Endless flexible belt for a printing system

Information

  • Patent Grant
  • 10926532
  • Patent Number
    10,926,532
  • Date Filed
    Tuesday, October 16, 2018
    5 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
An intermediate transfer member (ITM) for use in a printing system. The ITM includes an endless flexible belt formed of an elongate belt having a longitudinal axis. Attached to lateral edges of the endless flexible belt along the longitudinal axis are a first elongate strip and a second elongate strip, each of the elongate strips including lateral formations on outward facing lateral ends thereof which are distal to the lateral edges of the belt. At least one of the first and second elongate strips includes a first longitudinal portion having a first elasticity, and a second longitudinal portion having a second elasticity, such that the second elasticity is greater than the first elasticity. The first portion is attached to the lateral edges of the flexible belt and the second portion extends between the first portion and the lateral formations.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to an endless flexible belt for a printing system, and more specifically to an endless flexible belt including lateral formations which ensure the proper alignment and registration of the belt during printing. The endless belt of the invention finds particular application as an intermediate transfer member (ITM) in a printing system in which, instead of ink being applied directly onto a substrate, the desired image is formed by ink deposition (e.g. ink jetted droplets) on the intermediate transfer member, the latter then serving to transport the image to an impression station at which the image is impressed on a substrate.


Flexible belts for use as an ITM in a printing system are disclosed in Applicant's U.S. Pat. Nos. 9,290,016, 9,643,403 and 9,517,618.


SUMMARY OF THE INVENTION

Embodiments of the present invention relate to the construction and installation of a continuous flexible belt, suitable for use as an intermediate transfer member in a printing system, which belt is guided when in use, for instance over rollers.


In accordance with an embodiment of the present invention, there is provided an intermediate transfer member (ITM) for use in a printing system to transport ink images from an image forming station to an impression station for transfer of the ink image from the ITM onto a printing substrate, wherein the ITM includes:


an endless flexible belt having a uniform belt width, the endless flexible belt formed of an elongate belt having a longitudinal axis;


a first elongate strip and a second elongate strip, the first and second elongate strips attached to lateral edges of the belt along the longitudinal axis, the first and second elongate strips each including lateral formations on outward facing lateral ends thereof, the outward facing lateral ends being distal to the lateral edges of the belt,


wherein, during use, the belt is configured to be guided by a guiding system through at least the image forming station, the guiding system including guide channels configured to receive the lateral formations,


wherein at least one of the first and second elongate strips has a strip width and includes a first longitudinal portion extending along the longitudinal axis and having first portion width and a first elasticity, and a second longitudinal portion extending along the longitudinal axis and having a second portion width and a second elasticity, the first portion being attached to the lateral edges of the belt and the second portion extending between the first portion and the lateral formations,


wherein the second elasticity is greater than the first elasticity.


In some embodiments, the lateral formations are configured to engage the guide channels, so that the belt is placed under tension in a width-ways direction perpendicular to the longitudinal axis, and is constrained to follow a continuous path defined by the guide channels.


In some embodiments, the second portion is elastic in a width-ways direction perpendicular to the longitudinal axis.


In some embodiments, the first portion width is in the range of 30% to 90% of the strip width. In some embodiments, a ratio between the first portion width and the strip width is in the range of 1:1.1 to 1:3. In some embodiments, the first portion width is in the range of 15 mm to 30 mm. In some embodiments, the first portion width is in the range of 15 mm to 20 mm


In some embodiments, the second portion width is in the range of 10% to 90% of the strip width. In some embodiments, a ratio between the second portion width and the strip width is in the range of 1:1.1 to 1:10. In some embodiments, the second portion width is in the range of 2 mm to 15 mm. In some embodiments, the second portion width is in the range of 3 mm to 7 mm.


In some embodiments, a ratio between the second portion width and the first portion width is in the range of 1:1 to 1:15.


In some embodiments, a ratio between the strip width and the belt width is in the range of 1:25 to 1:47.


In some embodiments, a ratio between the first portion width and the belt width is in the range of 1:33.3 to 1:93.3. In some embodiments, a ratio between the second portion width and the belt width is in the range of 1:66.6 to 1:700.


In some embodiments, the strip width is in the range of 20 mm to 40 mm. In some embodiments, the belt width is in the range of 1000 mm to 1400 mm.


In some embodiments, the spring constant of the first portion, or the first elasticity, is at least 10.0, at least 20.0, at least 30.0, at least 40.0 at least 50.0 N/mm, at least 75.0, at least 100.0, at least 125.0, at least 150.0, at least 175.0, or at least 200.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the first elasticity is at most 5% elongation, at most 4% elongation, at most 3% elongation, at most 2% elongation, at most 1% elongation, at most 0.5% elongation, at most 0.2% elongation, or at most 0.1% elongation.


In some embodiments, the spring constant of the second portion, or the second elasticity is in the range of 0.1 to 10.0 N/mm, 0.1 to 8.0 N/mm, or 0.1 to 5.0 N/mm, 1.0 to 5.0 N/mm, 2.0 to 5.0 N/mm, or 3.0 to 5.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the second elasticity is at least 5% elongation, at least 8% elongation, or at least 10% elongation, at least 20% elongation, at least 30% elongation, at least 40% elongation, or at least 50% elongation.


In some embodiments, a ratio between spring constant measurements of the second elasticity and the first elasticity, when measured in N/mm on a sample having a sample width of 22 mm and a sample length of 10 mm, is at least 1:4, at least 1:6, at least 1:10, at least 1:12, at least 1:20, at least 1:30, at least 1:40, at least 1:50, at least 1:60, at least 1:70, at least 1:80, at least 1:90, or at least 1:100. In some embodiments, the spring constant ratio is in the range of 1:6 to 1:25.


In some embodiments, the first longitudinal portion is non-elastic, and the second longitudinal portion is elastic. In some embodiments, the first longitudinal portion is somewhat elastic, and the second longitudinal portion is more elastic.


In some embodiments, only the first elongate strip includes the first non-elastic portion and the second elastic portion, and wherein the second elongate strip is non-elastic.


In some embodiments, only the first elongate strip includes the first non-elastic portion and the second elastic portion, and wherein the second elongate strip is elastic.


In some embodiments, the first elongate strip and the second elongate strip each include a the first portion and a the second portion.


In some embodiments, an elasticity of the second portion of the first elongate strip is sufficient to maintain the belt taut when the lateral formations are guided through their respective guide channels.


In some embodiments, the lateral formations include longitudinally spaced formations disposed on each of the outward facing lateral ends of the first and second elongate strips. In some embodiments, at least one of the first and the second elongate strips includes one half of a zip fastener, and wherein the longitudinally spaced formations include teeth of the one half of the zip fastener. In some embodiments, the first elongate strip and the second elongate strip include two complementary portions of a single zip fastener.


In some embodiments, the lateral formations include a continuous flexible bead disposed on each of the outward facing lateral ends of the first and second elongate strips.


In some embodiments, a maximal load applied to the at least one of the first and second elongate strips at a time of failure between the at least one of the first and second elongate strips and the belt is at least 50.0 N/mm.


In some embodiments, the belt comprises a support and a release layer, the support layer is made of a fabric that is fiber-reinforced at least in the longitudinal direction of the belt, the fiber being a high performance fiber selected from the group comprising aramid, carbon, ceramic, and glass fibers. In some embodiments, the release layer has a hydrophobic outer surface. In some embodiments, the belt additionally comprises a compressible layer.


In some embodiments, the endless flexible belt is formed from a flat elongate strip, ends of which are configured to be secured to one another at a seam to form a continuous loop. In some embodiments, the belt includes one or more markings detectable by a sensor of the printing system.


In accordance with an embodiment of the present invention, there is provided a method of forming a flexible belt, the method including:


a. obtaining an elongate flexible belt having a uniform belt width and a longitudinal axis, the belt being suitable for use as an ITM in a printing system, the elongate flexible belt having first and second lateral edges;


b. obtaining a first elongate strip having a strip width and including:






    • a first longitudinal portion extending along the longitudinal axis and having a first portion width and a first elasticity, the first longitudinal portion extending along the first elongate strip at a first lateral end thereof;

    • lateral formations on a second lateral end of the first elongate strip; and

    • a second longitudinal portion extending along the longitudinal axis and having a second portion width and a second elasticity, the second longitudinal portion extending longitudinally between the first portion and the lateral formations,

    • wherein the second elasticity is greater than the first elasticity; and


      c. obtaining a second elongate strip having first and second lateral ends, and including lateral formations on the second lateral end thereof.





In some embodiments, the method further includes attaching the second lateral ends of the first and second elongate strips to the first and second lateral edges of the elongate flexible belt.


In accordance with an embodiment of the present invention, there is provided a printing system including:


a. an intermediate transfer member (ITM) including:






    • (i) an endless flexible belt having a uniform belt width, the endless flexible belt formed of an elongate belt having a longitudinal axis;

    • (ii) a first elongate strip and a second elongate strip, each attached to lateral edges of the belt along the longitudinal axis, the first and second elongate strips each including lateral formations on outward facing lateral ends thereof, the outward facing lateral ends being distal to the lateral edges of the belt,
      • wherein at least one of the first and second elongate strips has a strip width and includes a first longitudinal portion having a first portion width and a first elasticity, and a second longitudinal portion having a second portion width and a second elasticity, the first portion being attached to the lateral edges of the belt and the second portion extending between the first portion and the lateral formations,
      • wherein the second elasticity is greater than the first elasticity;


        b. an image forming station at which droplets of ink are applied to an outer surface of the ITM to form ink images thereon;


        c. an impression station for transfer of the ink images from the ITM onto a printing substrate; and


        d. a guiding system including guide channels configured to receive the lateral formations, the guiding system extending at least through the image forming station and configured, during use, to guide the ITM along the image forming station.





In some embodiments, the guiding system is further configured to guide the ITM through the impression station. In some embodiments, the guide channels further include rolling bearings, and wherein the lateral formations of the ITM are retained within the guide channels by the rolling bearings.


In some embodiments, the engagement between the lateral formations and the guide channels places the belt under tension in a width-ways direction perpendicular to the longitudinal axis, such that the belt is constrained to follow a continuous path defined by the guide channels.


In some embodiments, the second portion is elastic in a width-ways direction perpendicular to the longitudinal axis.


In some embodiments, the first portion width is in the range of 30% to 90% of the strip width. In some embodiments, a ratio between the first portion width and the strip width is in the range of 1:1.1 to 1:3. In some embodiments, the first portion width is in the range of 15 mm to 30 mm. In some embodiments, the first portion width is in the range of 15 mm to 20 mm.


In some embodiments, the second portion width is in the range of 10% to 90% of the strip width. In some embodiments, a ratio between the second portion width and the strip width is in the range of 1:1.1 to 1:10. In some embodiments, the second portion width is in the range of 2 mm to 15 mm. In some embodiments, the second portion width is in the range of 3 mm to 7 mm.


In some embodiments, a ratio between the second portion width and the first portion width is in the range of 1:1 to 1:15.


In some embodiments, a ratio between the strip width and the belt width is in the range of 1:25 to 1:47.


In some embodiments, a ratio between the first portion width and the belt width is in the range of 1:33.3 to 1:93.3. In some embodiments, a ratio between the second portion width and the belt width is in the range of 1:66.6 to 1:700.


In some embodiments, the strip width is in the range of 20 mm to 40 mm. In some embodiments, the belt width is in the range of 1000 mm to 1400 mm.


In some embodiments, the spring constant of the first portion, or the first elasticity, is at least 10.0, at least 20.0, at least 30.0, at least 40.0 at least 50.0 N/mm, at least 75.0, at least 100.0, at least 125.0, at least 150.0, at least 175.0, or at least 200.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the first elasticity is at most 5% elongation, at most 4% elongation, at most 3% elongation, at most 2% elongation, at most 1% elongation, at most 0.5% elongation, at most 0.2% elongation, or at most 0.1% elongation.


In some embodiments, the spring constant of the second portion, or the second elasticity is in the range of 0.1 to 10.0 N/mm, 0.1 to 8.0 N/mm, or 0.1 to 5.0 N/mm, 1.0 to 5.0 N/mm, 2.0 to 5.0 N/mm, or 3.0 to 5.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the second elasticity is at least 5% elongation, at least 8% elongation, or at least 10% elongation, at least 20% elongation, at least 30% elongation, at least 40% elongation, or at least 50% elongation.


In some embodiments, a ratio between spring constant measurements of the second elasticity and the first elasticity, when measured in N/mm on a sample having a sample width of 22 mm and a sample length of 10 mm, is at least 1:4, at least 1:6, at least 1:10, at least 1:12, at least 1:20, at least 1:30, at least 1:40, at least 1:50, at least 1:60, at least 1:70, at least 1:80, at least 1:90, or at least 1:100. In some embodiments, the spring constant ratio is in the range of 1:6 to 1:25.


In some embodiments, the first longitudinal portion is non-elastic, and the second longitudinal portion is elastic.


In some embodiments, only the first elongate strip includes the first non-elastic portion and the second elastic portion, and wherein the second elongate strip is non-elastic.


In some embodiments, only the first elongate strip includes the first non-elastic portion and the second elastic portion, and wherein the second elongate strip is elastic.


In some embodiments, the first elongate strip and the second elongate strip each include the first portion and the second portion.


In some embodiments, an elasticity of the second portion of the first elongate strip is sufficient to maintain the belt taut when the lateral formations are guided through the guide channels.


In some embodiments, the lateral formations include longitudinally spaced formations disposed on each of the outward facing lateral ends of the first and second elongate strips. In some embodiments, at least one of the first and the second elongate strips includes one half of a zip fastener, and wherein the longitudinally spaced formations include teeth of the one half of the zip fastener. In some embodiments, the first elongate strip and the second elongate strip include two complementary portions of a single zip fastener.


