The present invention relates generally to devices for cardiac surgery, and more specifically to devices for ablation of cardiac tissue.
The present invention is directed toward treatment of tachyarrhythmias, which are heart rhythms in which one or more chambers of the heart exhibit an excessively fast rhythm. In particular, the present invention is directed toward treatment of tachycardias, which are due to the presence of ectopic foci within the cardiac tissue or due to the presence of aberrant condition pathways within the cardiac tissue.
There are many medical treatments that involve instances of cutting, ablating, coagulating, destroying, or otherwise changing the physiological properties of tissue. These techniques can be used beneficially to change the electrophysiological properties of tissue. For example, ablation of cardiac tissue can be used to cure various cardiac conditions. Normal sinus rhythm of the heart begins with the sinoatrial node (or “SA node”) generating a depolarization wave front. The impulse causes adjacent myocardial tissue cells in the atria to depolarize, which in turn causes adjacent myocardial tissue cells to depolarize. The depolarization propagates across the atria, causing the atria to contract and empty blood from the atria into the ventricles. The impulse is next delivered via the atrioventricular node (or “AV node”) and the bundle of HIS (or “HIS bundle”) to myocardial tissue cells of the ventricles. The depolarization of these cells propagates across the ventricles, causing the ventricles to contract. This conduction system results in the described, organized sequence of myocardial contraction leading to a normal heartbeat.
Sometimes aberrant conductive pathways develop in heart tissue, which disrupt the normal path of depolarization events. For example, anatomical obstacles in the atria or ventricles can disrupt the normal propagation of electrical impulses. These anatomical obstacles (called “conduction blocks”) can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called “reentry circuits,” disrupt the normal activation of the atria or ventricles.
The aberrant conductive pathways create abnormal, irregular, and sometimes life-threatening heart rhythms, called arrhythmias. An arrhythmia can take place in the atria, for example, as in atrial tachycardia, atrial fibrillation or atrial flutter. The arrhythmia can also take place in the ventricle, for example, as in ventricular tachycardia.
The lesions used to treat atrial fibrillation, are typically long and thin and are carefully placed to interrupt the conduction routes of the most common reentry circuits. More specifically, the long thin lesions are used to create a maze pattern that creates a convoluted path for electrical propagation within the left and right atria. The lesions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The lesions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony. Several surgical approaches have been developed with the intention of treating atrial fibrillation. One particular example is known as the “maze procedure,” as is disclosed by Cox, J L et al. in “The surgical treatment of atrial fibrillation. I. Summary” Thoracic and Cardiovascular Surgery 101(3), pp. 402-405 (1991); and also by Cox, J L in “The surgical treatment of atrial fibrillation. IV. Surgical Technique”, Thoracic and Cardiovascular Surgery 101(4), pp. 584-592 (1991), both of which are incorporated by reference herein in their entireties. In general, the “maze” procedure is designed to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a prescribed pattern of incisions about the tissue wall. In the early clinical experiences reported, the “maze” procedure included surgical incisions in both the right and the left atrial chambers. However, more recent reports predict that the surgical “maze” procedure may be substantially efficacious when performed only in the left atrium, such as is disclosed in Sueda et al., “Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated With Mitral Valve Disease” (1996), which is incorporated herein by reference in its entirety.
When modifying the electrophysiological properties of cardiac tissue by ablation, or by other means of destroying tissue to create lesions, physicians must carefully place the lesions. Otherwise, tissue will be unnecessarily destroyed. In addition, the heart is in close proximity to nerves and other nervous tissue and the destruction of this tissue will result in severe harm to the patient. Anatomical methods are used to locate the areas to be ablated or otherwise modified. In other words, the physician locates key structures such as the mitral valve annulus and the pulmonary veins. Lesions are typically formed that block propagations near these structures. Additional lesions are then formed which connect these lesions and complete the so-called “maze pattern.” However, the exact lesion pattern, and number of lesions created, can vary from patient to patient.
