Endodontic post system

Information

  • Patent Grant
  • 7086864
  • Patent Number
    7,086,864
  • Date Filed
    Thursday, June 6, 2002
    22 years ago
  • Date Issued
    Tuesday, August 8, 2006
    18 years ago
Abstract
An endodontic post comprising a combined endodontic post and filling material tip in a single unit. To use the post unit, the device is placed in an oven or heater to heat and soften the thermoplastic material. The device will then be placed in a root canal that has been opened to a predetermined dimension by use of endodontic files, to seal the apical end. If necessary, the gutta percha can be compacted toward the apex, while it is still in the softened state, to ensure the apex is adequately sealed. The post is then cemented into place by lining the canal walls with a bonding agent and filling the interface between the post and the walls of the canal with a dual cure resin cement. This will result in a coronal seal of the canal via resin restorative material and an apical seal of the canal by means of gutta percha and sealant. The remaining portion of the post, extending supra-gingivally, will be used to build a core around it. Any excess will be cut off. One length of the device will be longer to accommodate the longer roots in anterior teeth. Another length will be shorter to accommodate smaller roots in the molar region.
Description
FIELD OF THE INVENTION

This invention relates to both the obturation of a root canal having undergone endodontic treatment and the simultaneous placement of an endodontic post system.


BACKGROUND OF THE INVENTION

Endodontics or root canal therapy is that branch of dentistry that deals with the diseases of the dental pulp and associated tissues. One aspect of endodontics comprises the treatment of infected root canals, the removal of diseased pulp tissues, followed by the biomechanical modification and the subsequent filling of the pulp canal (root canal). Root canal therapy is generally indicated for teeth having sound external structures but having diseased, dead or dying pulp tissues. Such teeth may or may not generally possess intact enamel and dentin and are satisfactorily engaged with bony tissue. In such teeth, the pulp tissue and excised portions of the root should be replaced by a biocompatible substitute.


One technique for the preparation of a root canal involves creating a coronal access opening with a conventional dental drill. A tool is used for gross removal of pulp material from the root canal through the coronal access opening. The void formed is enlarged with reamers and/or files to result in a fully excavated cavity. Debris is removed from this cavity by flushing and the cavity is cleansed to remove all diseased tissue. Following chemical antisepsis, the excavated canal is ready for filling.


A basic method involves inserting a filling cone into a root canal and cementing therein to obturate the canal. Lateral condensation is a method in which several filling cones, a primary cone and auxiliary cones, are inserted into a root canal. The primary cone is inserted and cemented to the seat of the root canal. Using a tapered spreader, the primary cone is then squeezed against the side of the root canal and a second cone is inserted and cemented into place. This process is continued until the root canal is completely obturated which can require up to 10 to 15 filling cones. Vertical condensation of warm or hot gutta percha is yet another method of sealing root canals. After cementing a primary cone short of the apex of the root canal, heat application is alternated with a series of smaller and smaller pluggers until the gutta percha is moved to the apex. This is often possible when the smallest plugger approaches the apex of the tooth within 3 to 5 millimeters. The space is then backfilled. Lateral canals are packed and sealed as a consequence of lateral expansion of a wave of heated gutta percha. Alternatively, small segments of gutta percha can be used in this method that are inserted into the root canal, heated in order they can adhere to one another and each backfilled one at a time until the root canal is filled. All three of these methods, the single filling cone, lateral condensation and vertical condensation apply root canal cement or sealer around the individual cones or in between segments as a binding agent.


Another method employs an injection gun that injects warm or hot gutta percha filling material into a root canal. The injector initially places heated gutta percha at the seat of the root canal which is then condensed with a plugger into the root tip. The injector then backfills the root canal by injecting additional gutta percha into the root canal until it is obturated. A similar method involves heating gutta percha on a flexible metal carrier used to insert the gutta percha into the root canal. The carrier may be a solid rod, or a hollow rod, situated in the center of a master cone. The rod is connected to a handle which may be removed by slipping it out of the hollow rod, or cutting it off if it is a solid rod. While these systems provide for convenient and quick obturation of the canal, they pose a removal problem for the dentist who has to place a post.


