan 1974 A
3792399 McLyman Feb 1974 A
3801843 Corman et al. Apr 1974 A
3809933 Sugawara et al. May 1974 A
3813764 Tanaka et al. Jun 1974 A
3820048 Ohta et al. Jun 1974 A
3828115 Hvizd, Jr. Aug 1974 A
3881647 Wolfe May 1975 A
3884154 Marten May 1975 A
3891880 Britsch Jun 1975 A
3902000 Forsyth et al. Aug 1975 A
3912957 Reynolds Oct 1975 A
3932779 Madsen Jan 1976 A
3932791 Oswald Jan 1976 A
3943392 Keuper et al. Mar 1976 A
3947278 Youtsey Mar 1976 A
3963950 Watanabe et al. Jun 1976 A
3965408 Higuchi et al. Jun 1976 A
3968388 Lambrecht et al. Jul 1976 A
3971543 Shanahan Jul 1976 A
3974314 Fuchs Aug 1976 A
3993860 Snow et al. Nov 1976 A
3995785 Arick et al. Dec 1976 A
4001616 Lonseth et al. Jan 1977 A
4008367 Sunderhauf Feb 1977 A
4008409 Rhudy et al. Feb 1977 A
4031310 Jachimowicz Jun 1977 A
4039740 Iwata Aug 1977 A
4041431 Enoksen Aug 1977 A
4047138 Steigerwald Sep 1977 A
4064419 Peterson Dec 1977 A
4084307 Schultz et al. Apr 1978 A
4085347 Lichius Apr 1978 A
4088953 Sarian May 1978 A
4091138 Takagi et al. May 1978 A
4091139 Quirk May 1978 A
4099227 Liptak Jul 1978 A
4103075 Adam Jul 1978 A
4106069 Trautner et al. Aug 1978 A
4107092 Carnahan et al. Aug 1978 A
4109098 Olsson et al. Aug 1978 A
4121148 Platzer Oct 1978 A
4132914 Khutoretsky et al. Jan 1979 A
4134036 Curtiss Jan 1979 A
4134055 Akamatsu Jan 1979 A
4134146 Stetson Jan 1979 A
4149101 Lesokhin et al. Apr 1979 A
4152615 Calfo et al. May 1979 A
4160193 Richmond Jul 1979 A
4164672 Flick Aug 1979 A
4164772 Hingorani Aug 1979 A
4177397 Lill Dec 1979 A
4177418 Brueckner et al. Dec 1979 A
4184186 Barkan Jan 1980 A
4200817 Bratoljic Apr 1980 A
4200818 Ruffing et al. Apr 1980 A
4206434 Hase Jun 1980 A
4207427 Beretta et al. Jun 1980 A
4207482 Neumeyer et al. Jun 1980 A
4208597 Mulach et al. Jun 1980 A
4229721 Koloczek et al. Oct 1980 A
4238339 Khutoretsky et al. Dec 1980 A
4239999 Vinokurov et al. Dec 1980 A
4245182 Aotsu et al. Jan 1981 A
4246694 Raschbichler et al. Jan 1981 A
4255684 Mischler et al. Mar 1981 A
4258280 Starcevic Mar 1981 A
4262209 Berner Apr 1981 A
4274027 Higuchi et al. Jun 1981 A
4281264 Keim et al. Jul 1981 A
4292558 Flick et al. Sep 1981 A
4307311 Grozinger Dec 1981 A
4308476 Schuler Dec 1981 A
4308575 Mase Dec 1981 A
4310966 Breitenbach Jan 1982 A
4314168 Breitenbach Feb 1982 A
4317001 Silver et al. Feb 1982 A
4320645 Stanley Mar 1982 A
4321426 Schaeffer Mar 1982 A
4321518 Akamatsu Mar 1982 A
4326181 Allen Apr 1982 A
4330726 Albright et al. May 1982 A
4337922 Streiff et al. Jul 1982 A
4341989 Sandberg et al. Jul 1982 A
4347449 Beau Aug 1982 A
4347454 Gellert et al. Aug 1982 A
4353612 Meyers Oct 1982 A
4357542 Kirschbaum Nov 1982 A
4360748 Raschbichler et al. Nov 1982 A
4361723 Hvizd, Jr. et al. Nov 1982 A
4365178 Lexz Dec 1982 A
4367425 Mendelsohn et al. Jan 1983 A
4367890 Spirk Jan 1983 A
4368418 Demello et al. Jan 1983 A
4369389 Lambrecht Jan 1983 A
4371745 Sakashita Feb 1983 A
4384944 Silver et al. May 1983 A
4387316 Katsekas Jun 1983 A
4401920 Taylor et al. Aug 1983 A
4403163 Armerding et al. Sep 1983 A
4404486 Keim et al. Sep 1983 A
4411710 Mochizuki et al. Oct 1983 A
4421284 Pan Dec 1983 A
4425521 Rosenberry, Jr. et al. Jan 1984 A
4426771 Wang et al. Jan 1984 A
4429244 Nikiten et al. Jan 1984 A
4431960 Zucker Feb 1984 A
4432029 Lundqvist Feb 1984 A
4437464 Crow Mar 1984 A
4443725 Derderian et al. Apr 1984 A