The surgical “maze procedure” as performed in the left atrium generally includes forming vertical incisions from the two superior pulmonary veins and terminating in the region of the mitral valve annulus, traversing the inferior pulmonary veins en route. An additional horizontal line also connects the superior ends of the two vertical incisions. Thus, the atrial wall region bordered by the pulmonary vein ostia is isolated from the other atrial tissue. In this process, the mechanical sectioning of atrial tissue eliminates the precipitating conduction to the atrial arrhythmia by creating conduction blocks within the aberrant electrical conduction pathways.
Injection of alcohol into heart tissue has also been employed to ablate cardiac tissue. Alcohol may be delivered to blood vessels supplying the tissue to be ablated, as described in “Transcoronary Chemical Ablation of Arrhythmias”, by Nellens et al, Pace Vol. 15, pages 1368-1373, September 1992. Alternatively, alcohol can be delivered directly to the tissue to be ablated by means of a needle inserted through a catheter, as described in “Chemical Ablation by Subendocardial Injection of Ethanol via Catheter—Preliminary Results in the Pig Heart”, by Weismuller et al, European Heart Journal, Volume 12, pages 1234-1239, 1991.
Although successful at treating AF, the surgical maze procedure is quite complex and is currently performed by only a few skilled cardiac surgeons in conjunction with other open-heart procedures. Tools that could reliably duplicate the Maze incisions by other means (e.g. radio frequency, laser, microwave, ultrasound energy) will reduce the time and invasiveness required for the maze procedure and make it more accessible to more surgeons. Problems faced by these methods, however, include (a) the creation of continuous, linear lesions in the atria for the prevention of atrial fibrillation, (b) minimization of clotting and thromboembolism, (c) the effect of heat loss due to circulating blood, (d) minimization of lesion width and minimization of atrial debulking, (e) conforming to an irregular myocardial thickness, (f) adaptability to a variety of lesion geometries and (g) usefulness from either the endocardial surface of an open heart, or the epicardial surface of a beating heart.
One particular procedure, the monopolar RF ablation of cardiac atrial tissue to treat atrial fibrillation, causes wide, shallow lesions, due to current dispersion through the tissue. In heavily tribiculated tissue, monopolar ablation is only feasible endocardially. An epicardial approach using conventional methods will not efficiently transfer energy into the deep tissue folds, due to that tissue being out of the conductive path between the external epicardial electrode and the remote indifferent electrode. Bipolar hemostats have been used to concentrate the current through a direct tissue path between closely spaced electrodes to provide improved ablation through smooth or heavily tribiculated tissue. However, the bipolar hemostats require significant tissue cutting to provide complete access to necessary lesion sites.
Some tissue cutting is required in a Maze procedure. In particular, the atrial appendages are typically removed. Monopolar RF cardiac ablation requires significant additional tissue cutting in order to position the electrode in the proper positions to perform endocardial ablations.
What would be desirable are methods that would reduce tissue cutting and improve the efficacy of epicardial ablation. What would be advantageous are devices that direct RF current along the desired transmural path, creating narrower and deeper lesions.
The present invention includes devices and methods for ablation of cardiac tissue in which a hand-held, monopolar RF ablation device is used to ablate cardiac tissue in conjunction with an expandable endocardial electrode inserted into a heart chamber and urged against the chamber wall. The endocardial electrode can be expandable or inflatable and have a conductive surface. The endocardial electrode may be inserted through a small incision made in the heart chamber wall and/or through the opening made by the removal of the atrial appendage. The electrode can then be expanded or inflated, urging the conductive surface against the endocardium.
A monopolar RF ablation device can then be drawn along the desired lesion line on the epicardium. A current path is thus formed between the epicardial RF device and the expanded surface electrode disposed against the endocardium. The direct path between the external monopolar RF electrode and the endocardial surface internal electrode can provide a narrower, deeper lesion relative to the lesion created using a current path between the RF electrode and an external, indifferent electrode. The incision required to insert the expandable or inflatable electrode can be significantly smaller than that required to insert and successfully maneuver the monopolar RF electrode endocardially.