In some embodiments, the lateral formations include a continuous flexible bead disposed on each of the outward facing lateral ends of the first and second elongate strips.


In some embodiments, a maximal load applied to the at least one of the first and second elongate strips at a time of failure between the at least one of the first and second elongate strips and the belt is at least 50.0 N/mm.


In some embodiments, the belt includes a support and a release layer, and the support layer is made of a fabric that is fiber-reinforced at least in the longitudinal direction of the belt, the fiber being a high performance fiber selected from the group comprising aramid, carbon, ceramic, and glass fibers.


In some embodiments, the release layer has a hydrophobic outer surface.


In some embodiments, the belt additionally includes a compressible layer.


In some embodiments, the endless flexible belt is formed from a flat elongate strip, ends of which are configured to be secured to one another at a seam to form a continuous loop.


In some embodiments, the belt includes one or more markings detectable by a sensor of the printing system.


In accordance with an embodiment of the present invention, there is provided an elongate strip including:


a first non-elastic portion extending along the first elongate strip at a first lateral end thereof;


lateral formations on a second lateral end of the first elongate strip; and


a second, elastic portion, extending and between the first non-elastic portion and the lateral formations.


In accordance with an embodiment of the present invention, there is provided a method of forming the elongate strip described herein, the method including:


weaving an elongate flexible strip;


impregnating a first portion of the elongate flexible strip with at least one of silicone and liquid rubber, so as to form the first, non-elastic portion; and


forming the lateral formations on a lateral edge of the elongate flexible strip distal to the first portion, thereby to form the elongate strip.


In accordance with an embodiment of the present invention, there is provided a method of forming the elongate strip described herein, the method including:


weaving an elongate flexible strip;


laminating a stiff film onto a first portion of the elongate flexible strip so as to form the first, non-elastic portion; and


forming the lateral formations on a lateral edge of the elongate flexible strip distal to the first portion, thereby to form the elongate strip.


In accordance with an embodiment of the present invention, there is provided a method of forming the elongate strip described herein, the method including:


weaving an elongate strip wherein longitudinal threads of the weave include non-elastic threads, and wherein transverse threads of the weave include elastic threads having a first portion coated with a non-elastic coating, wherein an area woven with the first portion of the transverse threads is the first non-elastic portion of the elongate strip;


thermally fixing the elongate strip; and


forming the lateral formations on a lateral edge of the elongate flexible strip distal to the first portion, thereby to form the elongate strip.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described further, by way of example, with reference to the accompanying drawings, in which the dimensions of components and features shown in the figures are chosen for convenience and clarity of presentation and not necessarily to scale. In the drawings:



FIG. 1 is a schematic representation of one example of a printing system of the invention;



FIGS. 2A, 2B, and 2C are schematic plan view illustrations of three embodiments of a portion of an ITM suitable for use in the system of FIG. 1, according to embodiments of the teachings herein;



FIG. 3 is a plan view of a portion of an elongate strip forming part of each of the ITMs of FIGS. 2A to 2C, the elongate strip including lateral formations for guiding the ITM, the elongate strip including first and second longitudinal portions according to an embodiment of the teachings herein;



FIG. 4 is a section through a guide channel for the ITM within which the lateral formations shown in FIG. 3 are received; and



FIGS. 5A and 5B are schematic illustrations of corresponding elongate strips for both sides of the ITM, such as first and second elongate strips 106 and 108 of FIG. 2A at the time of manufacturing and when attached to a flexible belt, such as belt 102 of FIG. 2A, respectively.





DESCRIPTION OF SOME EMBODIMENTS OF THE INVENTION

The invention, in some embodiments, relates to an endless flexible belt which may form an endless belt to be used as an ITM suitable for use with indirect printing systems.


The invention, in some embodiments, relates to an elongate strip connectable to the endless flexible belt or forming part thereof, which strip includes along an elongate lateral end thereof lateral formations which may be used to guide the endless flexible belt in a printing system, as well as two longitudinal portions each having a different elasticity, such that a portion of the strip connected to the endless flexible belt is less elastic than a portion of the strip distal to the endless flexible belt and connected to the lateral formations. The invention, in some embodiments, relates to a method for forming an ITM from a flexible belt and the elongate strip of the invention.


The present invention is intended to solve problems arising when using prior art methods of guiding the flexible elongate belt through the printing system.


In some existing printing systems, an elastic elongate strip having lateral formations thereon is attached to each of the lateral edges of a flexible belt, and the lateral formations are guided through guiding tracks of the printing system, thereby to form an ITM. However, when force is applied to the elastic strip, for example due to changes in the distance between the guiding tracks, the entirety of the elastic strip stretches, and because the elastic strip is connected directly to the flexible belt, this causes pulling or warping of the flexible belt as well. Additionally, force applied to the elastic strip causes pulling or stretching of the elastic strip also at the section thereof which is connected to the flexible belt, which may result in failure of the connection between the flexible belt and the elastic strip.


The present invention solves the deficiencies of existing belts by creating in the elongate strip including the lateral formations two longitudinal portions. One of these portions, which is less elastic, and in some cases is non-elastic, is attached to the flexible belt, and the other portion, which is more elastic, is adjacent the lateral formations. As such, the elongation of the more elastic portion has less impact on, and in some embodiments is completely separate from and has no impact on, the flexible belt, resulting in reduced warping of the flexible belt and in reduced failure of the connection between the flexible belt and the elongate strip, as explained in further detail hereinbelow.


The principles, uses and implementations of the teachings herein may be better understood with reference to the accompanying description and figures. Upon perusal of the description and figures present herein, one skilled in the art is able to implement the invention without undue effort or experimentation. In the figures, like reference numerals refer to like parts throughout.


Before explaining at least one embodiment in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth herein. The invention is capable of other embodiments or of being practiced or carried out in various ways. The phraseology and terminology employed herein are for descriptive purposes and should not be regarded as limiting.


Additional objects, features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the invention as described in the written description and claims hereof, as well as the appended drawings. Various features and sub-combinations of embodiments of the invention may be employed without reference to other features and sub-combinations.


It is to be understood that both the foregoing general description and the following detailed description, including the materials, methods and examples, are merely exemplary of the invention, and are intended to provide an overview or framework to understanding the nature and character of the invention as it is claimed, and are not intended to be necessarily limiting.


As known in the art, the elasticity of a material can be approximated as a spring constant k. In the linear-elastic range of a material, k is the factor characteristic of the elastic body setting the relation between the force F needed to extend the material and the distance X of extension resulting from such force. This can be mathematically represented by F=k*X, the force F being typically expressed in newtons (N or kg·m/s2), the distance X in meters (m) and the spring constant k in newtons per meter (N/m). The spring constant may vary as a function of temperature and as a function of time, as some materials may for instance loose stiffness under prolonged tensioning. However, above a certain load a material may be deformed to the extent its behavior is no longer in the linear elastic range.


In the context of the description and claims herein, the term “non-elastic” relates to a material having an elasticity of at most 5% elongation, at most 4% elongation, at most 3% elongation, or at most 2% elongation, or to a material which, when measured on a sample having a 22 mm width in the direction of elastic stretching and a 10 mm length, has a spring constant of at least 20.0 N/mm, at least 50.0 N/mm, at least 60.0 N/mm, at least 80.0 N/mm, at least 100.0 N/mm, at least 125.0 N/mm, at least 150.0 N/mm, at least 175.0 N/mm, or at least 200.0 N/mm.


In the context of the description and claims herein, the term “elastic” relates to a material having an elasticity of at least 5% elongation, at least 8% elongation, at least 10% elongation, at least 20% elongation, at least 30% elongation, at least 40% elongation, or at least 50% elongation, or to a material which, when measured on a sample having a 22 mm width in the direction of elastic stretching and a 10 mm length, has a spring constant of at most 10.0 N/mm, at most 8.0 N/mm, at most 5.0 N/mm, at most 3.0 N/mm, at most 1.0 N/mm, at most 0.8 N/mm, at most 0.5 N/mm, at most 0.2 N/mm, or at most 0.1 N/mm.


In the context of the description and claims herein, the term “X % elongation” relates to a percentage of elongation of the material resulting from strain in the elastic range of the material.


Reference is now made to FIG. 1, which is a schematic representation of a printing system of the invention. The printing system 800 of FIG. 1 comprises an ITM formed of an endless belt 810 that cycles through an image forming station 812, a drying station 814, and an impression station 816.


In the image forming station 812 four separate print bars 822 incorporating one or more print heads, that use inkjet technology, deposit aqueous ink droplets of different colors onto the surface of the belt 810. Though the illustrated embodiment has four print bars each able to deposit one of the typical four different colors (namely Cyan (C), Magenta (M), Yellow (Y) and Black (K)), it is possible for the image forming station to have a different number of print bars and for the print bars to deposit different shades of the same color (e.g. various shades of grey including black) or for two print bars or more to deposit the same color (e.g. black). Following each print bar 822 in the image forming station, an intermediate drying system 824 is provided to blow hot gas (usually air) onto the surface of the belt 810 to dry the ink droplets at least partially, to leave a tacky film having the ability to adhere to the substrate when transferred thereonto in the impression station.


In the impression station 816, the belt 810 passes between an impression cylinder 820 and a pressure cylinder 818 that carries a compressible blanket 819. Sheets 826 of substrate are carried by a suitable transport mechanism (not shown in FIG. 1) from a supply stack 828 and passed through the nip between the impression cylinder 820 and the pressure cylinder 818. Within the nip, the surface of the belt 810 carrying the ink image, is pressed firmly by the blanket 819 on the pressure cylinder 818 against the substrate 826 so that the ink image is impressed onto the substrate and separated neatly from the surface of the belt. The substrate is then transported to an output stack 830.


Belt 810 typically includes multiple layers, one of which is a hydrophobic release layer, as described, for example, in WO 2013/132418, which is herein incorporated by reference in its entirety.


As explained in further detail hereinbelow with respect to FIGS. 2A to 4, the lateral edges of the belt 810 are provided with lateral formations which are received in a respective guide channel in order to maintain the belt taut in its width-ways dimension. As explained in detail hereinbelow, the formations 110 may be the teeth of one half of a zip fastener that is sewn or otherwise secured to the lateral edge of the belt, or may be a continuous flexible bead of greater thickness than the belt 810 may be provided along each side.


The method used for mounting the belt 810 within the guide channels is described in detail in U.S. Pat. Nos. 9,290,016, 9,643,403 and 9,517,618.


As described in U.S. Pat. Nos. 9,290,016, 9,643,403 and 9,517,618 which are hereby incorporated by reference in their entirety, it is important for the belt 810 to move with constant speed through the image forming station 812 as any hesitation or vibration will affect the registration of the ink droplets of different colors. To assist in guiding the belt smoothly, friction is reduced by passing the belt over rollers 832 adjacent each printing bar 822 instead of sliding the belt over stationary guide plates. Other guiding rollers of the system ensure that the belt is maintained in a desired orientation along the printing cycle.


It is possible for the belt 810 to be seamless, that is it to say without discontinuities anywhere along its length. However, the belt may be formed as an initially flat strip of which the opposite ends are secured to one another, for example by a zip fastener or possibly by a strip of hook and loop tape or possibly by soldering the edges together or possibly by using tape (e.g. Kapton® tape, RTV liquid adhesives or PTFE thermoplastic adhesives with a connective strip overlapping both edges of the strip), as described in the patents mentioned hereinabove.


Reference is now made to FIGS. 2A, 2B, and 2C, which are schematic plan view illustrations of three embodiments of a portion of an ITM according to embodiments of the teachings herein.


As seen in FIGS. 2A to 2C, an ITM 100, suitable for use in a printing system such as the printing system 800 of FIG. 1, includes an endless flexible belt 102 having a uniform belt width and formed of an elongate belt having a longitudinal axis 104.


Attached to lateral edges of endless flexible belt 102, and arranged along longitudinal axis 104, are a first elongate strip 106 and a second elongate strip 108, each including lateral formations 110 disposed on outward facing lateral ends of the strip, distal to belt 102.


In accordance with the present invention, at least one of first elongate strip 106 and second elongate strip 108 is a strip 120 as shown in FIG. 3, which includes a first longitudinal portion 130 extending along the longitudinal axis and having a first elasticity, and a second longitudinal portion 140 extending along the longitudinal axis and having a second elasticity, such that the second elasticity is greater than the first elasticity.


As seen in FIGS. 2A to 2C, the first longitudinal portion 130 is attached to the lateral edge or edges of the belt 102, and the second longitudinal portion 140 extends between the first longitudinal portion 130 and the lateral formations 110.


In some embodiments, the second longitudinal portion 140 is elastic in a width-ways direction thereof, perpendicular to the longitudinal axis 104.


In some embodiments, the spring constant representing the first elasticity of first longitudinal portion 130 is at least 10.0, at least 20.0, at least 30.0, at least 40.0, at least 50.0, at least 75.0, at least 100.0, at least 125.0, at least 150.0, at least 175.0, or at least 200.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the spring constant representing the first elasticity of first longitudinal portion 130 is in the range of 30.0 to 80.0 N/mm, when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction.


In some embodiments, the first elasticity of first longitudinal portion 130 is at most 5% elongation, at most 4% elongation, at most 3% elongation, at most 2% elongation, at most 1% elongation, at most 0.5% elongation, at most 0.2% elongation, or at most 0.1% elongation.