4470884 Carr Sep 1984 A
4473765 Butman, Jr. et al. Sep 1984 A
4475075 Munn Oct 1984 A
4477680 Asato Oct 1984 A
4481438 Keim Nov 1984 A
4484106 Taylor et al. Nov 1984 A
4488079 Dailey et al. Dec 1984 A
4490651 Taylor et al. Dec 1984 A
4503284 Minnick et al. Mar 1985 A
4508251 Harada et al. Apr 1985 A
4510077 Elton Apr 1985 A
4517471 Sachs May 1985 A
4520287 Wang et al. May 1985 A
4523249 Arimoto Jun 1985 A
4538131 Baier et al. Aug 1985 A
4546210 Akiba et al. Oct 1985 A
4551780 Canay Nov 1985 A
4552990 Persson et al. Nov 1985 A
4557038 Wcislo et al. Dec 1985 A
4560896 Vogt et al. Dec 1985 A
4565929 Baskin et al. Jan 1986 A
4571453 Takaoka et al. Feb 1986 A
4588916 Lis May 1986 A
4590416 Porche et al. May 1986 A
4594630 Rabinowitz et al. Jun 1986 A
4607183 Rieber et al. Aug 1986 A
4615109 Wcislo et al. Oct 1986 A
4615778 Elton Oct 1986 A
4618795 Cooper et al. Oct 1986 A
4619040 Wang et al. Oct 1986 A
4622116 Elton et al. Nov 1986 A
4633109 Feigel Dec 1986 A
4650924 Kauffman et al. Mar 1987 A
4652963 Fahlen Mar 1987 A
4656316 Meltsch Apr 1987 A
4656379 McCarty Apr 1987 A
4663603 van Riemsdijk et al. May 1987 A
4677328 Kumakura Jun 1987 A
4687882 Stone et al. Aug 1987 A
4692731 Osinga Sep 1987 A
4723083 Elton Feb 1988 A
4723104 Rohatyn Feb 1988 A
4724345 Elton et al. Feb 1988 A
4732412 van der Linden et al. Mar 1988 A
4737704 Kalinnikov et al. Apr 1988 A
4745314 Nakano May 1988 A
4761602 Leibovich Aug 1988 A
4766365 Bolduc et al. Aug 1988 A
4771168 Gundersen et al. Sep 1988 A
4785138 Breitenbach et al. Nov 1988 A
4795933 Sakai Jan 1989 A
4827172 Kobayashi May 1989 A
4845308 Womack, Jr. et al. Jul 1989 A
4847747 Abbondanti Jul 1989 A
4853565 Elton et al. Aug 1989 A
4859810 Cloetens et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4860430 Raschbichler et al. Aug 1989 A
4864266 Feather et al. Sep 1989 A
4883230 Lindstrom Nov 1989 A
4890040 Gundersen Dec 1989 A
4894284 Yamanouchi et al. Jan 1990 A
4914386 Zocholl Apr 1990 A
4918347 Takaba Apr 1990 A
4918835 Wcislo et al. Apr 1990 A
4924342 Lee May 1990 A
4926079 Niemela et al. May 1990 A
4942326 Butler, III et al. Jul 1990 A
4949001 Campbell Aug 1990 A
4982147 Lauw Jan 1991 A
4994952 Silva et al. Feb 1991 A
4997995 Simmons et al. Mar 1991 A
5012125 Conway Apr 1991 A
5030813 Stanisz Jul 1991 A
5036165 Elton et al. Jul 1991 A
5036238 Tajima Jul 1991 A
5066881 Elton et al. Nov 1991 A
5067046 Elton et al. Nov 1991 A
5083360 Valencic et al. Jan 1992 A
5086246 Dymond et al. Feb 1992 A
5091609 Swada et al. Feb 1992 A
5094703 Takaoka et al. Mar 1992 A
5095175 Yoshida et al. Mar 1992 A
5097241 Smith et al. Mar 1992 A
5097591 Wcislo et al. Mar 1992 A
5111095 Hendershot May 1992 A
5124607 Rieber et al. Jun 1992 A
5136459 Fararooy Aug 1992 A
5140290 Dersch Aug 1992 A
5153460 Bovino et al. Oct 1992 A
5168662 Nakamura et al. Dec 1992 A
5171941 Shimizu et al. Dec 1992 A
5175396 Emery et al. Dec 1992 A
5182537 Thuis Jan 1993 A
5187428 Hutchison et al. Feb 1993 A
5231249 Kimura et al. Jul 1993 A
5235488 Koch Aug 1993 A
5246783 Spenadel et al. Sep 1993 A
5264778 Kimmel et al. Nov 1993 A
5287262 Klein Feb 1994 A
5293146 Aosaki et al. Mar 1994 A
5304883 Denk Apr 1994 A
5305961 Errard et al. Apr 1994 A
5321308 Johncock Jun 1994 A
5323330 Asplund et al. Jun 1994 A
5325008 Grant Jun 1994 A
5325259 Paulsson Jun 1994 A
5327637 Britenbach et al. Jul 1994 A
