This invention pertains to a machine for feeding strips of closures or clips. The clips formed of flat plastic material, and for receiving portions of flexible bags. More specifically, the invention relates to the automated handling of strips of such clips, where strips of the clips are held together by interlocking portions of the clips.
‘Bag-clip’ types of closures are commonly used for holding closed the necks of flexible bags. Generally, these closure clips, also referred to as simply as ‘closures,’ ‘clips,’ or ‘bag-clips,’ are formed of semirigid flat, plastic material, and can be manufactured and handled in bulk as multi-closure strips of such clips, which can be separated by the automated breaking the connections between the adjacent clips of the strip, as each individual clip applied to a bag in succession. Conventionally, the individual clips in these strips are ‘frangible’ from adjoining, neighboring clips, in that they break apart easily to separate from the remaining strip of clips. These conventional clips have one or more ‘tabs’ or ‘webs’ that physically adjoin and interconnect each clip to the neighboring clip in the strip.
A difficulties occurs in the automated use of the clip-strips, in that the strips are not continuous and must be manually fed into machines that the clips to an article, such as a bag.
The following is a disclosure of the present invention that will be understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
Reference characters included in the above drawings indicate corresponding parts throughout the several views, as discussed herein. The description herein illustrates one preferred embodiment of the invention, in one form, and the description herein is not to be construed as limiting the scope of the invention in any manner. It should be understood that the above listed figures are not necessarily to scale and may include fragmentary views, graphic symbols, diagrammatic or schematic representations, and phantom lines. Details that are not necessary for an understanding of the present invention by one skilled in the technology of the invention, or render other details difficult to perceive, may have been omitted.
The present invention provides a clip-strip feed splicer, which serves as an endless clip-strip spicier and feeder of a strip of interlocking and interlock-able clips. The clip-strip feed splicer automatically couples rolls of clips together end to end without the need to halt the feed of the clips in a downstream use.
Each clip 18 of the clip-strip 17 includes a first interlock element 20A that is mate-able to a second interlock element 20B of a neighboring clip 18′, to form the desired interlock 23 between the two clips. Preferably, the first interlock element is a pocket 21, received into a tab 22, which serves as the second element of the neighboring clip 18′. The interlock-able clip conserves space, as it is compact along the length of the clip-strip or in the preferred form of a clip-roll 24, as compared to prior multi-closure clips. Typically, these clip-strips are approximately 0.0032 inches in ‘gauge’ or thickness and, are packaged conventionally in rolls with approximately 4,000 clips per roll. The present invention eliminates the need to stop an automated clip applying process, such as bread-bagging, to change-out empty rolls of clips.
Additionally, the terms “approximately” or “approximate” are employed herein throughout, including this detailed description and the attached claims, with the understanding that is denotes a level of exactitude commensurate with the skill and precision typical for the particular field of endeavor, as applicable.
As shown in
The toggle 30 rotates about a toggle pivot 31, with the two spools alternating from a feed position 38 to a pre-stage position 39. Initially, the first clip-roll in the feed position on the first spool un-reels its clip-strip into the splicer 15, past a clamp mechanism 33 and through a pair of feed-rolls 35. The clamp mechanism includes a stationary block 43, preferably mounted above a moving block 44. The moving block cycles reciprocally up and down, by action of a clamp servo 46 that rotates a block rod 47, so that the moving block acts as a piston to clamp against the stationary block when the clamp servo rotates. The clamp servo is most preferably a electric servo-motor, or alternatively may be a conventional ‘stepper motor.’
The pair of feed-rolls 35 primarily serve to pull the clip-strip 17 through the clamp mechanism 33, but preferably can also stop slow or reverse the clip strip, if desired. With the first clip-roll 24A feeding into the splicer 15 from the feed position 38, the second clip-roll is queued-up in the pre-stage position 39, with the first interlock element 20A leading from the second clip-roll 24B and positioned on the moving block and waiting for the last clip from the top roll to cycle into a clamping position 50 with the stationary block 43. The pair of feed rolls are preferably driven by a feed servo 51, which is most preferably a electric servo-motor, or alternatively may be a conventional ‘stepper motor.’