The monopolar electrode tissue-contacting surface can be connected to one pole of a radio frequency generator while the other pole of the generator is connected to a large surface, endocardial electrode. In one embodiment of the invention, the epicardial monopolar electrode is a conventional radio frequency ablation device such as the Cardioblate® pen available Medtronic, Inc.
The present invention includes methods for forming a lesion in a target tissue having a cavity within. The methods can include providing a first RF electrode coupled to a RF current source and a second RF electrode electrically coupled to form a ground path for the first RF electrode, wherein the second RF electrode is electrically conductive and expandable, wherein the second electrode has a first, unexpanded configuration and a second, expanded configuration. The second electrode can be inserted into the tissue cavity and expanded to the second configuration to contact the target tissue from within the cavity. The first electrode can be disposed against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue.
The present invention includes methods for treating atrial fibrillation that do not require making any incisions in the right or left atria other than those to remove the left and/or right atrial appendages. The methods can include making lesion paths of the Maze, Maze 3 or Modified Maze 3 procedures, while performing only the incisions to remove the atrial appendages. The methods can include making lesions along the paths described in the: Cox, J L et al.; Cox, J L; and Sueda et al. publications, previously incorporated by reference in the present application.
In one method, an incision is made to remove the right atrial appendage and the method does not include making any other incisions in the right atrium. One such method does not include making an incision from the right atrial appendage incision toward the inferior vena caval orifice. Another such method does not include making a posterior longitudinal incision starting caudal to the superior caval cannulation site at the dorsal aspect of the right atrium.
In another method, an incision is made to remove the left atrial appendage, and the method does not include making any other incisions in the left atrium. One such method does not include making a standard atriotomy in the inter-atrial groove between the left and right atria.
One device includes a shaft and an electrode including an envelope having an interior and an electrically conductive flexible surface disposed near the shaft distal region. The second electrode surface can have a first configuration having a first interior volume within the conductive surface and a second, expanded configuration having a second interior volume within the conductive surface, with the second volume being greater than the first volume.
In some devices, the electrically conductive surface includes an outer metallic layer disposed over a polymeric layer. Some electrodes include an outer metallic mesh disposed over a polymeric layer. The polymeric layer can be substantially resistant to fluid permeation, such that the polymeric layer is inflatable. The envelope can be formed of an electrically conductive polymer. Some envelopes according to the present invention are porous, and the electrically conductive surface can be the outer surface an electrically conductive porous mesh. Some meshes are metallic meshes.
Some device embodiments have a fluid lumen extending through the shaft, which can be used to inflate the envelope. Other embodiments have envelopes biased to expand when unconstrained. Still other embodiment envelopes include shape memory materials that expand when heated to body temperature.
While some embodiments include a proximal shaft, other embodiments have no shaft. Some embodiments utilize the proximal mouth of the envelope or balloon to expand or inflate the envelope or balloon. In such embodiments, the balloon or envelope can be inserted into the heart chamber through an opening and inflated through a fluid supplied to the balloon proximal mouth.
Shaft 72 may be solid in some embodiments and hollow in other embodiments, carrying an inflation lumen within. In some embodiments, shaft 72 has a length of between about 12 and 18 inches. Some embodiments have a shaft length less than 12 inches, while other embodiments have a shaft length less than 6 inches. Some shafts have an outer diameter of between about 20 Fr. and 30 Fr. Shaft 72, and other shafts according to the present invention may be of shaft or tube materials well known to those skilled in the biomedical arts. Exemplary shaft materials include silicone, PEBAX, polyurethane, and PVC.
In one method according to the present invention, a first RF electrode is provided, coupled to a RF current source. A second RF electrode is also provided and coupled to form a ground path for the first RF electrode. The second electrode can include an electrically conductive envelope surface defining an interior volume within. The envelope can have a first, unexpanded configuration and a second, expanded configuration. The second configuration can have an interior volume greater than the first, unexpanded configuration. An incision can be made in a heart chamber wall. A preferred use of the present invention is to ablate atrial wall tissue. One such incision is an incision made to remove an atrial appendage. Such incisions are typically made as part of a maze procedure.