5341281 Skibinski Aug 1994 A
5343139 Gyugyi et al. Aug 1994 A
5355046 Weigelt Oct 1994 A
5365132 Hann et al. Nov 1994 A
5387890 Estop et al. Feb 1995 A
5397513 Steketee, Jr. Mar 1995 A
5399941 Grothaus et al. Mar 1995 A
5400005 Bobry Mar 1995 A
5408169 Jeanneret Apr 1995 A
5449861 Fujino et al. Sep 1995 A
5452170 Ohde et al. Sep 1995 A
5468916 Litenas et al. Nov 1995 A
5499178 Mohan Mar 1996 A
5500632 Halser, III Mar 1996 A
5510942 Bock et al. Apr 1996 A
5530307 Horst Jun 1996 A
5533658 Benedict et al. Jul 1996 A
5534754 Poumey Jul 1996 A
5545853 Hildreth Aug 1996 A
5550410 Titus Aug 1996 A
5583387 Takeuchi et al. Dec 1996 A
5587126 Steketee, Jr. Dec 1996 A
5598137 Alber et al. Jan 1997 A
5607320 Wright Mar 1997 A
5612510 Hildreth Mar 1997 A
5663605 Evans et al. Sep 1997 A
5672926 Brandes et al. Sep 1997 A
5689223 Demarmels et al. Nov 1997 A
5807447 Forrest Sep 1998 A
5834699 Buck et al. Nov 1998 A
5886433 Oda et al. Mar 1999 A
5902958 Haxton May 1999 A
Foreign Referenced Citations (432)
Number Date Country
399780 Jul 1995 AT
565063 Feb 1957 BE
391071 Apr 1965 CH
266037 Oct 1965 CH
534448 Feb 1973 CH
539328 Jul 1973 CH
646403 Feb 1979 CH
657482 Aug 1986 CH
1189322 Oct 1986 CH
40414 Aug 1887 DE
134022 Dec 1901 DE
277012 Jul 1914 DE
336418 Jun 1920 DE
372390 Mar 1923 DE
386561 Dec 1923 DE
387973 Jan 1924 DE
406371 Nov 1924 DE
425551 Feb 1926 DE
426793 Mar 1926 DE
432169 Jul 1926 DE
433749 Sep 1926 DE
435608 Oct 1926 DE
435609 Oct 1926 DE
441717 Mar 1927 DE
443011 Apr 1927 DE
460124 May 1928 DE
482506 Sep 1929 DE
501181 Jul 1930 DE
523047 Apr 1931 DE
568508 Jan 1933 DE
572030 Mar 1933 DE
584639 Sep 1933 DE
586121 Oct 1933 DE
604972 Nov 1934 DE
629301 Apr 1936 DE
673545 Mar 1939 DE
719009 Mar 1942 DE
848583 Aug 1952 DE
875227 Apr 1953 DE
975999 Jan 1963 DE
1465719 May 1969 DE
1807391 May 1970 DE
2050674 May 1971 DE
1638176 Jun 1971 DE
2155371 May 1973 DE
2400698 Jul 1975 DE
2520511 Nov 1976 DE
2656389 Jun 1978 DE
2721905 Nov 1978 DE
137164 Aug 1979 DE
138840 Nov 1979 DE
2824951 Dec 1979 DE
2835386 Feb 1980 DE
2839517 Mar 1980 DE
2854520 Jun 1980 DE
3009102 Sep 1980 DE
2913697 Oct 1980 DE
2920478 Dec 1980 DE
3028777 Mar 1981 DE
2939004 Apr 1981 DE
3006382 Aug 1981 DE
3008818 Sep 1981 DE
209313 Apr 1984 DE
3305225 Aug 1984 DE
3309051 Sep 1984 DE
3441311 May 1986 DE
3543106 Jun 1987 DE
2917717 Aug 1987 DE
3612112 Oct 1987 DE
3726346 Feb 1989 DE
3925337 Feb 1991 DE
4023903 Nov 1991 DE
4022476 Jan 1992 DE
4233556 Mar 1994 DE
4402184 Aug 1995 DE
4409794 Aug 1995 DE
4412761 Oct 1995 DE
4420322 Dec 1995 DE
19620906 Jan 1996 DE
4438186 May 1996 DE
19020222 Mar 1997 DE
19547229 Jun 1997 DE
468827 Jul 1997 DE
049104 Apr 1982 EP
0493704 Apr 1982 EP
0056580 Jul 1982 EP
078908 May 1983 EP
0120154 Oct 1984 EP
0130124 Jan 1985 EP
0142813 May 1985 EP
0155405 Sep 1985 EP
0102513 Jan 1986 EP
0174783 Mar 1986 EP
0185788 Jul 1986 EP
0277358 Aug 1986 EP
0234521 Sep 1987 EP
0244069 Nov 1987 EP
0246377 Nov 1987 EP
0285868 May 1988 EP
0274691 Jul 1988 EP
0280759 Sep 1988 EP
0282876 Sep 1988 EP
0309096 Mar 1989 EP
0314860 May 1989 EP
0316911 May 1989 EP
0317248 May 1989 EP
0335430 Oct 1989 EP
0342554 Nov 1989 EP
0221404 May 1990 EP
0375101 Jun 1990 EP
0406437 Jan 1991 EP
0439410 Jul 1991 EP
0440865 Aug 1991 EP
0469155 Feb 1992 EP
0490705 Jun 1992 EP
0503817 Sep 1992 EP
0571155 Nov 1993 EP
0620570 Oct 1994 EP
0620630 Oct 1994 EP