The clip-strip 17 from the first clip-roll 24A feeding from the feed position 38 into the clamp mechanism 33, is monitored by a clip-sensor 55. Primarily, the clip-sensor is employed to direct the clamp mechanism 33 operation of the splicer 15. Most preferably, the sensor is two-part and includes an end-roll detector 56 and a clip-end detector 57, as shown in
The end-roll detector 56 will sense the end of the first clip-roll 24B for the clip-strip 17 entering the clamp mechanism 33, and preferably will slow the pair of feed-rolls 35. The clip-end detector 57 then senses a more precise second interlock element 20B at the last clip of the first clip-roll. Most preferably, the pair of feed-rolls will reverse the feed of the clip-strip back toward the first spool 25A, still in the feed position 38 for a predetermined number of clips 18, which can be adjusted through use of a controller, which is most preferably a conventional programmable logic type of controller (PLC). This will allow the alignment of the remaining clip-strip from the first clip-roll to the incoming first interlock element 20A as mounted in the moving block 44, from the second spool 25A at the pre-stage position 39. Again, most preferably, the first interlock element of the interlock 23 is the pocket 21, with the pocket is used as the leading end of first clip of each clip-roll, as shown in
To interlock the clips from the first clip-roll 24A to the second clip-roll 24B, the moving block 44 runs reciprocally to clamp with the stationary block 43, crating the interlock 23 between the first clip-roll and the second clip-roll. After clamping, the lower block returns to the a hold portion 60 at the bottom of its stroke, and the pair of feed rolls 35 resume pulling the clip-strips from the second clip-roll, which by rotation of the toggle 30 now travels to the feed portion, and so the second clip-roll becomes the first clip-roll and a replacement second clip-roll is placed on the second spool in the pre-stage position 39.
Preferably, spring loaded register 70 holds the lead clip of the second clip-roll in alignment on the moving block 44, as detailed in
Therefore, the present invention is a significant improvement over conventional clip feeding processes, in that currently in the typical clip feeder process, an operator would need to replace a new clip-roll by hand, and clear any clips have not feed through a clip indexer. This interrupts the production flow at least every two hours, depending on the size of the clip-roll.
In compliance with the statutes, the invention has been described in language more or less specific as to structural features and process steps. While this invention is susceptible to embodiment in different forms, the specification illustrates preferred embodiments of the invention with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and the disclosure is not intended to limit the invention to the particular embodiments described. Those with ordinary skill in the art will appreciate that other embodiments and variations of the invention are possible, which employ the same inventive concepts as described above. Therefore, the invention is not to be limited except by the following claims, as appropriately interpreted in accordance with the doctrine of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2963234 | Chase et al. | Dec 1960 | A |
3164249 | Paxton | Jan 1965 | A |
3164250 | Paxton | Jan 1965 | A |
3270874 | Hilton | Sep 1966 | A |
3983681 | Britt et al. | Oct 1976 | A |
4026413 | Britt et al. | May 1977 | A |
4333566 | Holmes | Jun 1982 | A |
4341303 | Britt | Jul 1982 | A |
4361935 | Paxton | Dec 1982 | A |
D299434 | Burford | Jan 1989 | S |
4911293 | Holmes | Mar 1990 | A |
6228205 | Rhodes et al. | May 2001 | B1 |
6792987 | Monroe | Sep 2004 | B2 |
6841020 | Hebels et al. | Jan 2005 | B2 |
D539140 | Irwin | Mar 2007 | S |
7596928 | Irwin | Oct 2009 | B2 |
8163118 | Irwin et al. | Apr 2012 | B2 |
8261513 | Irwin | Sep 2012 | B2 |
20040094451 | Saho | May 2004 | A1 |
20070278341 | Tsurunaga et al. | Dec 2007 | A1 |
20080230646 | Morelli et al. | Sep 2008 | A1 |
20100264248 | Butterworth | Oct 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20140252155 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29447985 | Mar 2013 | US |
Child | 13815903 | US |