Of all the methods used for obturating a canal, there is no device currently available that will allow a doctor to simultaneously obturate a root canal and place an endodontic post. Currently, an endodontist will perform the root canal procedure and the obturation during one patient visit. After the canal is obturated and temporarily sealed, the patient is frequently treated by a second dentist who will place the post. To do so, the gutta percha has to be removed from the canal until only a portion 5 mm or so from the apex remains to act as an apical seal. The rods inside the current systems make gutta percha removal much more difficult since the coronal portion of the gutta percha rod has to be removed to allow for the placement of the endodontic post. One way to overcome this problem has been to notch the obturating rod with a bur. Then, when the obturator is placed in the canal it is twisted, snapping off the apical portion. The longer coronal portion is removed. It is then re-introduced into the canal and the gutta percha is stripped off by means of pulling the rod through an endodontic stop. Since the endodontic stop is extremely narrow, the gutta percha is pulled from the rod as it is withdrawn and the gutta percha remains in the canal. It is subsequently condensed. As a result of this technique, the restoring dentist does not have to deal with the rod and only has to remove the gutta percha to make room for the post. Some gutta percha may remain on the walls of the canal jeopardizing the bond strength of the post the radicular dentin. Reinfection of the treated tooth can be a problem because the endodontist performing the root canal procedure will seal the coronal opening with a temporary stopping agent which can leak oral fluids carrying bacterial into the canal opening.


It is desirable to reduce the steps and time involved in performing obturation and placement of a post in a root canal. It would be beneficial to limit the obturation and post placement to a single visit to the dentist or prosthodontist. It is advantageous to reduce and/or eliminate the leakage problems associated with poor sealing at the coronal end of the canal.


SUMMARY OF THE INVENTION

These and other objects and advantages are accomplished by the endodontic post of the present invention comprising a combined endodontic post and tip of filling material such as thermoplastic material in a single unit. To use the post unit, the tip of the device is softened by placing in an oven or heater to heat and soften the filling material or chemically treating to soften the material. The device will then be placed in a root canal that has been opened to a predetermined dimension by use of endodontic files, to seal the apical end. If necessary, the gutta percha can be compacted toward the apex, while it is still in the softened state, to ensure the apex is adequately sealed. The post may then be cemented into place by lining the canal walls with a bonding agent and filling the interface between the post and the walls of the canal with a resin cement such as a dual cure cement, a light cure cement or a self cure cement such as Lute-It® dual cure luting cement or Cement-It® Universal cement, both available from Jeneric/Pentron Inc., in Wallingford, Conn. This will result in a coronal seal of the canal via resin restorative material and an apical seal of the canal by means of gutta percha and sealant. The remaining portion of the post, extending supra-gingivally, will be used to build a core around it. Any excess will be cut off. One length of the device will be longer to accommodate the longer roots in anterior teeth. Another length will be shorter to accommodate smaller roots in the molar region. Various diameters may also be provided to accommodate the different sizes of root canals. The bonded flexible post may strengthen the tooth to prevent subsequent root fractures.





BRIEF DESCRIPTION OF THE DRAWINGS

Features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:



FIG. 1 is an elevational view of a post in accordance with the invention;



FIG. 2 is an elevational view of a post with an alternate carrier in accordance with the invention;



FIG. 3 is a sectional view of a tooth showing a post of the invention placed in the root canal;



FIG. 4 is an elevational view of an alternate embodiment of a post in accordance with the invention; and



FIG. 5 is an elevational view of an alternate embodiment of a post in accordance with the invention.





DESCRIPTION OF THE INVENTION

As will be appreciated, the present invention provides a combination endodontic post and filler cone in a single unit. Reference is made to FIGS. 1 and 2 which show a post unit 10 comprising a post section 11 and a cone or tip section 14. Tip section 14 comprises a flexible rod or cone of biocompatible material for filling the apex of the canal. The filling material is typically a thermoplastic, chemo-plastic (i.e., may be softened by chemicals), resinous or similar polymeric material, such as gutta percha and is attached to post section 11 at the apical end 10a. Other examples of thermoplastic materials include but are not limited to polyacrylates such as polymethyl methacrylate, polyhydroxy ethyl methacrylate, and hydroxy ethyl methacrylate (HEMA), polyurethanes, polypropylene, polyethylene, polyamides, fluoropolymers such as Teflon® PTFE and Teflon® PFA, polyesters such as polylactic acid, glycolide and polycaprolactone and their co-polymers, polyphosphazenes, polyanhydrides, polysulfides, polyethers, epoxies, polycarbonates, polystyrene, polybutadiene, polyphenylene oxide, and silicone rubber materials such as polysiloxanes.


The filling material may include additives typical in the dental field such as plasticizing, antibiotic, cariostatic, antibacterial, or other anti-inflammatory, biologically active or therapeutic materials.


Post section 11 comprises a main body or endodontic portion 12 and a carrier or apical portion 13 which is located at the apical end 10a of post unit 10. Main body 12 may be a solid rod of circular or other suitable cross-section comprising a substantially smooth surface or may comprise a plurality of frustoconical sections 16 arranged coaxially along the longitudinal axis of main body 12. Preferably, main body 12 has consistent width along the longitudinal axis thereof whereas frustoconical sections 16 each have the same tapered width and same length. It is possible to vary the width and/or length of main body 12 and/or vary the tapered width and/or length of frustoconical sections 16 along the longitudinal axis of main body 12. Main body 12 may include a larger head of any shape with or without a retentive design to provide support for a core thereon at the supracoronal end 12h as will be discussed hereinafter.