0642027 Mar 1995 EP
0671632 Sep 1995 EP
0676777 Oct 1995 EP
0677915 Oct 1995 EP
0684679 Nov 1995 EP
0684682 Nov 1995 EP
0695019 Jan 1996 EP
0732787 Sep 1996 EP
0738034 Oct 1996 EP
0739087 Oct 1996 EP
0740315 Oct 1996 EP
0749190 Dec 1996 EP
0751605 Jan 1997 EP
0739087 Mar 1997 EP
0749193 Mar 1997 EP
0780926 Aug 1997 EP
0802542 Oct 1997 EP
0913912 May 1999 EP
805544 Apr 1936 FR
841351 Jan 1938 FR
847899 Dec 1938 FR
916959 Dec 1946 FR
1011924 Apr 1949 FR
1126975 Mar 1955 FR
1238795 Jul 1959 FR
2108171 May 1972 FR
2251938 Jun 1975 FR
2305879 Oct 1976 FR
2376542 Jul 1978 FR
2467502 Apr 1981 FR
2481531 Oct 1981 FR
2556146 Jun 1985 FR
2594271 Aug 1987 FR
2708157 Jan 1995 FR
123906 Mar 1919 GB
268271 Mar 1927 GB
293861 Nov 1928 GB
292999 Apr 1929 GB
319313 Jul 1929 GB
518993 Mar 1940 GB
537609 Jun 1941 GB
540456 Oct 1941 GB
589071 Aug 1947 GB
666883 Feb 1952 GB
685416 Jan 1953 GB
702892 Jan 1954 GB
715226 Sep 1954 GB
723457 Feb 1955 GB
739962 Nov 1955 GB
763761 Dec 1956 GB
805721 Dec 1958 GB
827600 Feb 1960 GB
854728 Nov 1960 GB
870583 Jun 1961 GB
913386 Dec 1962 GB
965741 Aug 1964 GB
992249 May 1965 GB
1024583 Mar 1966 GB
1053337 Dec 1966 GB
1059123 Feb 1967 GB
1103099 Feb 1968 GB
1117401 Jun 1968 GB
1135242 Dec 1968 GB
1147049 Apr 1969 GB
1157885 Jul 1969 GB
1174659 Dec 1969 GB
1236082 Jun 1971 GB
1268770 Mar 1972 GB
1319257 Jun 1973 GB
1322433 Jul 1973 GB
1340983 Dec 1973 GB
1341050 Dec 1973 GB
1365191 Aug 1974 GB
1395152 May 1975 GB
1424982 Feb 1976 GB
1426594 Mar 1976 GB
1438610 Jun 1976 GB
1445284 Aug 1976 GB
1479904 Jul 1977 GB
1493163 Nov 1977 GB
1502938 Mar 1978 GB
1525745 Sep 1978 GB
2000625 Jan 1979 GB
1548633 Jul 1979 GB
2046142 Nov 1979 GB
2022327 Dec 1979 GB
2025150 Jan 1980 GB
2034101 May 1980 GB
1574796 Sep 1980 GB
2070341 Sep 1981 GB
2070470 Sep 1981 GB
2071433 Sep 1981 GB
2081523 Feb 1982 GB
2099635 Dec 1982 GB
2105925 Mar 1983 GB
2106306 Apr 1983 GB
2106721 Apr 1983 GB
2136214 Sep 1984 GB
2140195 Nov 1984 GB
2150153 Jun 1985 GB
1103096 Feb 1988 GB
2268337 Jan 1994 GB
2273819 Aug 1994 GB
2283133 Apr 1995 GB
2289992 Dec 1995 GB
2 289 992 Dec 1995 GB
2308490 Aug 1997 GB
2332557 Jun 1999 GB
175494 Nov 1981 HU
60206121 Mar 1959 JP
57043529 Aug 1980 JP
57126117 May 1982 JP
59076156 Oct 1982 JP
59159642 Feb 1983 JP
6264964 Sep 1985 JP
1129737 May 1989 JP
62320631 Jun 1989 JP
3245748 Feb 1990 JP
4179107 Nov 1990 JP
318253 Jan 1991 JP
424909 Jan 1992 JP
5290947 Apr 1992 JP
6196343 Dec 1992 JP
6233442 Feb 1993 JP
6325629 May 1993 JP
7057951 Aug 1993 JP
7264789 Mar 1994 JP
8167332 Dec 1994 JP
7161270 Jun 1995 JP
8264039 Nov 1995 JP
9200989 Jan 1996 JP
8036952 Feb 1996 JP
8167360 Jun 1996 JP
2017474 Jan 1999 JP
67199 Mar 1972 LU
90308 Sep 1937 SE
305899 Nov 1968 SE
255156 Feb 1969 SE
341428 Dec 1971 SE
453236 Jan 1982 SE
457792 Jun 1987 SE
502417 Dec 1993 SE
792302 Jan 1971 SU
425268 Sep 1974 SU
1019553 Jan 1980 SU
694939 Jan 1982 SU
955369 Aug 1983 SU
1511810 May 1987 SU
WO8202617 Aug 1982 WO
WO8502302 May 1985 WO
WO9011389 Oct 1990 WO
WO9012409 Oct 1990 WO
PCTDE 9000279 Nov 1990 WO
WO9101059 Jan 1991 WO
WO9101585 Feb 1991 WO
WO9107807 Mar 1991 WO
PCT SE 9100077 Apr 1991 WO
WO9109442 Jun 1991 WO
WO 9111841 Aug 1991 WO
WO8115862 Oct 1991 WO
WO 9115755 Oct 1991 WO
WO9201328 Jan 1992 WO
WO9203870 Mar 1992 WO
WO9321681 Oct 1993 WO
WO9406194 Mar 1994 WO
WO9518056 Jul 1995 WO
WO9522153 Aug 1995 WO