In some embodiments, the spring constant representing the second elasticity of second longitudinal portion 140 is in the range of 0.1 to 10.0 N/mm, 0.1 to 8.0 N/mm, or 0.1 to 5.0 N/mm, 1.0 to 5.0 N/mm, 2.0 to 5.0 N/mm, or 3.0 to 5.0 N/mm when measured on a sample having a length of 10 mm and a width of 22 mm in the elastic direction. In some embodiments, the second elasticity of second longitudinal portion 140 is at least 5% elongation, at least 8% elongation, at least 10% elongation, at least 20% elongation, at least 30% elongation, at least 40% elongation, or at least 50% elongation.


In some embodiments, a ratio between spring constant measurements of the second elasticity of second portion 140 and the first elasticity of first portion 130, when measured in N/mm on a sample having a sample width of 22 mm and a sample length of 10 mm, is at least 1:4, at least 1:6, at least 1:10, at least 1:12, at least 1:20, at least 1:30, at least 1:40, at least 1:50, at least 1:60, at least 1:70, at least 1:80, at least 1:90, or at least 1:100. In some embodiments, the spring constant ratio is in the range of 1:6 to 1:25.


In some embodiments, the first longitudinal portion 130 is non-elastic, and the second longitudinal portion 140 is elastic.


As seen in FIG. 3, the first longitudinal portion has a first portion width, indicated by the letter A, the second longitudinal portion has a second portion width, indicated by the letter B, and the strip has a strip width indicated by the letter S.


In some embodiments, the first portion width A is in the range of 30% to 90% of the strip width S. In some embodiments, a ratio between the first portion width A and the strip width S is in the range of 1:1.1 to 1:3.


In some embodiments, the second portion width B is in the range of 10% to 90% of the strip width S. In some embodiments, a ratio between the second portion width B and the strip width S is in the range of 1:1.1 to 1:10.


In some embodiments, the first portion width A is in the range of 15 mm to 30 mm. In some embodiments, the first portion width A is in the range of 15 mm to 20 mm.


In some embodiments, the second portion width B is in the range of 2 mm to 30 mm. In some embodiments, the second portion width B is in the range of 3 mm to 7 mm.


In some embodiments, a ratio between the second portion width B and the first portion width A is in the range of 1:1 to 1:15.


As shown in FIG. 2A, the belt 102 has a belt width indicated by the letter W. In some embodiments, a ratio between the strip width S and the belt width W is in the range of 1:25 to 1:47. In some embodiments, a ratio between the first portion width A and the belt width W is in the range of 1:33.3 to 1:93.3. In some embodiments, a ratio between the second portion width B and the belt width W is in the range of 1:66.6 to 1:700.


In some embodiments, the strip width S is in the range of 20 mm to 40 mm. In some embodiments, the strip width S is in the range of 25 mm to 32 mm. In some embodiments, the belt width W is in the range of 1000 mm to 1400 mm.


In some embodiments, illustrated for example in FIG. 2A, the first elongate strip 106 is an elastic strip, and the second elongate strip 108 is a strip 120 as illustrated in FIG. 3.


In some embodiments, illustrated for example in FIG. 2B, the first elongate strip 106 is a non-elastic strip, and the second elongate strip 108 is a strip 120 as illustrated in FIG. 3.


In some embodiments, illustrated for example in FIG. 2C, both the first elongate strip 106 and the second elongate strip 108 are elongate strips 120 as illustrated in FIG. 3.


The ITMs of FIGS. 2A, 2B, and 2C, are formed by obtaining the elongate flexible belt 102 and the elongate strips 106 and 108, and connecting the elongate strips to opposite lateral ends of belt 102. The connection may be by any suitable connection means, including sewing, adhering, fastening, laminating, and the like.


In some embodiments, the lateral formations 110 may be longitudinally spaced formations or projections, such as the teeth of one half of a ZIP fastener, as illustrated in FIG. 3.


Alternatively, the lateral formations 110 may be a continuous flexible bead disposed on each of the outward facing lateral ends of the first and second elongate strips 106 and 108.


The elongate strips 106 and 108 are secured to belt 102 such that there is substantially no elasticity between the coupling of the elongate strips 106 and 108 to the belt. For example, the strips 106 and 108 may be sewn or otherwise directly attached to the edge of the blanket or a substantially inelastic coupling member may be used to couple the strips to the side of the belt 102. This ensures that the lateral position of the blanket does not vary with respect to the position of the image forming station, and any required change in the width of the ITM is obtained by stretching of the elastic second portion(s) 140 of elongate strip 106 and/or elongate strip 108.


The elasticity of the second portion 130 is sufficient to maintain the belt taut when the lateral formations 110 are guided through their respective guide channels 880 (FIG. 4). The elasticity of the second portion 140 allows the distance of the lateral formations 110 attached thereto to vary from the notional centerline of the belt 102 to allow the belt to be maintained under lateral tension as the belt surface moves relative to the image forming station. By maintaining the belt under lateral tension this minimizes the risk of undulations forming in the surface of the intermediate transfer medium, thereby allowing for an image to be correctly formed by the image forming station on the surface of the intermediate transfer medium.


The reduced elasticity of the first portion 130 of elongate strip 120, which is the portion of the strip connected to belt 102, results in a separation between lateral formations 110 and the belt 102. As such, when forces are applied to the lateral formations 110, these forces are absorbed by elastic second portion 140 of the elongate strip, and are dampened by the less elastic, or preferably non-elastic, first portion 130, such that the forces have little or no impact on the belt 102 or on the connection of the belt 102 to the strip 120. As such, for example, stretching of the second portion 140 to accommodate changes in the distance between the tracks guiding the lateral formations does not cause any warping or shifting of the belt 102, since such stretching stops at first portion 130.


By contrast, in the prior art, when a fully elastic strip with lateral formations is used, application of force to the strip may result also in motion of the belt due to some of the force being applied to the belt. As such, the strip 120 of the present invention reduces motion of the belt in the width-ways direction thereof, reduces warping and/or undulations forming at the edges of the belt, improves the stability of the belt, and consequently improves the registration of printing.


Additionally, as shown hereinbelow in Example 2, the maximal load at a time of failure of the connection between an elongate strip 120 and the belt 102 is significantly higher than that required to cause a failure of the connection between a fully elastic strip and the belt 102. Without wishing to be bound by theory, the Inventors believe that when using a fully elastic strip, and due to the elasticity of the strip, some of the force applied to stretching the strip is also applied to the seam or fasteners connecting the strip to the belt, thus the fact that less elastic or non-elastic portion 130 is connected to the belt 102, and the elastic portion is not directly connected to the belt, results in the force being applied to the elastic portion 140 being applied to stretching the non-elastic portion 130, and as such does not pull the strip 120 away from the belt 102.


In some embodiments, the maximal load applied to a strip 120 connected to belt 102 at a time of failure between the strip 120 and the belt 102 is at least 50 N/mm.


In some embodiments, the spring constant of the strip 120, and specifically of the second elastic portion 140 thereof, is stable under tension, and when being used and heated in a printing system, under normal printing conditions. In some such embodiments, the


Reference is now made to FIG. 4, which is a section through a guide channel for the ITM 100 (or belt 810 of FIG. 1) within which the lateral formations 110 shown in FIG. 3 are received.


As seen, the lateral formations 110, disposed on strips 106 and/or 108 connected to belt 102 of ITM 100, are received in a respective guide channel 400 in order to maintain the belt taut in its width-ways dimension. The guide channels 400 and may include rolling bearing elements 402 to retain the formations 110 therewithin.


Typically, when placing the belt in the guide channels of the printing system, the lateral formations 110 on strips 106 and 108 are at substantially the same distance from a notional centerline of the belt. However, in some cases, or in some parts of the guide channel, the elastic portion 140 may be stretched more on one side of the belt than on the other side, such that the lateral formations 110 on one side of the belt are at a greater distance from the nominal centerline of the belt than the formations 110 on the other side of the belt.


The lateral formations 110 need not be the same on both lateral edges of the belt 810 or 102. They can differ in shape, spacing, composition and physical properties, as described in WO 2013/136220, the contents of which are incorporated herein by reference.



FIGS. 5A and 5B are schematic illustrations of corresponding elongate strips for both sides of the ITM, such as first and second elongate strips 106 and 108 of FIG. 2A at the time of manufacturing and when attached to a flexible belt, such as belt 102 of FIG. 2A, respectively.


As seen in FIG. 5A, the two corresponding elongate strips 106 and 108 are manufactured as two portions of a single zip fastener, which can attach to one another as in any standard zip fastener. As such, during manufacturing, the lateral formations 110a of elongate strip 106 are positioned corresponding to the gaps between the lateral formations 110b of elongate strip 108, and vice versa. Specifically, during manufacturing of the elongate strips, a first lateral formation 110a(1) of strip 106 is disposed above a first lateral formation 110b(1) of strip 108, which in turn is disposed above a second lateral formation 110a(2) of strip 106, beneath which is disposed a second lateral formation 110b(2) of strip 108. Such manufacturing of the two corresponding elongate strips 106 and 108 ensures that the elastic portions of the elongate strips are not stretched during manufacturing, thus preventing warping, curving, or undulation of the elastic portion of the strips once the lateral formations are in place. Additionally, such manufacturing of the strips ensures that the number of lateral formation, and their distribution along the strip, is identical in both sides of the belt.


Turning to FIG. 5B, it is seen that when the elongate strips 106 and 108 are attached to the flexible belt 102, the lateral formations 110a of elongate strip 106 and the lateral formations 110b of elongate strip 108 are aligned with one another, such that first lateral formation 110a(1) is at the same height as first lateral formation 110b(1), second lateral formation 110a(2) is at the same height as second lateral formation 110b(2), and so on.


EXAMPLES

Reference is now made to the following examples, which together with the above description, illustrate the invention in a non-limiting fashion.


Example 1
Analysis of Spring Constant Measurement

A strip according to the present invention as illustrated in FIG. 3, including a first portion having a first elasticity, a second portion having a second elasticity, and lateral formations, was created. The strip had a strip width S of 28.5±1 mm, a first longitudinal portion width A of 18.5±1 mm, and a second longitudinal portion width B of 10 mm.


A sample was taken from the strip, the sample having a width of 22 mm in the longitudinal direction of the strip, and was the entire width W of the strip.


The sample was placed in a Lloyd LS5 material tester, commercially available from Ametek® Inc. of Brewyn, Pa., USA using as the first grip a TG34 grip and as the second grip a portion of a guide channel taken from a printing system as described hereinabove, and a load cell of 1 kN. The TG34 grip held the second elongate portion of the sample at a distance of 10 mm from the lateral formations, and the guide channel grip held the teeth, or lateral formations, of the sample.


The tester was activated with a preload of 0.1N and with a preload stress of 10 mm/min, and was set to an extension cyclic test only. The extension rate during the test was set to 10 mm/min, and the test was repeated for 10 cycles of extending the sample and releasing it.


The spring constant of the sample was measured to be 3.0±0.5 N/mm During the test, the sample had a maximal elongation of 3 mm, or 30% elongation.


Example 2
Comparative Analysis of Failure

A first elongate strip (#1), as described hereinabove in Example 1, and a second fully elastic elongate strip (#2) having a uniform spring constant of 3.0±0.5 N/mm and lateral formations as for strip #1 were obtained. Each of the strips was adhered to an elongate flexible belt as described in PCT Application No. PCT/IB2017/053167 which is incorporated herein by reference in its entirety, by RTV734 flowable sealant commercially available from Dow Corning® of Midland, Mich., USA.


Samples were taken from each of the belts and strips, where each sample has a length of 22 mm along the longitudinal axis of the belt, and has a width of 200 mm.


Each sample was placed in a Lloyd LS5 material tester, commercially available from Ametek® Inc. of Brewyn, Pa., USA using as the first grip a chantillon grip and as the second grip a portion of a guide channel taken from a printing system as described hereinabove, and a load cell of 1 kN. The chantillon grip held the belt of the sample, and the guide channel grip held the teeth, or lateral formations, of the sample. The sample was pulled up at room temperature, until there was a failure adhesion between the belt and the strip, or until the fabric of the strip tore.


Table 1 summarizes the load used when a failure occurred (in N/mm), and the type of failure.













TABLE 1







Sample
Maximal load [N/mm]
Failure type




















#1
120
Adhesion



#2
50
Adhesion










An adhesion failure occurs when the strip including the lateral formations disconnects from the belt.


As seen in Table 1, sample #1 which includes, as the elongate strip, the inventive strip described herein, was able to resist a significantly greater load than Sample #2 which includes an elastic elongate strip, as described in the prior art.


The above description is simplified and provided only for the purpose of enabling an understanding of the present invention. For a successful printing system, the physical and chemical properties of the inks, the chemical composition and possible treatment of the release surface of the belt and the control of the various stations of the printing system are all important but need not be considered in detail in the present context.


It is appreciated that an ITM as described herein, together with a suitable guiding system, may be used to form in any indirect printing system employing an ITM, as the invention herein provides a novel mechanical structure of the ITM, but does not affect the chemical properties of the ITM, or any printing-process related characteristics thereof.


The contents of all of the above mentioned applications of the Applicant are incorporated by reference as if fully set forth herein.


The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons skilled in the art to which the invention pertains.


In the description and claims of the present disclosure, each of the verbs, “comprise” “include” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements or parts of the subject or subjects of the verb. As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a formation” or “at least one formation” may include a plurality of formations.