After the incision is made, the second electrode can be inserted through the incision and into the heart chamber interior. The second electrode can then be expanded to urge the second electrode conductive surface to contact a target region of the heart chamber endocardium. The first electrode can be disposed against the target region epicardium while applying RF current through the first electrode.
A short, direct current path is thus formed between the first electrode on the epicardium and the expanded surface electrode bearing against the endocardium. The second electrode can be urged against tribiculated tissue to provide direct contact with the second electrode and therefore provide a short and direct current path directed through the tribiculated tissue. A lesion resulting from the current path formed between the first electrode and the second, interior electrode, can thus be both deeper and narrower than lesions formed using the external electrode and a remote indifferent electrode.
In some methods, the second electrode is biased to expand when unconstrained, and is freed from constraint after being inserted into the heart chamber through the incision. In some such methods, a sleeve or delivery tube is retracted from about the constrained second electrode. While some electrodes are simply biased to expand outward when unconstrained, other internal electrodes are formed of a shape memory material that expands when heated toward body temperature.
Some methods include providing a fluid expandable or inflatable envelope. In such methods, a fluid, for example, saline, can be injected into the envelope interior to expand the envelope to its fully expanded shape.
Applicant believes that the present invention provides novel methods for forming lesions entirely through the atrial wall using a first, external electrode on the epicardium and a second, expanded surface internal electrode on the endocardium, simultaneously. This may be contrasted with using an electrode drawn over the endocardial surface, for example, a pen electrode. While forming a lesion using an inserted pen electrode may be efficacious, a large incision must be made through the heart chamber wall in order to properly direct the drawing of the pen electrode across the endocardium. Using the present invention, an incision only large enough to insert the expandable or inflatable envelope need be made.
Applicant believes that target sites in the entire right and left atrial free wall regions may be ablated using RF ablation, and entirely through the atrial wall, where ablating these sites does not require making an incision in the right atrium from the excised atrial appendage parallel to the right atrioventricular groove toward the inferior vena cava (IVC), an incision from about 1 cm, above the IVC cannulation site to the top of the atrioventricular groove, or in the left atrium in the interatrial groove.
In general, the present invention provides methods for forming lesions in target tissue having a cavity within. In the general case of the invention, a first electrode is coupled to a RF current source and a second RF electrode is electrically coupled to form a ground path for the first RF electrode. The second electrode can be inserted into the tissue cavity and expanded to contact the target tissue from within the cavity. The first electrode can then be disposed against the target tissue from the outside, while applying RF current through the first electrode to ablate the target tissue.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein.
This application is a divisional application of U.S. patent application Ser. No. 10/425,531 filed Apr. 29, 2003, now U.S. Pat. No. 7,497,857.
Number | Name | Date | Kind |
---|---|---|---|
2371978 | Perham | Mar 1945 | A |
3496932 | Prisk et al. | Feb 1970 | A |
3736936 | Basiulis et al. | Jun 1973 | A |
3807403 | Stumpf et al. | Apr 1974 | A |
3823575 | Parel | Jul 1974 | A |
3823718 | Tromovitch | Jul 1974 | A |
3827436 | Stumpf et al. | Aug 1974 | A |
3830239 | Stumpf | Aug 1974 | A |
3854482 | Laughtery et al. | Dec 1974 | A |
3856016 | Davis | Dec 1974 | A |
3856018 | Perisse et al. | Dec 1974 | A |
3859986 | Okada et al. | Jan 1975 | A |
3862627 | Hans, Sr. | Jan 1975 | A |
3886945 | Stumpf et al. | Jun 1975 | A |
3907339 | Stumpf et al. | Sep 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
3913581 | Ritson et al. | Oct 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4018227 | Wallach | Apr 1977 | A |
4022215 | Benson | May 1977 | A |
4061135 | Widran et al. | Dec 1977 | A |
4063560 | Thomas et al. | Dec 1977 | A |
4072152 | Linehan | Feb 1978 | A |
4082096 | Benson | Apr 1978 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4226239 | Polk et al. | Oct 1980 | A |