WO9524049 Sep 1995 WO
WO9622606 Jul 1996 WO
WO9622607 Jul 1996 WO
PCTCN 9600010 Oct 1996 WO
WO9630144 Oct 1996 WO
WO9710640 Mar 1997 WO
WO9711831 Apr 1997 WO
WO9716881 May 1997 WO
WO 9729494 Aug 1997 WO
WO9745288 Dec 1997 WO
WO9745847 Dec 1997 WO
WO9745848 Dec 1997 WO
WO9745906 Dec 1997 WO
WO9745907 Dec 1997 WO
WO 9745908 Dec 1997 WO
WO9745912 Dec 1997 WO
WO9745914 Dec 1997 WO
WO9745915 Dec 1997 WO
WO9745916 Dec 1997 WO
WO9745918 Dec 1997 WO
WO9745919 Dec 1997 WO
WO9745920 Dec 1997 WO
WO9745921 Dec 1997 WO
WO9745922 Dec 1997 WO
WO9745923 Dec 1997 WO
WO9745924 Dec 1997 WO
WO9745925 Dec 1997 WO
WO9745926 Dec 1997 WO
WO9745927 Dec 1997 WO
WO9745928 Dec 1997 WO
WO9745929 Dec 1997 WO
WO9745930 Dec 1997 WO
WO9745931 Dec 1997 WO
WO9745932 Dec 1997 WO
WO9745933 Dec 1997 WO
WO9745934 Dec 1997 WO
WO9745935 Dec 1997 WO
WO9745936 Dec 1997 WO
WO9745937 Dec 1997 WO
WO9745938 Dec 1997 WO
WO9745939 Dec 1997 WO
WO9747067 Dec 1997 WO
WO9820595 May 1998 WO
WO9820596 May 1998 WO
WO9820597 May 1998 WO
WO 9820598 May 1998 WO
WO9820600 May 1998 WO
WO 9820602 May 1998 WO
WO9821385 May 1998 WO
PCTFR 9800468 Jun 1998 WO
WO9827634 Jun 1998 WO
WO9827635 Jun 1998 WO
WO9827636 Jun 1998 WO
WO9829927 Jul 1998 WO
WO9829928 Jul 1998 WO
WO9829929 Jul 1998 WO
WO9829930 Jul 1998 WO
WO9829931 Jul 1998 WO
WO9829932 Jul 1998 WO
WO9833731 Aug 1998 WO
WO9833736 Aug 1998 WO
WO9833737 Aug 1998 WO
WO9834238 Aug 1998 WO
WO 9834239 Aug 1998 WO
WO9834240 Aug 1998 WO
WO9834241 Aug 1998 WO
WO9834242 Aug 1998 WO
WO9834243 Aug 1998 WO
WO9834244 Aug 1998 WO
WO9834245 Aug 1998 WO
WO9834246 Aug 1998 WO
WO9834247 Aug 1998 WO
WO9834248 Aug 1998 WO
WO9834249 Aug 1998 WO
WO9834250 Aug 1998 WO
WO9834309 Aug 1998 WO
WO9834312 Aug 1998 WO
WO9834315 Aug 1998 WO
WO9834321 Aug 1998 WO
WO9834322 Aug 1998 WO
WO9834323 Aug 1998 WO
WO9834325 Aug 1998 WO
WO9834326 Aug 1998 WO
WO9834327 Aug 1998 WO
WO9834328 Aug 1998 WO
WO9834329 Aug 1998 WO
WO9834330 Aug 1998 WO
WO9834331 Aug 1998 WO
WO 9840627 Sep 1998 WO
WO 9843336 Oct 1998 WO
WO9917309 Apr 1999 WO
WO9917311 Apr 1999 WO
WO9917312 Apr 1999 WO
WO9917313 Apr 1999 WO
WO9917314 Apr 1999 WO
WO9917315 Apr 1999 WO
WO9917316 Apr 1999 WO
WO9917422 Apr 1999 WO
WO9917424 Apr 1999 WO
WO9917425 Apr 1999 WO
WO9917426 Apr 1999 WO
WO9917427 Apr 1999 WO
WO9917428 Apr 1999 WO
WO9917429 Apr 1999 WO
WO9917432 Apr 1999 WO
WO9917433 Apr 1999 WO
WO9919963 Apr 1999 WO
WO9919969 Apr 1999 WO
WO9919970 Apr 1999 WO
PCTSE 9802148 Jun 1999 WO
WO9927546 Jun 1999 WO
WO9928919 Jun 1999 WO
WO9928921 Jun 1999 WO
WO 9928922 Jun 1999 WO
WO9928923 Jun 1999 WO
WO9928924 Jun 1999 WO
WO9928925 Jun 1999 WO
WO9928926 Jun 1999 WO
WO9928927 Jun 1999 WO
WO9928928 Jun 1999 WO
WO9928929 Jun 1999 WO
WO9928930 Jun 1999 WO
WO9928931 Jun 1999 WO
WO9928934 Jun 1999 WO
WO9928994 Jun 1999 WO
WO9929005 Jun 1999 WO
WO 9929005 Jun 1999 WO
WO9929008 Jun 1999 WO
WO9929011 Jun 1999 WO
WO9929012 Jun 1999 WO
WO9929013 Jun 1999 WO
WO9929014 Jun 1999 WO
WO9929015 Jun 1999 WO
WO9929016 Jun 1999 WO
WO9929017 Jun 1999 WO
WO9929018 Jun 1999 WO
WO9929019 Jun 1999 WO
WO9929020 Jun 1999 WO
WO9929021 Jun 1999 WO
WO9929022 Jun 1999 WO
WO 9929023 Jun 1999 WO
WO9929024 Jun 1999 WO
WO 9929025 Jun 1999 WO
WO9929026 Jun 1999 WO
WO9929029 Jun 1999 WO
WO9929034 Jun 1999 WO
Non-Patent Literature Citations (96)
Entry
Shipboard Electrical Insulation; G. L. Moses, 1951 pp2&3.