Claims
  • 1. An intermediate transfer member (ITM) for use in a printing system to transport ink images from an image forming station to an impression station for transfer of the ink image from the ITM onto a printing substrate, wherein the ITM comprises: an endless flexible belt having a uniform belt width, said endless flexible belt formed of an elongate belt having a longitudinal axis;a first elongate strip and a second elongate strip, said first and second elongate strips attached to lateral edges of said belt along said longitudinal axis, said first and second elongate strips each including lateral formations on outward facing lateral ends thereof, said outward facing lateral ends being distal to said lateral edges of said belt,wherein, during use, said belt is configured to be guided by a guiding system through at least the image forming station, said guiding system comprising guide channels configured to receive said lateral formations,wherein at least one of said first and second elongate strips has a strip width and includes a first longitudinal portion extending along said longitudinal axis and having first portion width and a first elasticity, and a second longitudinal portion extending along said longitudinal axis and having a second portion width and a second elasticity, said first portion being attached to said lateral edges of said belt and said second portion extending between said first portion and said lateral formations,wherein said second elasticity is greater than said first elasticity.
  • 2. The ITM of claim 1, wherein said lateral formations are configured to engage said guide channels, so that said belt is placed under tension in a width-ways direction perpendicular to said longitudinal axis, and is constrained to follow a continuous path defined by said guide channels.
  • 3. The ITM of claim 1 wherein said second portion is elastic in a width-ways direction perpendicular to said longitudinal axis.
  • 4. The ITM of claim 1, wherein said first longitudinal portion is non-elastic, and said second longitudinal portion is elastic.
  • 5. The ITM of claim 1, wherein only said first elongate strip includes said first portion and said second portion, and wherein said second elongate strip is non-elastic.
  • 6. The ITM of claim 1, wherein said first elongate strip and said second elongate strip each include a said first portion and a said second portion.
  • 7. The ITM of claim 1, wherein an elasticity of said second portion of said first elongate strip is sufficient to maintain said belt taut when said lateral formations are guided through their respective guide channels.
  • 8. The ITM of claim 1, wherein a ratio between said second portion width and said first portion width is in the range of 1:1 to 1:15.
  • 9. The ITM of claim 1, wherein said strip width is in the range of 20 mm to 40 mm.
  • 10. The ITM of claim 1, wherein said first elasticity is at least 10.0, at least 20.0, at least 30.0, at least 40.0, at least 50.0 N/mm, at least 75.0, at least 100.0, at least 125.0, at least 150.0, at least 175.0, or at least 200.0 N/mm.
  • 11. The ITM of claim 1, wherein said first elasticity is at most 5% elongation, at most 4% elongation, at most 3% elongation, at most 2% elongation, at most 1% elongation, at most 0.5% elongation, at most 0.2% elongation, or at most 0.1% elongation.
  • 12. The ITM of claim 1, wherein said second elasticity is in the range of 0.1 to 10.0 N/mm, 0.1 to 8.0 N/mm, 0.1 to 5.0 N/mm, 1.0 to 5.0 N/mm, 2.0 to 5.0 N/mm, or 3.0 to 5.0 N/mm.
  • 13. The ITM of claim 1, wherein said second elasticity is at least 5% elongation, at least 8% elongation, at least 10% elongation, at least 20% elongation, at least 30% elongation, at least 40% elongation, or at least 50% elongation.
  • 14. The ITM of claim 1, wherein a ratio between spring constant measurements of said second elasticity and said first elasticity, when measured in N/mm on a sample having a sample width of 22 mm and a sample length of 10 mm, is at least 1:4, at least 1:6, at least 1:10, at least 1:12, at least 1:20, at least 1:30, at least 1:40, at least 1:50, at least 1:60, at least 1:70, at least 1:80, at least 1:90, or at least 1:100.
  • 15. A method of forming the ITM of claim 1, the method comprising: obtaining said elongate flexible belt; obtaining said first elongate strip including said first and second longitudinal portions;obtaining said second elongate strip; andattaching said first and second elongate strips to said lateral edges of said elongate flexible belt.
  • 16. A printing system comprising: a. an intermediate transfer member (ITM) including: (i) an endless flexible belt having a uniform belt width, said endless flexible belt formed of an elongate belt having a longitudinal axis;(ii) a first elongate strip and a second elongate strip, each attached to lateral edges of said belt along said longitudinal axis, said first and second elongate strips each including lateral formations on outward facing lateral ends thereof, said outward facing lateral ends being distal to said lateral edges of said belt, wherein at least one of said first and second elongate strips has a strip width and includes a first longitudinal portion having a first portion width and a first elasticity, and a second longitudinal portion having a second portion width and a second elasticity, said first portion being attached to said lateral edges of said belt and said second portion extending between said first portion and said lateral formations,wherein said second elasticity is greater than said first elasticity;b. an image forming station at which droplets of ink are applied to an outer surface of said ITM to form ink images thereon;c. an impression station for transfer of the ink images from said ITM onto a printing substrate; andd. a guiding system comprising guide channels configured to receive said lateral formations, said guiding system extending at least through said image forming station and configured, during use, to guide said ITM along said image forming station.
  • 17. The printing system of claim 16, wherein said second portion is elastic in a width-ways direction perpendicular to said longitudinal axis.
  • 18. The printing system of claim 16, wherein said first longitudinal portion is non-elastic and said second longitudinal portion is elastic.
  • 19. The printing system of 16, wherein only said first elongate strip includes said first portion and said second portion, and wherein said second elongate strip is non-elastic.
  • 20. A method of forming a flexible belt, the method comprising: a. obtaining an elongate flexible belt having a uniform belt width and a longitudinal axis, said belt being suitable for use as an ITM in a printing system, said elongate flexible belt having first and second lateral edges;b. obtaining a first elongate strip having a strip width and including: a first longitudinal portion extending along said longitudinal axis and having a first portion width and a first elasticity, said first longitudinal portion extending along said first elongate strip at a first lateral end thereof;lateral formations on a second lateral end of said first elongate strip; anda second longitudinal portion extending along said longitudinal axis and having a second portion width and a second elasticity, said second longitudinal portion extending longitudinally between said first portion and said lateral formations,wherein said second elasticity is greater than said first elasticity;c. obtaining a second elongate strip having first and second lateral ends, and including lateral formations on said second lateral end thereof; andd. attaching said second lateral ends of said first and second elongate strips to said first and second lateral edges of said elongate flexible belt.
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2018/058009 10/16/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/077489 4/25/2019 WO A
US Referenced Citations (516)
Number Name Date Kind
2839181 Renner Jun 1958 A
3011545 Welsh et al. Dec 1961 A
3053319 Cronin et al. Sep 1962 A
3697551 Thomson Oct 1972 A
3697568 Boissieras et al. Oct 1972 A
3889802 Jonkers Jun 1975 A
3898670 Erikson et al. Aug 1975 A
3947113 Buchan et al. Mar 1976 A
4009958 Kurita et al. Mar 1977 A
4093764 Duckett et al. Jun 1978 A
4293866 Takita et al. Oct 1981 A
4401500 Hamada et al. Aug 1983 A
4535694 Fukuda Aug 1985 A
4538156 Durkee et al. Aug 1985 A
4555437 Tanck Nov 1985 A
4575465 Viola Mar 1986 A
4642654 Toganoh et al. Feb 1987 A
4853737 Hartley et al. Aug 1989 A
4976197 Yamanari et al. Dec 1990 A
5012072 Martin et al. Apr 1991 A
5039339 Phan et al. Aug 1991 A
5062364 Lewis et al. Nov 1991 A
5075731 Kamimura et al. Dec 1991 A
5099256 Anderson Mar 1992 A
5106417 Hauser et al. Apr 1992 A
5128091 Agur et al. Jul 1992 A
5190582 Shinozuka et al. Mar 1993 A
5198835 Ando et al. Mar 1993 A
5246100 Stone et al. Sep 1993 A
5264904 Audi et al. Nov 1993 A
5305099 Morcos Apr 1994 A
5333771 Cesario Aug 1994 A
5349905 Taylor et al. Sep 1994 A
5352507 Bresson et al. Oct 1994 A
5365324 Gu et al. Nov 1994 A
5406884 Okuda et al. Apr 1995 A
5471233 Okamoto et al. Nov 1995 A
5532314 Sexsmith Jul 1996 A
5552875 Sagiv et al. Sep 1996 A
5575873 Pieper et al. Nov 1996 A
5587779 Heeren et al. Dec 1996 A
5608004 Toyoda et al. Mar 1997 A
5613669 Grueninger Mar 1997 A
5614933 Hindman et al. Mar 1997 A
5623296 Fujino et al. Apr 1997 A
5642141 Hale et al. Jun 1997 A
5660108 Pensavecchia Aug 1997 A
5677719 Granzow Oct 1997 A
5679463 Visser et al. Oct 1997 A
5698018 Bishop et al. Dec 1997 A
5723242 Woo et al. Mar 1998 A
5733698 Lehman et al. Mar 1998 A
5736250 Heeks et al. Apr 1998 A
5772746 Sawada et al. Jun 1998 A
5777576 Zur et al. Jul 1998 A
5777650 Blank Jul 1998 A
5841456 Takei et al. Nov 1998 A
5859076 Kozma et al. Jan 1999 A
5880214 Okuda Mar 1999 A
5883144 Bambara et al. Mar 1999 A
5883145 Hurley et al. Mar 1999 A
5884559 Okubo et al. Mar 1999 A
5889534 Johnson et al. Mar 1999 A
5891934 Moffatt et al. Apr 1999 A
5895711 Yamaki et al. Apr 1999 A
5902841 Jaeger et al. May 1999 A
5923929 Ben Avraham et al. Jul 1999 A
5929129 Feichtinger Jul 1999 A
5932659 Bambara et al. Aug 1999 A
5935751 Matsuoka et al. Aug 1999 A
5978631 Lee Nov 1999 A
5978638 Tanaka et al. Nov 1999 A
5991590 Chang et al. Nov 1999 A
6004647 Bambara et al. Dec 1999 A
6009284 Weinberger et al. Dec 1999 A
6024018 Darel et al. Feb 2000 A
6024786 Gore Feb 2000 A
6033049 Fukuda Mar 2000 A
6045817 Ananthapadmanabhan et al. Apr 2000 A
6053438 Romano, Jr. et al. Apr 2000 A
6055396 Pang Apr 2000 A
6059407 Komatsu et al. May 2000 A
6071368 Boyd et al. Jun 2000 A
6072976 Kuriyama et al. Jun 2000 A