4248224 | Jones | Feb 1981 | A |
4274415 | Kanamoto et al. | Jun 1981 | A |
4275734 | Mitchiner | Jun 1981 | A |
4278090 | van Gerven | Jul 1981 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4493319 | Polk et al. | Jan 1985 | A |
4519389 | Gudkin et al. | May 1985 | A |
4598698 | Siegmund | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4664110 | Schanzlin | May 1987 | A |
4736749 | Lundback | Apr 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4791707 | Tucker | Dec 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4815470 | Curtis et al. | Mar 1989 | A |
4872346 | Kelly-Fry et al. | Oct 1989 | A |
4916922 | Mullens | Apr 1990 | A |
4917095 | Fry et al. | Apr 1990 | A |
4917677 | McCarthy | Apr 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4946460 | Merry et al. | Aug 1990 | A |
5013312 | Parins et al. | May 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5044165 | Linner et al. | Sep 1991 | A |
5078713 | Varney | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5080660 | Buelna | Jan 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5119804 | Anstadt | Jun 1992 | A |
5147355 | Friedman et al. | Sep 1992 | A |
5178133 | Pena | Jan 1993 | A |
5207674 | Hamilton | May 1993 | A |
5217473 | Yoon | Jun 1993 | A |
5217860 | Fahy et al. | Jun 1993 | A |
5222501 | Ideker et al. | Jun 1993 | A |
5224943 | Goddard | Jul 1993 | A |
5228923 | Hed | Jul 1993 | A |
5231995 | Desai | Aug 1993 | A |
5232516 | Hed | Aug 1993 | A |
5254116 | Baust et al. | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5269291 | Carter | Dec 1993 | A |
5275595 | Dobak, III | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder | Jan 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5317878 | Bradshaw et al. | Jun 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5322520 | Milder | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5324286 | Fowler | Jun 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5334209 | Yoon | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5354258 | Dory | Oct 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5366459 | Yoon | Nov 1994 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5400770 | Nakao et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5403309 | Coleman et al. | Apr 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5423807 | Milder | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5425740 | Hutchinson, Jr. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5435308 | Gallup et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5498248 | Milder | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5516505 | McDow | May 1996 | A |
5520682 | Baust et al. | May 1996 | A |
5522870 | Ben-Zion | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560362 | Sliwa, Jr. et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5667518 | Pannell | Sep 1997 | A |
5671747 | Connor | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5676662 | Fleischbacker et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678550 | Bassen et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5713942 | Stern | Feb 1998 | A |
5716389 | Walinsky et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5718701 | Shai et al. | Feb 1998 | A |
5720775 | Larnard | Feb 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5730074 | Peter | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788636 | Curley | Aug 1998 | A |
5792140 | Tu et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5840030 | Ferek-Petric et al. | Nov 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846191 | Wells et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873845 | Cline et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5881732 | Sung et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897553 | Mulier et al. | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899898 | Arless et al. | May 1999 | A |
5899899 | Arless et al. | May 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5906587 | Zimmon | May 1999 | A |
5906606 | Chee et al. | May 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5928191 | Houser et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6042563 | Morejohn et al. | Mar 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6088894 | Oakley | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165174 | Jacobs et al. | Dec 2000 | A |
6217528 | Koblish et al. | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238347 | Nix et al. | May 2001 | B1 |
6238393 | Mulier | May 2001 | B1 |
6241754 | Swanson et al. | Jun 2001 | B1 |