ABB Elkrafthandbok; ABB AB; 1988 ; pp274-276.
Elkraft teknisk Handbok, 2 Elmaskiner; A. Alfredsson et al; 1988, pp121-123.
High Voltage Cables in a New Class of Generators Powerformer; M. Leijon et al; Jun. 14, 1999; pp1-8.
Ohne Transformator direkt ins Netz; Owman et al, ABB, AB; Feb. 8, 1999; pp48-51.
Submersible Motors and Wet-Rotor Motors for Centrifugal Pumps Submerged in the Fluid Handled; K. Blenick, KSB; Feb. 25, 1988; pp9-17.
High Voltage Generators; G. Beschastnov et al; 1977; vol. 48, No. 6 pp1-7.
Eine neue Type von Unterwassermotoren; Electrotechnik und Mascinenbam, 49; Aug. 1931; pp2-3.
Problems in design of the 110-5OokV high-voltage generators; Nikitl et al; World Electrotechical Congress; Jun. 21-27 1977; Section 1, Paper #18.
Manufacture and Testing of Roebel bars; P. Martl et al; 1960, Pub.86, vol. 8, pp 25-31.
Hydroalternators of 110 to 220 kV Elektrotechn. Obz., vol. 64, No. 3, pp132-136 Mar. 1975; A. Abramov.
Design Concepts for an Amorphous Metal Distribution Transformer; E. Boyd et al; IEEE 11/84.
Neue Wege zum Bau zweipoliger Turbogeneratoren bis 2 GVA, 6OkV Elektrotechnik und Maschinenbau Wien Janner 1972, Heft 1; Seite 1-11; G. Aichholzer.
Optimizing designs of water-resistant magnet wire; V. Kuzenev et al; Elektrotekhnika, vol. 59, No 12, pp35-40, 1988.
Zur Entwicklung der Tauchpumpenmotoren; A. Schanz; KSB, pp19-24.
Direct Generation of alternating current at high voltages; R. Parsons; IEEE Journal, vol. 67 #393, Jan. 15, 1929; pp1065-1080.
Stopfbachsiose Umwalzpumpen- ein wichtiges Element im modemen Kraftwerkbau; H. Hotz, KSB 1, pp13-19, 1960.
Zur Geschichte der Brown Boveri-Synchron-Maschinen; Vierzig Jahre Generatorbau; Jan.-Feb. 1931 pp15-39.
Technik und Anwendung modemer Tauchpumpen; A. Heumann; 1987.
High capacity synchronous generator having no tooth stator; V.S. Kidlshev et al; No. 1, 1977 pp11-16.
Der Asynchronmotor ais Antrieb stopfbcichsloser Pumpen; E. Picmaus; Eletrotechnik und Maschinenbay No. 78, pp153-155, 1961.
Low core loss rotating flux transformer; R. F. Krause, et al; American Institute Physics J.Appl.Phys vol. 64 #10 Nov. 1988, pp5376-5378.
An EHV bulk Power transmission line Made with Low Loss XLPE Cable;Ichihara et al; 6/92; pp3-6.
Underground Transmission Systems Reference Book; 1992; pp16-19; pp36-45; pp67-81.
Power System Stability and Control; P. Kundur, 1994; pp23-25; p. 767.
Six phase Synchronous Machine with AC and DC Stator Connections, Part II:Harmonic Studies and a proposed Uninterruptible Power Supply Scheme; R. Schiferl et al.; Aug. 1983 pp 2694-2701.
Six phase Synchronous Machine with AC and DC Stator Connections, Part 1; Equivalent circuit representation and Steady-State Analysis; R. Schiferl et al; Aug. 1983; pp2685-2693.
Reactive Power Compensation; T. Petersson; 1993; pp 1-23.
Permanent Magnet Machines; K. Binns; 1987; pp 9-1 through 9-26.
Hochspannungsaniagen for Wechselstrom; 97. Hochspannungsaufgaben an Generatoren und Motoren; Roth et al; 1938; pp452-455.