6078775 Arai et al. Jun 2000 A
6094558 Shimizu et al. Jul 2000 A
6102538 Ochi et al. Aug 2000 A
6103775 Bambara et al. Aug 2000 A
6108513 Landa et al. Aug 2000 A
6109746 Jeanmaire et al. Aug 2000 A
6132541 Heaton Oct 2000 A
6143807 Lin et al. Nov 2000 A
6166105 Santilli et al. Dec 2000 A
6195112 Fassler et al. Feb 2001 B1
6196674 Takemoto Mar 2001 B1
6213580 Segerstrom et al. Apr 2001 B1
6214894 Bambara et al. Apr 2001 B1
6221928 Kozma et al. Apr 2001 B1
6234625 Wen May 2001 B1
6242503 Kozma et al. Jun 2001 B1
6257716 Yanagawa et al. Jul 2001 B1
6261688 Kaplan et al. Jul 2001 B1
6262137 Kozma et al. Jul 2001 B1
6262207 Rao et al. Jul 2001 B1
6303215 Sonobe et al. Oct 2001 B1
6316512 Bambara et al. Nov 2001 B1
6332943 Herrmann et al. Dec 2001 B1
6354700 Roth Mar 2002 B1
6357869 Rasmussen et al. Mar 2002 B1
6357870 Beach et al. Mar 2002 B1
6358660 Agler et al. Mar 2002 B1
6363234 Landa et al. Mar 2002 B2
6364451 Silverbrook Apr 2002 B1
6377772 Chowdry et al. Apr 2002 B1
6383278 Hirasa et al. May 2002 B1
6386697 Yamamoto et al. May 2002 B1
6390617 Iwao May 2002 B1
6396528 Yanagawa May 2002 B1
6397034 Tarnawskyj et al. May 2002 B1
6400913 De Jong et al. Jun 2002 B1
6402317 Yanagawa et al. Jun 2002 B2
6409331 Gelbart Jun 2002 B1
6432501 Yang et al. Aug 2002 B1
6438352 Landa et al. Aug 2002 B1
6454378 Silverbrook et al. Sep 2002 B1
6471803 Pelland et al. Oct 2002 B1
6530321 Andrew et al. Mar 2003 B2
6530657 Polierer Mar 2003 B2
6531520 Bambara et al. Mar 2003 B1
6551394 Hirasa et al. Apr 2003 B2
6551716 Landa et al. Apr 2003 B1
6554189 Good et al. Apr 2003 B1
6559969 Lapstun May 2003 B1
6575547 Sakuma Jun 2003 B2
6586100 Pickering et al. Jul 2003 B1
6590012 Miyabayashi Jul 2003 B2
6608979 Landa et al. Aug 2003 B1
6623817 Yang et al. Sep 2003 B1
6630047 Jing et al. Oct 2003 B2
6639527 Johnson Oct 2003 B2
6648468 Shinkoda et al. Nov 2003 B2
6678068 Richter et al. Jan 2004 B1
6682189 May et al. Jan 2004 B2
6685769 Karl et al. Feb 2004 B1
6704535 Kobayashi et al. Mar 2004 B2
6709096 Beach et al. Mar 2004 B1
6716562 Uehara et al. Apr 2004 B2
6719423 Chowdry et al. Apr 2004 B2
6720367 Taniguchi et al. Apr 2004 B2
6755519 Gelbart et al. Jun 2004 B2
6761446 Chowdry et al. Jul 2004 B2
6770331 Mielke et al. Aug 2004 B1
6789887 Yang et al. Sep 2004 B2
6811840 Cross Nov 2004 B1
6827018 Hartmann et al. Dec 2004 B1
6881458 Ludwig et al. Apr 2005 B2
6898403 Baker et al. May 2005 B2
6912952 Landa et al. Jul 2005 B1
6916862 Ota et al. Jul 2005 B2
6917437 Myers et al. Jul 2005 B1
6966712 Trelewicz et al. Nov 2005 B2
6970674 Sato et al. Nov 2005 B2
6974022 Saeki Dec 2005 B2
6982799 Lapstun Jan 2006 B2
6983692 Beauchamp et al. Jan 2006 B2
7025453 Ylitalo et al. Apr 2006 B2
7057760 Lapstun et al. Jun 2006 B2
7084202 Pickering et al. Aug 2006 B2
7128412 King et al. Oct 2006 B2
7129858 Ferran et al. Oct 2006 B2
7134953 Reinke Nov 2006 B2
7160377 Zoch et al. Jan 2007 B2
7204584 Lean et al. Apr 2007 B2
7213900 Ebihara May 2007 B2
7224478 Lapstun et al. May 2007 B1
7265819 Raney Sep 2007 B2
7271213 Hoshida et al. Sep 2007 B2
7296882 Buehler et al. Nov 2007 B2
7300133 Folkins et al. Nov 2007 B1
7300147 Johnson Nov 2007 B2
7304753 Richter et al. Dec 2007 B1
7322689 Kohne et al. Jan 2008 B2
7334520 Geissler et al. Feb 2008 B2
7348368 Kakiuchi et al. Mar 2008 B2
7360887 Konno Apr 2008 B2
7362464 Kitazawa Apr 2008 B2
7459491 Tyvoll et al. Dec 2008 B2
7527359 Stevenson et al. May 2009 B2
7575314 Desie et al. Aug 2009 B2
7612125 Muller et al. Nov 2009 B2
7655707 Ma Feb 2010 B2
7655708 House et al. Feb 2010 B2
7699922 Breton et al. Apr 2010 B2
7708371 Yamanobe May 2010 B2
7709074 Uchida et al. May 2010 B2
7712890 Yahiro May 2010 B2
7732543 Loch et al. Jun 2010 B2
7732583 Annoura et al. Jun 2010 B2
7808670 Lapstun et al. Oct 2010 B2
7810922 Gervasi et al. Oct 2010 B2
7845788 Oku Dec 2010 B2
7867327 Sano et al. Jan 2011 B2
7876345 Houjou Jan 2011 B2
7910183 Wu Mar 2011 B2
7919544 Matsuyama et al. Apr 2011 B2
7942516 Ohara et al. May 2011 B2
7977408 Matsuyama et al. Jul 2011 B2
7985784 Kanaya et al. Jul 2011 B2
8002400 Kibayashi et al. Aug 2011 B2
8012538 Yokouchi Sep 2011 B2
8025389 Yamanobe et al. Sep 2011 B2
8038284 Hori et al. Oct 2011 B2
8041275 Soria et al. Oct 2011 B2
8042906 Chiwata et al. Oct 2011 B2
8059309 Lapstun et al. Nov 2011 B2
8095054 Nakamura Jan 2012 B2
8109595 Tanaka et al. Feb 2012 B2
8122846 Stiblert et al. Feb 2012 B2
8147055 Cellura et al. Apr 2012 B2
8162428 Eun et al. Apr 2012 B2
8177351 Taniuchi et al. May 2012 B2
8186820 Chiwata May 2012 B2
8192904 Nagai et al. Jun 2012 B2
8215762 Ageishi Jul 2012 B2
8242201 Goto et al. Aug 2012 B2
8256857 Folkins et al. Sep 2012 B2
8263683 Gibson et al. Sep 2012 B2
8264135 Ozolins et al. Sep 2012 B2
8295733 Imoto Oct 2012 B2
8303072 Shibata et al. Nov 2012 B2
8304043 Nagashima et al. Nov 2012 B2
8353589 Ikeda et al. Jan 2013 B2
8434847 Dejong et al. May 2013 B2
8460450 Taverizatshy et al. Jun 2013 B2
8469476 Mandel et al. Jun 2013 B2
8474963 Hasegawa et al. Jul 2013 B2
8536268 Karjala et al. Sep 2013 B2
8546466 Yamashita et al. Oct 2013 B2
8556400 Yatake et al. Oct 2013 B2
8693032 Goddard et al. Apr 2014 B2
8711304 Mathew et al. Apr 2014 B2
8714731 Leung et al. May 2014 B2
8746873 Tsukamoto et al. Jun 2014 B2
8779027 Idemura et al. Jul 2014 B2
8802221 Noguchi et al. Aug 2014 B2
8867097 Mizuno Oct 2014 B2
8885218 Hirose Nov 2014 B2
8891128 Yamazaki Nov 2014 B2
8894198 Hook et al. Nov 2014 B2
8919946 Suzuki et al. Dec 2014 B2
9004629 De Jong et al. Apr 2015 B2
9186884 Landa et al. Nov 2015 B2
9227429 LeStrange Jan 2016 B1
9229664 Landa et al. Jan 2016 B2
9264559 Motoyanagi et al. Feb 2016 B2
9284469 Song et al. Mar 2016 B2
9290016 Landa et al. Mar 2016 B2
9327496 Landa et al. May 2016 B2
9353273 Landa et al. May 2016 B2
9381736 Landa et al. Jul 2016 B2
9446586 Matos et al. Sep 2016 B2
9498946 Landa et al. Nov 2016 B2
9505208 Shmaiser et al. Nov 2016 B2
9517618 Landa et al. Dec 2016 B2
9566780 Landa et al. Feb 2017 B2
9568862 Shmaiser et al. Feb 2017 B2
9643400 Landa et al. May 2017 B2
9643403 Landa et al. May 2017 B2
9776391 Landa et al. Oct 2017 B2
9782993 Landa et al. Oct 2017 B2
9849667 Landa et al. Dec 2017 B2
9884479 Landa et al. Feb 2018 B2
9902147 Shmaiser et al. Feb 2018 B2
9914316 Landa et al. Mar 2018 B2
10065411 Landa et al. Sep 2018 B2
10175613 Watanabe Jan 2019 B2
10179447 Shmaiser et al. Jan 2019 B2
10190012 Landa et al. Jan 2019 B2
10195843 Landa et al. Feb 2019 B2
10201968 Landa et al. Feb 2019 B2
10226920 Shmaiser et al. Mar 2019 B2
10266711 Landa et al. Apr 2019 B2
10300690 Landa et al. May 2019 B2
10357963 Landa et al. Jul 2019 B2
10357985 Landa et al. Jul 2019 B2
10427399 Shmaiser et al. Oct 2019 B2
10434761 Landa et al. Oct 2019 B2
10477188 Stiglic et al. Nov 2019 B2
10518526 Landa et al. Dec 2019 B2
10569532 Shmaiser et al. Feb 2020 B2
10569533 Landa et al. Feb 2020 B2
10569534 Shmaiser et al. Feb 2020 B2
10576734 Landa et al. Mar 2020 B2
10596804 Landa et al. Mar 2020 B2
10632740 Landa et al. Apr 2020 B2
10642198 Landa et al. May 2020 B2
10703094 Shmaiser et al. Jul 2020 B2
20010022607 Takahashi et al. Sep 2001 A1
20020041317 Kashiwazaki et al. Apr 2002 A1
20020064404 Iwai May 2002 A1
20020102374 Gervasi et al. Aug 2002 A1
20020121220 Lin Sep 2002 A1
20020150408 Mosher et al. Oct 2002 A1
20020164494 Grant et al. Nov 2002 A1
20020197481 Jing et al. Dec 2002 A1
20030004025 Okuno et al. Jan 2003 A1
20030018119 Frenkel et al. Jan 2003 A1
20030030686 Abe et al. Feb 2003 A1
20030032700 Morrison et al. Feb 2003 A1
20030043258 Kerr et al. Mar 2003 A1
20030054139 Ylitalo et al. Mar 2003 A1
20030055129 Alford Mar 2003 A1
20030063179 Adachi Apr 2003 A1
20030064317 Bailey et al. Apr 2003 A1
20030081964 Shimura et al. May 2003 A1
20030118381 Law et al. Jun 2003 A1
20030129435 Blankenship et al. Jul 2003 A1
20030186147 Pickering et al. Oct 2003 A1
20030214568 Nishikawa et al. Nov 2003 A1
20030234849 Pan et al. Dec 2003 A1
20040003863 Eckhardt Jan 2004 A1
20040020382 McLean et al. Feb 2004 A1
20040047666 Imaizumi et al. Mar 2004 A1
20040087707 Zoch et al. May 2004 A1
20040123761 Szumla et al. Jul 2004 A1
20040125188 Szumla et al. Jul 2004 A1
20040173111 Okuda Sep 2004 A1
20040200369 Brady Oct 2004 A1
20040228642 Iida et al. Nov 2004 A1
20040246324 Nakashima Dec 2004 A1
20040246326 Dwyer et al. Dec 2004 A1
20040252175 Bejat et al. Dec 2004 A1
20050031807 Quintens et al. Feb 2005 A1
20050082146 Axmann Apr 2005 A1
20050110855 Taniuchi et al. May 2005 A1
20050111861 Calamita et al. May 2005 A1
20050134874 Overall et al. Jun 2005 A1
20050150408 Hesterman Jul 2005 A1
20050185009 Claramunt et al. Aug 2005 A1
20050195235 Kitao Sep 2005 A1
20050235870 Ishihara Oct 2005 A1
20050266332 Pavlisko et al. Dec 2005 A1
20050272334 Wang et al. Dec 2005 A1
20060004123 Wu et al. Jan 2006 A1
20060135709 Hasegawa et al. Jun 2006 A1
20060164488 Taniuchi et al. Jul 2006 A1
20060164489 Vega et al. Jul 2006 A1
20060192827 Takada et al. Aug 2006 A1
20060233578 Maki et al. Oct 2006 A1
20060286462 Jackson et al. Dec 2006 A1
20070014595 Kawagoe Jan 2007 A1
20070025768 Komatsu et al. Feb 2007 A1
20070029171 Nemedi Feb 2007 A1
20070045939 Toya et al. Mar 2007 A1
20070054981 Yanagi et al. Mar 2007 A1
20070064077 Konno Mar 2007 A1
20070077520 Maemoto Apr 2007 A1
20070120927 Snyder et al. May 2007 A1
20070123642 Banning et al. May 2007 A1
20070134030 Lior et al. Jun 2007 A1
20070144368 Barazani et al. Jun 2007 A1
20070146462 Taniuchi et al. Jun 2007 A1
20070147894 Yokota Jun 2007 A1
20070166071 Shima Jul 2007 A1
20070176995 Kadomatsu et al. Aug 2007 A1
20070189819 Uehara et al. Aug 2007 A1
20070199457 Cyman et al. Aug 2007 A1
20070229639 Yahiro Oct 2007 A1
20070253726 Kagawa Nov 2007 A1
20070257955 Tanaka et al. Nov 2007 A1
20070285486 Harris et al. Dec 2007 A1
20080006176 Houjou Jan 2008 A1
20080030536 Furukawa et al. Feb 2008 A1
20080032072 Taniuchi et al. Feb 2008 A1
20080044587 Maeno et al. Feb 2008 A1
20080055356 Yamanobe Mar 2008 A1
20080055381 Doi et al. Mar 2008 A1
20080074462 Hirakawa Mar 2008 A1
20080112912 Springob et al. May 2008 A1
20080138546 Soria et al. Jun 2008 A1
20080166495 Maeno et al. Jul 2008 A1
20080167185 Hirota Jul 2008 A1
20080175612 Oikawa et al. Jul 2008 A1
20080196612 Rancourt et al. Aug 2008 A1
20080196621 Ikuno et al. Aug 2008 A1
20080213548 Koganehira et al. Sep 2008 A1
20080236480 Furukawa et al. Oct 2008 A1
20080253812 Pearce et al. Oct 2008 A1
20090022504 Kuwabara et al. Jan 2009 A1
20090041515 Kim Feb 2009 A1
20090041932 Ishizuka et al. Feb 2009 A1
20090064884 Hook et al. Mar 2009 A1
20090074492 Ito Mar 2009 A1
20090082503 Yanagi et al. Mar 2009 A1
20090087565 Houjou Apr 2009 A1
20090098385 Kaemper et al. Apr 2009 A1
20090116885 Ando May 2009 A1
