Intrusion detection systems for high security facilities, such as government embassies should be secure from tampering. Many such systems have hardwired connections for communication between modules and panels and control centers. Encryption may be used on such communication to minimize the chances of interception of communications and commensurate attempts to defeat the intrusion detection system.
An intrusion detection module includes an enclosure and a sensor to detect a predetermined type of intrusion. The module further includes a tamper sensor to detect a tampering attempt. An encryption mechanism is coupled to receive signals from the sensor and tamper sensor and encrypt such signals for transmission to a control panel. The encryption mechanism may be located within the module to protect against tampering.
In the following description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description of example embodiments is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims.
The functions or algorithms described herein may be implemented in software or a combination of software and human implemented procedures in one embodiment. The software may consist of computer executable instructions stored on computer readable media such as memory or other type of storage devices. Further, such functions correspond to modules, which are software stored on a storage device, hardware, firmware or any combination thereof. Multiple functions may be performed in one or more modules as desired, and the embodiments described are merely examples. The software may be executed on a digital signal processor, ASIC, microprocessor, or other type of processor operating on a computer system, such as a personal computer, server or other computer system.
An intrusion detection system 100 is illustrated in block diagram form in
In one embodiment, each module includes a protected space that is protected against tampering to ensure security of communications from the sensors to the control panel. The port includes a circuit board 140 having encryption functions to encrypt sensor readings. In some embodiments, the circuit board 140 is housed within the protected space within the module 110. The circuit board 140 provides serial two wire differential communications via the port 120 in some embodiments. In one embodiment, the circuit board provides 16 bytes of data for every communication.
The circuit board 140 in one embodiment encrypts tamper information generated by tamper detection sensors 135 when attempts to tamper with the module 110 are detected. The circuit board 140 has a header to connect to components within the module, wherein the header includes pins for a supply voltage, ground, sensor value, and one or more tamper switches. The circuit board 140 is adapted to couple to a supply voltage, such as a battery or external power supply, ground, and A and B channels of the two wire differential communication wire. The circuit board 140 may be potted in epoxy, and in some embodiments has a header that pins may be slid into to communicate with the circuit board. The header may include a power supply connection, ground, zone, and multiple tamper connections. The zone corresponds to the type of intrusion or parameter being detected, such as a motion, contact switch, etc. In further embodiments, the header includes a supply connection, such as 12V supply, ground, and a 485 differential connection. The encryption provided may be AES 128 bit encryption in one embodiment.
In one embodiment, the modules 110 may include a door switch sensor, motion detector sensor, keypad, and other modules. Communications between the modules and the control panel are encrypted. Enclosing the circuit board 140 within the modules in combination with the module tamper detection, significantly reduces the vulnerability to tampering going undetected due to the encryption of communications between the module and the control panel. In some embodiments, the wired connection may be formed by individual lines from each module to the control panel, or may include a control panel bus, with each module coupled to the bus. In further embodiments, communications between the modules and control panel may be by encrypted wireless transceivers, also represented at 120 and 140 in the modules and at 150 in control panel 125.
An example module 200 in
An example door/window contact module 300 in
In
In some embodiments, when the detecting device is too small to allow mounting of a miniature input module inside a detector module, an input module may be placed as close to the detector switch as possible, minimizing the length of wires carrying unencrypted signals. An example of such a module is shown at 400 in
In one embodiment, the detection system 100 implements a method illustrated in flow chart form at 500 in
In the embodiment shown in
The system bus 623 can be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory can also be referred to as simply the memory, and, in some embodiments, includes read-only memory (ROM) 624 and random-access memory (RAM) 625. A basic input/output system (BIOS) program 626, containing the basic routines that help to transfer information between elements within the computer 620, such as during start-up, may be stored in ROM 624. The computer 620 further includes a hard disk drive 627 for reading from and writing to a hard disk, not shown, a magnetic disk drive 628 for reading from or writing to a removable magnetic disk 629, and an optical disk drive 630 for reading from or writing to a removable optical disk 631 such as a CD ROM or other optical media.
The hard disk drive 627, magnetic disk drive 628, and optical disk drive 630 couple with a hard disk drive interface 632, a magnetic disk drive interface 633, and an optical disk drive interface 634, respectively. The drives and their associated computer-readable media provide non volatile storage of computer-readable instructions, data structures, program modules and other data for the computer 620. It should be appreciated by those skilled in the art that any type of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), redundant arrays of independent disks (e.g., RAID storage devices) and the like, can be used in the exemplary operating environment.
A plurality of program modules can be stored on the hard disk, magnetic disk 629, optical disk 631, ROM 624, or RAM 625, including an operating system 635, one or more application programs 636, other program modules 637, and program data 638. Programming for implementing one or more processes or method described herein may be resident on any one or number of these computer-readable media.
A user may enter commands and information into computer 620 through input devices such as a keyboard 640 and pointing device 642. Other input devices (not shown) can include a microphone, joystick, game pad, satellite dish, scanner, or the like. These other input devices are often connected to the processing unit 621 through a serial port interface 646 that is coupled to the system bus 623, but can be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB). A monitor 647 or other type of display device can also be connected to the system bus 623 via an interface, such as a video adapter 648. The monitor 647 can display a graphical user interface for the user. In addition to the monitor 647, computers typically include other peripheral output devices (not shown), such as speakers and printers.
The computer 620 may operate in a networked environment using logical connections to one or more remote computers or servers, such as remote computer 649. These logical connections are achieved by a communication device coupled to or a part of the computer 620; the invention is not limited to a particular type of communications device. The remote computer 649 can be another computer, a server, a router, a network PC, a client, a peer device or other common network node, and typically includes many or all of the elements described above 110 relative to the computer 620, although only a memory storage device 650 has been illustrated. The logical connections depicted in