Hochspannungsaniagen for Wechselstrom; 97. Hochspannungsaufgaben an Generatoren und Motoren; Roth et al; Spring 1959, pp30-33.
Neue Lbsungswege zum Entwurf grosser Turbogeneratoren bis 2GVA, 6OkV; G. Aichotzer; Sep. 1974, pp249-255.
Advanced Turbine-generators—an assessment; A. Appleton, et al; International Conf. Proceedings, Lg HV Elec. Sys. Paris, FR, Aug.-Sep./1976, vol. I, Section 11-02, p. 1-9.
Fully slotless turbogenerators; E. Spooner; Proc., IEEE vol. 120 #12, Dec. 1973.
Toroidal winding geometry for high voltage superconducting alternators; J. Kirtley et al; MIT—Elec. Power Sys. Engrg. Lab for IEEE PES;Feb. 1974.
High-Voltage Stator Winding Development; D. Albright et al; Proj. Report EL339, Project 1716, Apr. 1984.
Powerformer™ A giant step in power plant engineering; Owman et al; CIGRE 1996, Paper 11:1.1.
Thin Type DC/DC Converter using a coreless wire transformer; K. Onda et al; Proc. IEEE Power Electronics Spec. Conf.; Jun. 1994, pp330-334.
Development of extruded polymer insulated superconducting cable; Jan. 1992.
Transformer core losses; B. Richardson; Proc. IEEE May 1986, pp365-368.
Cloth-transformer with divided windings and tension annealed amorphous wire; T. Yammamoto et al; IEEE Translation Journal on Magnetics in Japan vol. 4, No. 9 Sep. 1989.
A study of equipment sizes and constraints for a unified power flow controller; J Bian et al; IEEE 1996.
U.S. patent application Ser. No. 09/541,523, pending.
A test installation of a self-tuned ac filter in the Konti-Skan 2 HVDC link; T. Holmgren,G. Asplund, S. Valdemarsson, P. Hidman of ABB; U. Jonsson of Svenska Kraftnat; O. Ioof of Vattenfall Vastsverige AB; IEEE Stockholm Power Tech Conference Jun. 1995, pp 64-70.
Analysis of faulted Power Systems; P Anderson, Iowa State University Press / Ames, Iowa, 1973, pp 255-257.
36-Kv. Generators Arise from Insulation Research; P. Sidler; Electrical World Oct. 15, 1932, ppp 524.
Oil Water cooled 300 MW turbine generator;L.P. Gnedin et al;Elektrotechnika , 1970, pp 6-8.
J&P Transformer Book 11th Edition;A.C. Franklin et al; owned by Butterworth—Heinemann Ltd, Oxford Printed by Hartnolls Ltd in Great Britain 1983, pp29-67.
Transformerboard; H.P. Moser et al; 1979, pp 1-19.
The Skagerrak transmission—the world's longest HVDC submarine cable link; L. Haglof et al of ASEA; ASEA Journal vol. 53, No. 1-2, 1980, pp 3-12.
Direct Connection of Generators to HVDC Converters: Main Characteristics and Comparative Advantages; J.Arrillaga et al; Electra No. 149, Aug. 1993, pp 19-37.
Our flexible friend article; M. Judge; New Scientist, May 10, 1997, pp 44-48.
In-Service Performance of HVDC Converter transformers and oil-cooled smoothing reactors; G.L. Desilets et al; Electra No. 155, Aug. 1994, pp 7-29.
Transformateurs a courant continu haute tension-examen des specifications; A. Lindroth et al; Electra No 141, Apr. 1992, pp 34-39.
Development of a Termination for the 77 kV-Class High Tc Superconducting Power Cable; T. Shimonosono et al; IEEE Power Delivery, vol. 12, No 1, Jan. 1997, pp 33-38.
Verification of Limiter Performance in Modern Excitation Control Systems; G. K. Girgis et al; IEEE Energy Conservation, vol. 10, No. 3, Sep. 1995, pp 538-542.
A High Initial response Brushless Excitation System; T. L. Dillman et al; IEEE Power Generation Winter Meeting Proceedings, Jan. 31, 1971, pp 2089-2094.
Design, manufacturing and cold test of a superconducting coil and its cryosat for SMES applications; A. Bautista et al; IEEE Applied Superconductivity, vol. 7, No. 2, Jun. 1997, pp 853-856.
Quench Protection and Stagnant Normal Zones in a Large Cryostable SMES; Y. Lvovsky et al; IEEE Applied Superconductivity, vol. 7, No. 2, Jun. 1997, pp 857-860.
Design and Construction of the 4 Tesla Background Coil for the Navy SMES Cable Test Apparatus; D.W. Scherbarth et al; IEEE Appliel Superconductivity, vol. 7, No. 2, Jun. 1997, pp 840-843.
High Speed Synchronous Motors Adjustable Speed Drives; ASEA Generation Pamphlet OG 135-101 E, Jan. 1985, pp 1-4.
Billig burk motar overtonen; A. Felidin; ERA (TEKNIK) Aug. 1994, pp 26-28.
400-kV XLPE cable system passes CIGRE test; ABB Article; ABB Review Sep. 1995, pp 38.
FREQSYN—a new drive system for high power applications; J-A. Bergman et al; ASEA Journal 59, Apr. 1986, pp16-19.