20090148200 Hara et al. Jun 2009 A1
20090165937 Inoue et al. Jul 2009 A1
20090190951 Torimaru et al. Jul 2009 A1
20090202275 Nishida et al. Aug 2009 A1
20090211490 Ikuno et al. Aug 2009 A1
20090220873 Enomoto et al. Sep 2009 A1
20090237479 Yamashita et al. Sep 2009 A1
20090256896 Scarlata Oct 2009 A1
20090279170 Miyazaki et al. Nov 2009 A1
20090315926 Yamanobe Dec 2009 A1
20090317555 Hori Dec 2009 A1
20090318591 Ageishi et al. Dec 2009 A1
20100012023 Lefevre et al. Jan 2010 A1
20100053292 Thayer et al. Mar 2010 A1
20100053293 Thayer et al. Mar 2010 A1
20100066796 Yanagi et al. Mar 2010 A1
20100075843 Ikuno et al. Mar 2010 A1
20100086692 Ohta Apr 2010 A1
20100091064 Araki et al. Apr 2010 A1
20100225695 Fujikura Sep 2010 A1
20100231623 Hirato Sep 2010 A1
20100239789 Umeda Sep 2010 A1
20100245511 Ageishi Sep 2010 A1
20100282100 Okuda et al. Nov 2010 A1
20100285221 Oki et al. Nov 2010 A1
20100303504 Funamoto et al. Dec 2010 A1
20100310281 Miura et al. Dec 2010 A1
20110044724 Funamoto et al. Feb 2011 A1
20110058001 Gila et al. Mar 2011 A1
20110058859 Nakamatsu et al. Mar 2011 A1
20110085828 Kosako et al. Apr 2011 A1
20110128300 Gay et al. Jun 2011 A1
20110141188 Morita Jun 2011 A1
20110149002 Kessler Jun 2011 A1
20110150509 Komiya Jun 2011 A1
20110150541 Michibata Jun 2011 A1
20110169889 Kojima et al. Jul 2011 A1
20110195260 Lee et al. Aug 2011 A1
20110199414 Lang Aug 2011 A1
20110234683 Komatsu Sep 2011 A1
20110234689 Saito Sep 2011 A1
20110249090 Moore et al. Oct 2011 A1
20110269885 Imai Nov 2011 A1
20110279554 Dannhauser et al. Nov 2011 A1
20110304674 Sambhy et al. Dec 2011 A1
20120013693 Tasaka et al. Jan 2012 A1
20120013694 Kanke Jan 2012 A1
20120013928 Yoshida et al. Jan 2012 A1
20120026224 Anthony et al. Feb 2012 A1
20120039647 Brewington et al. Feb 2012 A1
20120094091 Van Mil et al. Apr 2012 A1
20120098882 Onishi et al. Apr 2012 A1
20120105561 Taniuchi et al. May 2012 A1
20120105562 Sekiguchi et al. May 2012 A1
20120113180 Tanaka et al. May 2012 A1
20120113203 Kushida et al. May 2012 A1
20120127250 Kanasugi et al. May 2012 A1
20120127251 Tsuji et al. May 2012 A1
20120140009 Kanasugi et al. Jun 2012 A1
20120154497 Nakao et al. Jun 2012 A1
20120156375 Brust et al. Jun 2012 A1
20120156624 Rondon et al. Jun 2012 A1
20120162302 Oguchi et al. Jun 2012 A1
20120163846 Andoh et al. Jun 2012 A1
20120194830 Gaertner et al. Aug 2012 A1
20120237260 Sengoku et al. Sep 2012 A1
20120287260 Lu et al. Nov 2012 A1
20120301186 Yang et al. Nov 2012 A1
20120314077 Clavenna, II et al. Dec 2012 A1
20130017006 Suda Jan 2013 A1
20130044188 Nakamura et al. Feb 2013 A1
20130057603 Gordon Mar 2013 A1
20130088543 Tsuji et al. Apr 2013 A1
20130120513 Thayer et al. May 2013 A1
20130201237 Thomson et al. Aug 2013 A1
20130234080 Torikoshi et al. Sep 2013 A1
20130242016 Edwards et al. Sep 2013 A1
20130338273 Shimanaka et al. Dec 2013 A1
20140001013 Takifuji et al. Jan 2014 A1
20140011125 Inoue et al. Jan 2014 A1
20140043398 Butler et al. Feb 2014 A1
20140104360 Häcker et al. Apr 2014 A1
20140168330 Liu et al. Jun 2014 A1
20140175707 Wolk et al. Jun 2014 A1
20140232782 Mukai et al. Aug 2014 A1
20140267777 Le Clerc et al. Sep 2014 A1
20140339056 Iwakoshi et al. Nov 2014 A1
20150024648 Landa et al. Jan 2015 A1
20150025179 Landa et al. Jan 2015 A1
20150072090 Landa et al. Mar 2015 A1
20150085036 Liu et al. Mar 2015 A1
20150085037 Liu et al. Mar 2015 A1
20150116408 Armbruster et al. Apr 2015 A1
20150118503 Landa et al. Apr 2015 A1
20150195509 Phipps Jul 2015 A1
20150210065 Kelly et al. Jul 2015 A1
20150304531 Rodriguez Garcia et al. Oct 2015 A1
20150336378 Guttmann et al. Nov 2015 A1
20150361288 Song et al. Dec 2015 A1
20160031246 Sreekumar et al. Feb 2016 A1
20160222232 Landa et al. Aug 2016 A1
20160286462 Gohite et al. Sep 2016 A1
20160375680 Nishitani et al. Dec 2016 A1
20170028688 Dannhauser et al. Feb 2017 A1
20170104887 Nomura Apr 2017 A1
20180259888 Mitsui et al. Sep 2018 A1
20190016114 Sugiyama et al. Jan 2019 A1
20190023919 Landa et al. Jan 2019 A1
20190152218 Stein et al. May 2019 A1
20190218411 Landa et al. Jul 2019 A1
20190256724 Landa et al. Aug 2019 A1
20190358982 Landa et al. Nov 2019 A1
20190366705 Landa et al. Dec 2019 A1
20190389230 Landa et al. Dec 2019 A1
20200062002 Landa et al. Feb 2020 A1
20200156366 Shmaiser et al. May 2020 A1
20200171813 Chechik et al. Jun 2020 A1
20200189264 Landa et al. Jun 2020 A1
20200198322 Landa et al. Jun 2020 A1
Foreign Referenced Citations (312)
Number Date Country
1121033 Apr 1996 CN
1200085 Nov 1998 CN
1212229 Mar 1999 CN
1324901 Dec 2001 CN
1445622 Oct 2003 CN
1493514 May 2004 CN
1535235 Oct 2004 CN
1720187 Jan 2006 CN
1261831 Jun 2006 CN
1809460 Jul 2006 CN
1289368 Dec 2006 CN
101073937 Nov 2007 CN
101177057 May 2008 CN
101249768 Aug 2008 CN
101344746 Jan 2009 CN
101359210 Feb 2009 CN
101508200 Aug 2009 CN
101524916 Sep 2009 CN
101544100 Sep 2009 CN
101544101 Sep 2009 CN
101607468 Dec 2009 CN
201410787 Feb 2010 CN
101835611 Sep 2010 CN
101835612 Sep 2010 CN
101873982 Oct 2010 CN
102248776 Nov 2011 CN
102555450 Jul 2012 CN
102648095 Aug 2012 CN
102925002 Feb 2013 CN
103045008 Apr 2013 CN
103309213 Sep 2013 CN
103991293 Aug 2014 CN
104220934 Dec 2014 CN
104271356 Jan 2015 CN
104284850 Jan 2015 CN
104618642 May 2015 CN
105058999 Nov 2015 CN
102010060999 Jun 2012 DE
0457551 Nov 1991 EP
0499857 Aug 1992 EP
0606490 Jul 1994 EP
0609076 Aug 1994 EP
0613791 Sep 1994 EP
0530627 Mar 1997 EP
0784244 Jul 1997 EP
0835762 Apr 1998 EP
0843236 May 1998 EP
0854398 Jul 1998 EP
1013466 Jun 2000 EP
1146090 Oct 2001 EP
1158029 Nov 2001 EP
0825029 May 2002 EP
1247821 Oct 2002 EP
0867483 Jun 2003 EP
1454968 Sep 2004 EP
1503326 Feb 2005 EP
1777243 Apr 2007 EP
2028238 Feb 2009 EP
2042317 Apr 2009 EP
2065194 Jun 2009 EP
2228210 Sep 2010 EP
2270070 Jan 2011 EP
2042318 Feb 2011 EP
2042325 Feb 2012 EP
2634010 Sep 2013 EP
2683556 Jan 2014 EP
2075635 Oct 2014 EP
2823363 Oct 2018 EP
748821 May 1956 GB
1496016 Dec 1977 GB
1520932 Aug 1978 GB
1522175 Aug 1978 GB
2321430 Jul 1998 GB
S5578904 Jun 1980 JP
S57121446 Jul 1982 JP
S6076343 Apr 1985 JP
S60199692 Oct 1985 JP
S6223783 Jan 1987 JP
H03248170 Nov 1991 JP
H05147208 Jun 1993 JP
H05192871 Aug 1993 JP
H05297737 Nov 1993 JP
H06954 Jan 1994 JP
H06100807 Apr 1994 JP
H06171076 Jun 1994 JP
H06345284 Dec 1994 JP
H07112841 May 1995 JP
H07186453 Jul 1995 JP
H07238243 Sep 1995 JP
H0862999 Mar 1996 JP
H08112970 May 1996 JP
2529651 Aug 1996 JP
H09123432 May 1997 JP
H09157559 Jun 1997 JP
H09281851 Oct 1997 JP
H09314867 Dec 1997 JP
H1142811 Feb 1999 JP
H11503244 Mar 1999 JP
H11106081 Apr 1999 JP
H11245383 Sep 1999 JP
2000108320 Apr 2000 JP
2000108334 Apr 2000 JP
2000141710 May 2000 JP
2000168062 Jun 2000 JP
2000169772 Jun 2000 JP
2000206801 Jul 2000 JP
2001088430 Apr 2001 JP
2001098201 Apr 2001 JP
2001139865 May 2001 JP
3177985 Jun 2001 JP
2001164165 Jun 2001 JP
2001199150 Jul 2001 JP
2001206522 Jul 2001 JP
2002020666 Jan 2002 JP
2002504446 Feb 2002 JP
2002069346 Mar 2002 JP
2002103598 Apr 2002 JP
2002169383 Jun 2002 JP
2002229276 Aug 2002 JP
2002234243 Aug 2002 JP
2002278365 Sep 2002 JP
2002304066 Oct 2002 JP
2002326733 Nov 2002 JP
2002371208 Dec 2002 JP
2003057967 Feb 2003 JP
2003114558 Apr 2003 JP
2003145914 May 2003 JP
2003183557 Jul 2003 JP
2003211770 Jul 2003 JP
2003219271 Jul 2003 JP
2003246135 Sep 2003 JP
2003246484 Sep 2003 JP
2003292855 Oct 2003 JP
2003313466 Nov 2003 JP
2004009632 Jan 2004 JP
2004019022 Jan 2004 JP
2004025708 Jan 2004 JP
2004034441 Feb 2004 JP
2004077669 Mar 2004 JP
2004114377 Apr 2004 JP
2004114675 Apr 2004 JP
2004148687 May 2004 JP
2004231711 Aug 2004 JP
2004524190 Aug 2004 JP
2004261975 Sep 2004 JP
2004325782 Nov 2004 JP
2005014255 Jan 2005 JP
2005014256 Jan 2005 JP
2005114769 Apr 2005 JP
2005215247 Aug 2005 JP
2005307184 Nov 2005 JP
2005319593 Nov 2005 JP
2006001688 Jan 2006 JP
2006023403 Jan 2006 JP
2006095870 Apr 2006 JP
2006102975 Apr 2006 JP
2006137127 Jun 2006 JP
2006143778 Jun 2006 JP
2006152133 Jun 2006 JP
2006224583 Aug 2006 JP
2006231666 Sep 2006 JP
2006234212 Sep 2006 JP
2006243212 Sep 2006 JP
2006263984 Oct 2006 JP
2006347081 Dec 2006 JP
2006347085 Dec 2006 JP
2007025246 Feb 2007 JP
2007041530 Feb 2007 JP
2007069584 Mar 2007 JP
2007083445 Apr 2007 JP
2007190745 Aug 2007 JP
2007216673 Aug 2007 JP
2007253347 Oct 2007 JP
2007334125 Dec 2007 JP
2008006816 Jan 2008 JP
2008018716 Jan 2008 JP
2008019286 Jan 2008 JP
2008036968 Feb 2008 JP
2008137239 Jun 2008 JP
2008139877 Jun 2008 JP
2008142962 Jun 2008 JP
2008183744 Aug 2008 JP
2008194997 Aug 2008 JP
2008532794 Aug 2008 JP
2008201564 Sep 2008 JP
2008238674 Oct 2008 JP
2008246787 Oct 2008 JP
2008246990 Oct 2008 JP
2008254203 Oct 2008 JP
2008255135 Oct 2008 JP
2009040892 Feb 2009 JP
2009045794 Mar 2009 JP
2009045851 Mar 2009 JP
2009045885 Mar 2009 JP
2009083314 Apr 2009 JP
2009083317 Apr 2009 JP
2009083325 Apr 2009 JP
2009096175 May 2009 JP
2009148908 Jul 2009 JP
2009154330 Jul 2009 JP
2009190375 Aug 2009 JP
2009202355 Sep 2009 JP
2009214318 Sep 2009 JP
2009214439 Sep 2009 JP
2009226852 Oct 2009 JP
2009226886 Oct 2009 JP
2009233977 Oct 2009 JP
2009234219 Oct 2009 JP
2010005815 Jan 2010 JP
2010054855 Mar 2010 JP
2010510357 Apr 2010 JP
2010105365 May 2010 JP
2010173201 Aug 2010 JP
2010184376 Aug 2010 JP
2010214885 Sep 2010 JP
2010228192 Oct 2010 JP
2010228392 Oct 2010 JP
2010234599 Oct 2010 JP
2010234681 Oct 2010 JP
2010241073 Oct 2010 JP
2010247381 Nov 2010 JP
2010247528 Nov 2010 JP
2010258193 Nov 2010 JP
2010260204 Nov 2010 JP
2010260287 Nov 2010 JP
2010260302 Nov 2010 JP
2010286570 Dec 2010 JP
2011002532 Jan 2011 JP
2011025431 Feb 2011 JP
2011037070 Feb 2011 JP
2011067956 Apr 2011 JP
2011126031 Jun 2011 JP
2011133884 Jul 2011 JP
2011144271 Jul 2011 JP
2011523601 Aug 2011 JP
2011173325 Sep 2011 JP
2011173326 Sep 2011 JP
2011186346 Sep 2011 JP
2011189627 Sep 2011 JP
2011201951 Oct 2011 JP
2011224032 Nov 2011 JP
2012042943 Mar 2012 JP
2012086499 May 2012 JP
2012111194 Jun 2012 JP
2012126123 Jul 2012 JP
2012139905 Jul 2012 JP
2012196787 Oct 2012 JP
2012201419 Oct 2012 JP
2013001081 Jan 2013 JP
2013060299 Apr 2013 JP
2013103474 May 2013 JP
2013121671 Jun 2013 JP
2013129158 Jul 2013 JP
2014047005 Mar 2014 JP
2014094827 May 2014 JP
2016185688 Oct 2016 JP
2016539830 Dec 2016 JP
2180675 Mar 2002 RU
2282643 Aug 2006 RU
WO-8600327 Jan 1986 WO
WO-9307000 Apr 1993 WO
WO-9604339 Feb 1996 WO
WO-9631809 Oct 1996 WO
WO-9707991 Mar 1997 WO
WO-9736210 Oct 1997 WO
WO-9821251 May 1998 WO
WO-9855901 Dec 1998 WO
WO-9912633 Mar 1999 WO
WO-9942509 Aug 1999 WO
WO-9943502 Sep 1999 WO
WO-0064685 Nov 2000 WO
WO-0154902 Aug 2001 WO
WO-0170512 Sep 2001 WO
WO-02068191 Sep 2002 WO
WO-02078868 Oct 2002 WO
WO-02094912 Nov 2002 WO
WO-2004113082 Dec 2004 WO
WO-2004113450 Dec 2004 WO