6245061 | Panescu et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6280415 | Johnson | Aug 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302880 | Schaer | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6312383 | Lizzi et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328736 | Mulier | Dec 2001 | B1 |
6332881 | Carner et al. | Dec 2001 | B1 |
6358248 | Mulier | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6409722 | Hoey | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6416554 | Alferness et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6428548 | Durgin et al. | Aug 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6440130 | Mulier | Aug 2002 | B1 |
6443952 | Mulier | Sep 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6461356 | Patterson | Oct 2002 | B1 |
6464700 | Koblish et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6471698 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475216 | Mulier | Nov 2002 | B2 |
6477396 | Mest et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488680 | Francischelli | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6502575 | Jacobs et al. | Jan 2003 | B1 |
6514250 | Jahns | Feb 2003 | B1 |
6517536 | Hooven et al. | Feb 2003 | B2 |
6527767 | Wang et al. | Mar 2003 | B2 |
6537248 | Mulier | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
5697536 | Eggers et al. | Jun 2003 | C1 |
6584360 | Francischelli | Jun 2003 | B2 |
6585732 | Mulier | Jul 2003 | B2 |
6605084 | Acker et al. | Aug 2003 | B2 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610060 | Mulier | Aug 2003 | B2 |
6613048 | Mulier | Sep 2003 | B2 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6656175 | Francischelli | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6699240 | Francischelli | Mar 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706038 | Francischelli | Mar 2004 | B2 |
6706039 | Mulier | Mar 2004 | B2 |
6716211 | Mulier | Apr 2004 | B2 |
6736810 | Hoey | May 2004 | B2 |
6755827 | Mulier | Jun 2004 | B2 |
6764487 | Mulier | Jul 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6776780 | Mulier | Aug 2004 | B2 |
6793664 | Mazzocchi et al. | Sep 2004 | B2 |
6807968 | Francischelli | Oct 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6849078 | Durgin et al. | Feb 2005 | B2 |
6858028 | Mulier | Feb 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6911019 | Mulier | Jun 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949098 | Mulier | Sep 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6962589 | Mulier | Nov 2005 | B2 |
7115122 | Swanson et al. | Oct 2006 | B1 |
7497857 | Briscoe | Mar 2009 | B2 |
20010039434 | Frazier et al. | Nov 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20020022833 | Maguire | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020035374 | Borillo et al. | Mar 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020177859 | Monassevitch et al. | Nov 2002 | A1 |
20030018362 | Fellows et al. | Jan 2003 | A1 |
20030023266 | Borillo et al. | Jan 2003 | A1 |
20030045872 | Jacobs | Mar 2003 | A1 |
20030055422 | Lesh | Mar 2003 | A1 |
20030060821 | Hall et al. | Mar 2003 | A1 |
20030065319 | Wellman | Apr 2003 | A1 |
20030144656 | Ocel | Jul 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030191462 | Jacobs | Oct 2003 | A1 |
20030195496 | Maguire | Oct 2003 | A1 |
20030216724 | Jahns | Nov 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040015219 | Francischelli | Jan 2004 | A1 |
20040044340 | Francischelli | Mar 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040073241 | Barry et al. | Apr 2004 | A1 |
20040078069 | Francischelli | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087940 | Jahns | May 2004 | A1 |
20040092926 | Hoey | May 2004 | A1 |
20040138621 | Jahns | Jul 2004 | A1 |
20040138656 | Francischelli | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040215183 | Hoey | Oct 2004 | A1 |
20040220560 | Briscoe | Nov 2004 | A1 |
20040236322 | Mulier | Nov 2004 | A1 |
20040267326 | Ocel | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050033280 | Francischelli | Feb 2005 | A1 |
20050090815 | Francischelli | Apr 2005 | A1 |
20050143729 | Francischelli | Jun 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050165392 | Francischelli | Jul 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20050277959 | Cosgrove et al. | Dec 2005 | A1 |
20060009756 | Francischelli | Jan 2006 | A1 |
20060009759 | Christian | Jan 2006 | A1 |
20060020271 | Stewart et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
9962409 | Dec 1999 | WO |
0135832 | May 2001 | WO |
0187169 | Nov 2001 | WO |
0197696 | Dec 2001 | WO |
02087456 | Nov 2002 | WO |
03011150 | Feb 2003 | WO |
03096881 | Nov 2003 | WO |
2004096070 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090138008 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10425531 | Apr 2003 | US |
Child | 12364232 | US |