Canadians Create Conductive Concrete; J. Beaudoin et al; Science, vol. 276, May 23, 1997, pp 1201.
Fully Water-Cooled 190 MVA Generators in the Tonstad Hydroelectric Power Station; E. Ostby et al; BBC Review Aug. 1969, pp 380-385.
Relocatable static var compensators help control unbundled power flows; R. C. Knight et al; Transmission & Distribution, Dec. 1996, pp 49-54.
Investigation and Use of Asynchronized Machines in Power Systems; N.I.Blotskii et al; Elektrichestvo, No. 12, 1-6, 1985, pp 90-99.
Variable-speed switched reluctance motors; P.J. Lawrenson et al; IEE proc, vol. 187 Pt.B, No. 4, Jul. 1980, pp 253-265.
Das Einphasenwechselstromsystem hoherer Frequenz; J.G. Heft; Elektrische Bahnen eb; Dec. 1987, pp 388-389.
Power Transmission by Direct Current;E. Uhlmann; ISBN 3-540-07122-9 Springer-Verlag, Berlin/Heidelberg/New York; 1975, pp 327-328.
Elektriska Maskiner; F. Gustavson; Institute for Elkreafteknilk, KTH; Stockholm, 1996, pp 3-6-3-12.
Die Wechselstromtechnik; A. Cour' Springer Verlag, Germany; 1936, pp 586-598.
Insulation systems for superconducting transmission cables; O. Toennesen; Nordic Insulation Symposium, Bergen, 1996, pp 425-432.
MPTC: An economical alternative to universal power flow controllers;N. Mohan; EPE 1997, Trondheim, pp 3.1027-3.1030.
Lexikon der Technik; Luger; Band 2, Grundlagen der Elektrotechnik und Kerntechnik, 1960, pp 395.
Das Handbuch der Lokomotiven ( hungarian locomotive V40 1′D′); B. Hollingsworth et al; Pawlak Verlagsgesellschaft; 1933, pp. 254-255.
Synchronous machines wth single or double 3-phase star-connected winding fed by 12-pulse load commutated inverter. Simulation of operational behaviour; C. Ivarson et al; ICEM 1994, International Conference on electrical machines, vol. 1, pp 267-272.
Elkrafthandboken, Elmaskiner; A. Rejminger; Elkrafthandboken, Elmaskiner 1996, 15-20.
Power Electronics—in Theory and Practice; K. Thorborg; ISBN 0-86238-341-2, 1993, pp 1-13.
Regulating transformers in power systems—new concepts and applications; E. Wirth et al; ABB Review Apr. 1997, p 12-20.
Tranforming transformers; S. Mehta et al; IEEE Spectrum, Jul. 1997, pp. 43-49.
A study of equipment sizes and constraints for a unified power flow controller; J. Bian et al; IEEE Transactions on Power Delivery, vol. 12, No. 3, Jul. 1997, pp. 1385-1391.
Industrial High Voltage; F.H. Kreuger; Industrial High Voltage 1991 vol. I, pp. 113-117.
Hochspannungstechnik; A. Küuchler; Hochspannungstechnik, VDI Verlag 1996, pp. 365-366, ISBN 3-18-401530-0 or 3-540-62070-2.
High Voltage Engineering; N.S. Naidu; High Voltage Engineering ,second edition 1995 ISBN 0-07-462286-2, Chapter 5, pp91-98.
Performance Characteristics of a Wide Range Induction Type Frequency Converter; G.A. Ghoneem; Ieema Journal, Sep. 1995, pp 21-34.
International Electrotechnical Vocabulary, Chapter 551 Power Electronics;unknown author; International Electrotechnical Vocabulary Chapter 551: Power Electronics Bureau Central de la Commission Electrotechnique Internationale, Geneve; 1982, pp1-65.
Design and manufacture of a large superconducting homopolar motor; A.D. Appleton; IEEE Transactions on Magnetics, vol. 19, No. 3, Part 2, May 1983, pp 1048-1050.
Application of high temperature superconductivy to electric motor design; J.S. Edmonds et al; IEEE Transactions on Energy Conversion Jun. 1992, No. 2, pp 322-329.
Power Electronics and Variable Frequency Drives; B. Bimal; IEEE industrial Electronics—Technology and Applications, 1996, pp. 356.
Properties of High Plymer Cement Mortar; M. Tamai et al; Science & Technology in Japan, No. 63; 1977, pp 6-14.
Weatherability of Polymer-Modified Mortars after Ten-Year Outdoor Exposure in Koriyama and Sapporo; Y. Ohama et al; Science & Technology in Japan No. 63; 1977, pp 26-31.
SMC Powders Open New Magnetic Applications; M. Persson (Editor); SMC Update,vol. 1, No. 1, Apr. 1997.
Characteristics of a laser triggered spark gap using air, Ar, CH4,H2, He, N2, SF6 and Xe; W.D. Kimura et al; Journal of Applied Physics, vol. 63, No 6, Mar. 15, 1988, p. 1882-1888.
Low-intensy laser-triggering of rail-gaps with magnesium-aerosol switching-gases W FREY; 11th International Pulse Power Conference, 1997, Baltimore, USA Digest of Technical Papers, p. 322-327.