WO-2006051733 May 2006 WO
WO-2006069205 Jun 2006 WO
WO-2006073696 Jul 2006 WO
WO-2006091957 Aug 2006 WO
WO-2007009871 Jan 2007 WO
WO-2007145378 Dec 2007 WO
WO-2008078841 Jul 2008 WO
WO-2009025809 Feb 2009 WO
WO-2009134273 Nov 2009 WO
WO-2010042784 Jul 2010 WO
WO-2010073916 Jul 2010 WO
WO-2011142404 Nov 2011 WO
WO-2012014825 Feb 2012 WO
WO-2012148421 Nov 2012 WO
WO-2013060377 May 2013 WO
WO-2013087249 Jun 2013 WO
WO-2013132339 Sep 2013 WO
WO-2013132340 Sep 2013 WO
WO-2013132343 Sep 2013 WO
WO-2013132345 Sep 2013 WO
WO-2013132356 Sep 2013 WO
WO-2013132418 Sep 2013 WO
WO-2013132419 Sep 2013 WO
WO-2013132420 Sep 2013 WO
WO-2013132424 Sep 2013 WO
WO-2013132432 Sep 2013 WO
WO-2013132438 Sep 2013 WO
WO-2013132439 Sep 2013 WO
WO-2013136220 Sep 2013 WO
WO-2015036864 Mar 2015 WO
WO-2015036906 Mar 2015 WO
WO-2015036960 Mar 2015 WO
WO-2016166690 Oct 2016 WO
WO-2017208246 Dec 2017 WO
Non-Patent Literature Citations (207)
Entry
“Amino Functional Silicone Polymers”, in Xiameter.COPYRGT. 2009 Dow Corning Corporation.
BASF , “JONCRYL 537”, Datasheet , Retrieved from the internet : Mar. 23, 2007 p. 1.
Clariant., “Ultrafine Pigment Dispersion for Design and Creative Materials: Hostafine Pigment Preparation” Jun. 19, 2008. Retrieved from the Internet: [URL: http://www.clariant.com/C125720D002B963C/4352D0BC052E90CEC1257479002707D9/$FILE/DP6208E_0608_FL_Hostafinefordesignandcreativematerials.pdf].
CN101073937A Machine Translation (by EPO and Google)—published Nov. 21, 2007; Werner Kaman Maschinen Gmbh & [DE].
CN101177057 Machine Translation (by EPO and Google)—published May 14, 2008—Hangzhou Yuanyang Industry Co.
CN101249768A Machine Translation (by EPO and Google)—published Aug. 27, 2008; Shantou Xinxie Special Paper T [CN].
CN101344746A Machine Translation (by EPO and Google)—published Jan. 14, 2009; Ricoh KK [JP].
CN101359210A Machine Translation (by EPO and Google)—published Feb. 4, 2009; Canon KK [JP].
CN101524916A Machine Translation (by EPO and Google)—published Sep. 9, 2009; Fuji Xerox Co Ltd.
CN101544100A Machine Translation (by EPO and Google)—published Sep. 30, 2009; Fuji Xerox Co Ltd.
CN101873982A Machine Translation (by EPO and Google)—published Oct. 27, 2010; Habasit AG, Delair et al.
CN102648095A Machine Translation (by EPO and Google)—published Aug. 22, 2012; Mars Inc.
CN102925002 Machine Translation (by EPO and Google)—published Feb. 13, 2013; Jiangnan University, Fu et al.
CN103045008A Machine Translation (by EPO and Google)—published Apr. 17, 2013; Fuji Xerox Co Ltd.
CN103991293A Machine Translation (by EPO and Google)—published Aug. 20, 2014; Miyakoshi Printing Machinery Co., Ltd, Junichi et al.
CN104618642 Machine Translation (by EPO and Google); published on May 13, 2015, Yulong Comp Comm Tech Shenzhen.
CN105058999A Machine Translation (by EPO and Google)—published Nov. 18, 2015; Zhuoli Imaging Technology Co Ltd.
CN1121033A Machine Translation (by EPO and Google)—published Apr. 24, 1996; Kuehnle Manfred R [US].
CN1212229A Machine Translation (by EPO and Google)—published Mar. 31, 1999; Honta Industry Corp [JP].
CN1493514A Machine Translation (by EPO and Google)—published May 5, 2004; GD SPA, Boderi et al.
CN1809460A Machine Translation (by EPO and Google)—published Jul. 26, 2006; Canon KK.
CN201410787Y Machine Translation (by EPO and Google)—published Feb. 24, 2010; Zhejiang Chanx Wood Co Ltd.
Co-pending U.S. Appl. No. 16/512,915, filed Jul. 16, 2019.
Co-pending U.S. Appl. No. 16/590,397, filed Oct. 2, 2019.
Co-pending U.S. Appl. No. 16/764,330, filed May 14, 2020.
Co-pending U.S. Appl. No. 16/765,878, filed May 21, 2020.
Co-pending U.S. Appl. No. 16/784,208, filed Feb. 6, 2020.
Co-pending U.S. Appl. No. 16/793,995, filed Feb. 18, 2020.
Co-pending U.S. Appl. No. 16/814,900, filed Mar. 11, 2020.
Co-pending U.S. Appl. No. 16/850,229, filed Apr. 16, 2020.
Co-pending U.S. Appl. No. 16/883,617, filed May 26, 2020.
DE102010060999 Machine Translation (by EPO and Google)—published Jun. 6, 2012; Wolf, Roland, Dr.-Ing.
Epomin Polyment, product information from Nippon Shokubai, dated Feb. 28, 2014.
Flexicon., “Bulk Handling Equipment and Systems: Carbon Black,” 2018, 2 pages.
Handbook of Print Media, 2001, Springer Verlag, Berlin/Heidelberg/New York, pp. 127-136,748—With English Translation.
IP.com Search, 2018, 2 pages.
IP.com Search, 2019, 1 page.
JP2000108320 Machine Translation (by PlatPat English machine translation)—published Apr. 18, 2000 Brother Ind. Ltd.
JP2000108334A Machine Translation (by EPO and Google)—published Apr. 18, 2000; Brother Ind Ltd.
JP2000141710A Machine Translation (by EPO and Google)—published May 23, 2000; Brother Ind Ltd.
JP2000168062A Machine Translation (by EPO and Google)—published Jun. 20, 2000; Brother Ind Ltd.
JP2000169772 Machine Translation (by EPO and Google)—published Jun. 20, 2000; Tokyo Ink MFG Co Ltd.
JP2000206801 Machine Translation (by PlatPat English machine translation); published on Jul. 28, 2000, Canon KK, Kobayashi et al.
JP2001088430A Machine Translation (by EPO and Google)—published Apr. 3, 2001; Kimoto KK.
JP2001098201A Machine Translation (by EPO and Google)—published Apr. 10, 2001; Eastman Kodak Co.
JP2001139865A Machine Translation (by EPO and Google)—published May 22, 2001; Sharp KK.
JP2001164165A Machine Translation (by EPO and Google)—published Jun. 19, 2001; Dainippon Ink & Chemicals.
JP2001199150A Machine Translation (by EPO and Google)—published Jul. 24, 2001; Canon KK.
JP2001206522 Machine Translation (by EPO, PlatPat and Google)—published Jul. 31, 2001; Nitto Denko Corp, Kato et al.
JP2002069346A Machine Translation (by EPO and Google)—published Mar. 8, 2002; Dainippon Ink & Chemicals.
JP2002103598A Machine Translation (by EPO and Google)—published Apr. 9, 2002; Olympus Optical Co.
JP2002169383 Machine Translation (by EPO, PlatPat and Google)—published Jun. 14, 2002 Richo KK.
JP2002234243 Machine Translation (by EPO and Google)—published Aug. 20, 2002; Hitachi Koki Co Ltd.
JP2002278365 Machine Translation (by PlatPat English machine translation)—published Sep. 27, 2002 Katsuaki, Ricoh KK.
JP2002304066A Machine Translation (by EPO and Google)—published Oct. 18, 2002; PFU Ltd.
JP2002326733 Machine Translation (by EPO, PlatPat and Google)—published Nov. 12, 2002; Kyocera Mita Corp.
JP2002371208 Machine Translation (by EPO and Google)—published Dec. 26, 2002; Canon Inc.
JP2003114558 Machine Translation (by EPO, PlatPat and Google)—published Apr. 18, 2003 Mitsubishi Chem Corp, Yuka Denshi Co Ltd, et al.
JP2003145914A Machine Translation (by EPO and Google)—published May 21, 2003; Konishiroku Photo Ind.
JP2003211770 Machine Translation (by EPO and Google)—published Jul. 29, 2003 Hitachi Printing Solutions.
JP2003219271 Machine Translation (by EPO and Google); published on Jul. 31, 2003, Japan Broadcasting.
JP2003246135 Machine Translation (by PlatPat English machine translation)—published Sep. 2, 2003 Ricoh KK, Morohoshi et al.
JP2003246484 Machine Translation (English machine translation)—published Sep. 2, 2003 Kyocera Corp.
JP2003292855A Machine Translation (by EPO and Google)—published Oct. 15, 2003; Konishiroku Photo Ind.
JP2003313466A Machine Translation (by EPO and Google)—published Nov. 6, 2003; Ricoh KK.
JP2004009632A Machine Translation (by EPO and Google)—published Jan. 15, 2004; Konica Minolta Holdings Inc.
JP2004019022 Machine Translation (by EPO and Google)—published Jan. 22, 2004; Yamano et al.
JP2004025708A Machine Translation (by EPO and Google)—published Jan. 29, 2004; Konica Minolta Holdings Inc.
JP2004034441A Machine Translation (by EPO and Google)—published Feb. 5, 2004; Konica Minolta Holdings Inc.
JP2004077669 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2004 Fuji Xerox Co Ltd.
JP2004114377(A) Machine Translation (by EPO and Google)—published Apr. 15, 2004; Konica Minolta Holdings Inc, et al.
JP2004114675 Machine Translation (by EPO and Google)—published Apr. 15, 2004; Canon Inc.
JP2004148687A Machine Translation (by EPO and Google)—published May 27, 2014; Mitsubishi Heavy Ind Ltd.
JP2004231711 Machine Translation (by EPO and Google)—published Aug. 19, 2004; Seiko Epson Corp.
JP2004261975 Machine Translation (by EPO, PlatPat and Google); published on Sep. 24, 2004, Seiko Epson Corp, Kataoka et al.
JP2004325782A Machine Translation (by EPO and Google)—published Nov. 18, 2004; Canon KK.
JP2004524190A Machine Translation (by EPO and Google)—published Aug. 12, 2004; Avery Dennison Corp.
JP2005014255 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005014256 Machine Translation (by EPO and Google)—published Jan. 20, 2005; Canon Inc.
JP2005114769 Machine Translation (by PlatPat English machine translation)—published Apr. 28, 2005 Ricoh KK.
JP2005215247A Machine Translation (by EPO and Google)—published Aug. 11, 2005; Toshiba Corp.
JP2005319593 Machine Translation (by EPO and Google)—published Nov. 17, 2005, Jujo Paper Co Ltd.
JP2006001688 Machine Translation (by PlatPat English machine translation)—published Jan. 5, 2006 Ricoh KK.
JP2006023403A Machine Translation (by EPO and Google)—published Jan. 26, 2006; Ricoh KK.
JP2006095870A Machine Translation (by EPO and Google)—published Apr. 13, 2006; Fuji Photo Film Co Ltd.
JP2006102975 Machine Translation (by EPO and Google)—published Apr. 20, 2006; Fuji Photo Film Co Ltd.
JP2006137127 Machine Translation (by EPO and Google)—published Jun. 1, 2006; Konica Minolta Med & Graphic.
JP2006143778 Machine Translation (by EPO, PlatPat and Google)—published Jun. 8, 2006 Sun Bijutsu Insatsu KK et al.
JP2006152133 Machine Translation (by EPO, PlatPat and Google)—published Jun. 15, 2006 Seiko Epson Corp.
JP2006224583A Machine Translation (by EPO and Google)—published Aug. 31, 2006; Konica Minolta Holdings Inc.
JP2006231666A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Seiko Epson Corp.
JP2006234212A Machine Translation (by EPO and Google)—published Sep. 7, 2006; Matsushita Electric Ind Co Ltd.
JP2006243212 Machine Translation (by PlatPat English machine translation)—published Sep. 14, 2006 Fuji Xerox Co Ltd.
JP2006263984 Machine Translation (by EPO, PlatPat and Google)—published Oct. 5, 2006 Fuji Photo Film Co Ltd.
JP2006347081 Machine Translation (by EPO and Google)—published Dec. 28, 2006; Fuji Xerox Co Ltd.
JP2006347085 Machine Translation (by EPO and Google)—published Dec. 28, 2006 Fuji Xerox Co Ltd.
JP2007025246A Machine Translation (by EPO and Google)—published Feb. 1, 2007; Seiko Epson Corp.
JP2007041530A Machine Translation (by EPO and Google)—published Feb. 15, 2007; Fuji Xerox Co Ltd.
JP2007069584 Machine Translation (by EPO and Google)—published Mar. 22, 2007 Fujifilm.
JP2007083445A Machine Translation (by EPO and Google)—published Apr. 5, 2007; Fujifilm Corp.
JP2007216673 Machine Translation (by EPO and Google)—published Aug. 30, 2007 Brother Ind.
JP2007253347A Machine Translation (by EPO and Google)—published Oct. 4, 2007; Ricoh KK, Matsuo et al.
JP2008006816 Machine Translation (by EPO and Google)—published Jan. 17, 2008; Fujifilm Corp.
JP2008018716 Machine Translation (by EPO and Google)—published Jan. 31, 2008; Canon Inc.
JP2008137239A Machine Translation (by EPO and Google); published on Jun. 19, 2008, Kyocera Mita Corp.
JP2008139877A Machine Translation (by EPO and Google)—published Jun. 19, 2008; Xerox Corp.
JP2008142962 Machine Translation (by EPO and Google)—published Jun. 26, 2008; Fuji Xerox Co Ltd.
JP2008183744A Machine Translation (by EPO and Google)—published Aug. 14, 2008, Fuji Xerox Co Ltd.
JP2008194997A Machine Translation (by EPO and Google)—published Aug. 28, 2008; Fuji Xerox Co Ltd.
JP2008201564 Machine Translation (English machine translation)—published Sep. 4, 2008 Fuji Xerox Co Ltd.
JP2008238674A Machine Translation (by EPO and Google)—published Oct. 9, 2008; Brother Ind Ltd.
JP2008246990 Machine Translation (by EPO and Google)—published Oct. 16, 2008, Jujo Paper Co Ltd.
JP2008254203A Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2008255135 Machine Translation (by EPO and Google)—published Oct. 23, 2008; Fujifilm Corp.
JP2009045794 Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fujifilm Corp.
JP2009045851A Machine Translation (by EPO and Google); published on Mar. 5, 2009, Fujifilm Corp.
JP2009045885A Machine Translation (by EPO and Google)—published Mar. 5, 2009; Fuji Xerox Co Ltd.
JP2009083314 Machine Translation (by EPO, PlatPat and Google)—published Apr. 23, 2009 Fujifilm Corp.
JP2009083317 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009; Fuji Film Corp.
JP2009083325 Abstract; Machine Translation (by EPO and Google)—published Apr. 23, 2009 Fujifilm.
JP2009096175 Machine Translation (EPO, PlatPat and Google) published on May 7, 2009 Fujifilm Corp.
JP2009148908A Machine Translation (by EPO and Google)—published Jul. 9, 2009; Fuji Xerox Co Ltd.
JP2009154330 Machine Translation (by EPO and Google)—published Jul. 16, 2009; Seiko Epson Corp.
JP2009190375 Machine Translation (by EPO and Google)—published Aug. 27, 2009; Fuji Xerox Co Ltd.
JP2009202355 Machine Translation (by EPO and Google)—published Sep. 10, 2009; Fuji Xerox Co Ltd.
JP2009214318 Machine Translation (by EPO and Google)—published Sep. 24, 2009 Fuji Xerox Co Ltd.
JP2009214439 Machine Translation (by PlatPat English machine translation)—published Sep. 24, 2009 Fujifilm Corp.
JP2009226852 Machine Translation (by EPO and Google)—published Oct. 8, 2009; Hirato Katsuyuki, Fujifilm Corp.
JP2009233977 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fuji Xerox Co Ltd.
JP2009234219 Machine Translation (by EPO and Google)—published Oct. 15, 2009; Fujifilm Corp.
JP2010054855 Machine Translation (by PlatPat English machine translation)—published Mar. 11, 2010 Itatsu, Fuji Xerox Co.
JP2010105365 Machine Translation (by EPO and Google)—published May 13, 2010; Fuji Xerox Co Ltd.
JP2010173201 Abstract; Machine Translation (by EPO and Google)—published Aug. 12, 2010; Richo Co Ltd.
JP2010184376 Machine Translation (by EPO, PlatPat and Google)—published Aug. 26, 2010 Fujifilm Corp.
JP2010214885A Machine Translation (by EPO and Google)—published Sep. 30, 2010; Mitsubishi Heavy Ind Ltd.
JP2010228192 Machine Translation (by PlatPat English machine translation)—published Oct. 14, 2010 Fuji Xerox.
JP2010228392A Machine Translation (by EPO and Google)—published Oct. 14, 2010; Jujo Paper Co Ltd.
JP2010234599A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Duplo Seiko Corp et al.
JP2010234681A Machine Translation (by EPO and Google)—published Oct. 21, 2010; Riso Kagaku Corp.
JP2010241073 Machine Translation (by EPO and Google)—published Oct. 28, 2010; Canon Inc.
JP2010247381A Machine Translation (by EPO and Google); published on Nov. 4, 2010, Ricoh Co Ltd.
JP2010258193 Machine Translation (by EPO and Google)—published Nov. 11, 2010; Seiko Epson Corp.
JP2010260204A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Canon KK.
JP2010260287 Machine Translation (by EPO and Google)—published Nov. 18, 2010, Canon KK.
JP2010260302A Machine Translation (by EPO and Google)—published Nov. 18, 2010; Riso Kagaku Corp.
JP2011002532 Machine Translation (by PlatPat English machine translation)—published Jun. 1, 2011 Seiko Epson Corp.
JP2011025431 Machine Translation (by EPO and Google)—published Feb. 10, 2011; Fuji Xerox Co Ltd.
JP2011037070A Machine Translation (by EPO and Google)—published Feb. 24, 2011; Riso Kagaku Corp.
JP2011067956A Machine Translation (by EPO and Google)—published Apr. 7, 2011; Fuji Xerox Co Ltd.
JP2011126031A Machine Translation (by EPO and Google); published on Jun. 30, 2011, Kao Corp.
JP2011144271 Machine Translation (by EPO and Google)—published Jun. 28, 2011 Toyo Ink SC Holdings Co Ltd.
JP2011173325 Abstract; Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011173326 Machine Translation (by EPO and Google)—published Sep. 8, 2011; Canon Inc.
JP2011186346 Machine Translation (by PlatPat English machine translation)—published Sep. 22, 2011 Seiko Epson Corp, Nishimura et al.
JP2011189627 Machine Translation (by Google Patents)—published Sep. 29, 2011; Canon KK.
JP2011201951A Machine Translation (by PlatPat English machine translation); published on Oct. 13, 2011, Shin-Etsu Chemical Co Ltd, Todoroki et al.
JP2011224032 Machine Translation (by EPO & Google)—published Jul. 5, 2012 Canon KK.
JP2012086499 Machine Translation (by EPO and Google)—published May 10, 2012; Canon Inc.
JP2012111194 Machine Translation (by EPO and Google)—published Jun. 14, 2012; Konica Minolta.
JP2012196787A Machine Translation (by EPO and Google)—published Oct. 18, 2012; Seiko Epson Corp.
JP2012201419A Machine Translation (by EPO and Google)—published Oct. 22, 2012, Seiko Epson Corp.
JP2013001081 Machine Translation (by EPO and Google)—published Jan. 7, 2013; Kao Corp.
JP2013060299 Machine Translation (by EPO and Google)—published Apr. 4, 2013; Ricoh Co Ltd.
JP2013103474 Machine Translation (by EPO and Google)—published May 30, 2013; Ricoh Co Ltd.
JP2013121671 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Fuji Xerox Co Ltd.
JP2013129158 Machine Translation (by EPO and Google)—published Jul. 4, 2013; Fuji Xerox Co Ltd.
JP2014047005A Machine Translation (by EPO and Google)—published Mar. 17, 2014; Ricoh Co Ltd.
JP2014094827A Machine Translation (by EPO and Google)—published May 22, 2014; Panasonic Corp.
JP2016185688A Machine Translation (by EPO and Google)—published Oct. 27, 2016; Hitachi Industry Equipment Systems Co Ltd.
JP2529651B2 Machine Translation (by EPO and Google)—issued Aug. 28, 1996;Osaka Sealing Insatsu KK.
JPH03248170A Machine Translation (by EPO & Google)—published Nov. 6, 1991; Fujitsu Ltd.
JPH05147208 Machine Translation (by EPO and Google)—published Jun. 15, 1993—Mita Industrial Co Ltd.
JPH06100807 Machine Translation (by EPO and Google)—published Apr. 12, 1994; Seiko Instr Inc.
JPH06171076A Machine Translation (by PlatPat English machine translation)—published Jun. 21, 1994, Seiko Epson Corp.
JPH06345284A Machine Translation (by EPO and Google); published on Dec. 20, 1994, Seiko Epson Corp.
JPH06954A Machine Translation (by EPO and Google)—published Jan. 11, 1994; Seiko Epson Corp.
JPH07186453A Machine Translation (by EPO and Google)—published Jul. 25, 1995; Toshiba Corp.
JPH07238243A Machine Translation (by EPO and Google)—published Sep. 12, 1995; Seiko Instr Inc.
JPH08112970 Machine Translation (by EPO and Google)—published May 7, 1996; Fuji Photo Film Co Ltd.
JPH0862999A Machine Translation (by EPO & Google)—published Mar. 8, 1996 Toray Industries, Yoshida, Tomoyuki.
JPH09123432 Machine Translation (by EPO and Google)—published May 13, 1997, Mita Industrial Co Ltd.
JPH09157559A Machine Translation (by EPO and Google)—published Jun. 17, 1997; Toyo Ink Mfg Co.
JPH09281851A Machine Translation (by EPO and Google)—published Oct. 31, 1997; Seiko Epson Corp.
JPH09314867A Machine Translation (by PlatPat English machine translation)—published Dec. 9, 1997, Toshiba Corp.
JPH11106081A Machine Translation (by EPO and Google)—published Apr. 20, 1999; Ricoh KK.
JPH11245383A Machine Translation (by EPO and Google)—published Sep. 14, 1999; Xerox Corp.
JPH5297737 Machine Translation (by EPO & Google machine translation)—published Nov. 12, 1993 Fuji Xerox Co Ltd.
JPS5578904A Machine Translation (by EPO and Google)—published Jun. 14, 1980; Yokoyama Haruo.
JPS57121446U Machine Translation (by EPO and Google)—published Jul. 28, 1982.
JPS60199692A Machine Translation (by EPO and Google)—published Oct. 9, 1985; Suwa Seikosha KK.
JPS6076343A Machine Translation (by EPO and Google)—published Apr. 30, 1985; Toray Industries.
JPS6223783A Machine Translation (by EPO and Google)—published Jan. 31, 1987; Canon KK.
Machine Translation (by EPO and Google) of JPH07112841 published on May 2, 1995 Canon KK.
Marconi Studios, Virtual Set Real Time; http://www.marconistudios.il/pages/virtualset_en.php.
Montuori G.M., et al., “Geometrical Patterns for Diagrid Buildings: Exploring Alternative Design Strategies From the Structural Point of View,” Engineering Structures, Jul. 2014, vol. 71, pp. 112-127.
“Solubility of Alcohol”, in http://www.solubilityoflhings.com/water/alcohol; downloaded on Nov. 30, 2017.
Poly(vinyl acetate) data sheet. PolymerProcessing.com. Copyright 2010. http://polymerprocessing .com/polymers/PV AC.html.
Royal Television Society, The Flight of the Phoenix; https://rts.org.uk/article/flight-phoenix, Jan. 27, 2011.
RU2180675C2 Machine Translation (by EPO and Google)—published Mar. 20, 2002; Zao Rezinotekhnika.
RU2282643C1 Machine Translation (by EPO and Google)—published Aug. 27, 2006; Balakovorezinotekhnika AOOT.
Technical Information Lupasol Types, Sep. 2010, 10 page.
The Engineering Toolbox., “Dynamic Viscosity of Common Liquids,” 2018, 4 pages.
Thomas E. F., “CRC Handbook of Food Additives, Second Edition, vol. 1” CRC Press LLC, 1972, p. 434.
Units of Viscosity published by Hydramotion Ltd. 1 York Road Park, Malton, York Y017 6YA, England; downloaded from www.hydramotion.com website on Jun. 19, 2017.
WO2006051733A1 Machine Translation (by EPO and Google)—published May 18, 2006; Konica Minolta Med & Graphic.
WO2010073916A1 Machine Translation (by EPO and Google)—published Jul. 1, 2010; Nihon Parkerizing [JP] et al.
WO2013087249 Machine Translation (by EPO and Google)—published Jun. 20, 2013; Koenig & Bauer AG.
Related Publications (1)
Number Date Country
20200290340 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62574275 Oct 2017 US