Carrier 13 is preferably an extension of main body 12 of post section 11 and is of very fine diameter to accommodate tip section 14 of thermoplastic material of post unit 10. In one method of manufacture which will be discussed hereinafter, post section 11 is manufactured from a rod of material that is cut or machined at the apical end 10a to result in carrier 13 having a very small width or diameter in comparison to main body 12. Carrier 13 is of small diameter to allow enough area to form tip section 14 thereon, and also of enough strength and integrity to accommodate the filling material such as thermoplastic material. As stated above, carrier 13 is preferably an extension of main body 12 and is shown having constant diameter along the length thereof, but may be of any shape or size sufficient to hold tip section 14 thereon. FIG. 2 shows an alternative carrier 13 of tapered width.


Post section 11 may be fabricated of any material to provide a flexible apical portion and a more rigid endodontic and/or coronal or supracoronal portion, such as metal, plastic, ceramic, polymeric, composite, or other material suitable for placement in the mouth. Composite materials include but are not limited to filler reinforced composite materials and fiber reinforced composite materials comprising the reinforcing component in a polymeric matrix material such as those composite materials listed in U.S. Pat. Nos. 4,717,341 and 4,894,012 to Goldberg et al., U.S. Pat. No. 6,039,569 to Prasad et al., U.S. Pat. No. 6,030,220 to Karmaker et al, U.S. Pat. No. 5,564,929 to Alpert, and U.S. Pat. No. 5,919,044 to Sicurelli, Jr. et al., all of which are hereby incorporated by reference. The fiber reinforced composite material may comprise fibers in the form of long, unidirectional, continuous filaments which are preferably at least partially aligned and oriented along the longitudinal dimension of the component with alignment normal or perpendicular to that dimension also possible. The fibers may be of uniform or random length, unidirectional or multidirectional, or randomly dispersed, and may be as short as about 3 to about 4 millimeters (mm) or shorter. The fibers may also be in the form of fabric as set forth in copending Ser. No. 09/280,760 filed Mar. 29, 1999 and may include any of the attributes of the post described therein, the contents all of which are hereby incorporated by reference. Due to the improved structural integrity, the amount of fibers in the structural component preferably equals at least about 20% by weight (wt %) and preferably about 20 wt % to about 70 wt %. Possible reinforcing fibers, which are preferably used in accordance with U.S. Pat. Nos. 4,717,341 and 4,894,012 to Goldberg et al. (which are herein incorporated by reference), include glass, ceramic, metal, carbon, graphite, polymeric such as cellulose, polyamide, aramid, polyester, polyaramid, acrylic, vinyl and modacrylic, polyolefin, polytetrafluorethylene, mixtures thereof, as well as other fibers known in the art. One preferred version of the device is comprised of unidirectional microfilamentous glass fibers bundled in a resin matrix.


In order to enhance the bond between the fibers and polymeric matrix, thereby enhancing the reinforcing effect, the fibers may be silanized or otherwise treated such as by grafting functional monomers to obtain proper coupling between the fibers and the resin matrix. Silanization renders the fibers hydrophobic, reducing the water sorption and improving the hydrolytic stability of the composite material, renders the fibers organophilic, improving wetting and mixing, and bonds the fibers to the polymeric matrix. Typical silane is A-174 (p-methacrylate propyl tri-methoxy silane), produced by OSI Specialties, New York


The polymeric matrix is selected from those known in the art of dental materials, including, but not limited to, polyamides, polyester, polyolefins, polyimides, polyarylates, polyurethanes, vinyl esters or epoxy-based materials, styrenes, styrene acrylonitriles, ABS polymers, polysulfones, polyacetals, polycarbonates, polyphenylene sulfides, polyarylsulfides, acrylonitrile-butadiene-styrene copolymers, polyurethane dimethacrylates (hereinafter abbreviated to PUDMA), and the like. Preferred polymeric matrix materials include those based on acrylic and methacrylic monomers, for example those disclosed in U.S. Pat. Nos. 3,066,112, 3,179,623, and 3,194,784 to Bowen; U.S. Pat. Nos. 3,751,399 and 3,926,906 to Lee et al.; and commonly assigned U.S. Pat. No. 5,276,068 to Waknine (which are herein incorporated by reference). An especially preferred methacrylate monomer is the condensation product of bisphenol A and glycidyl methacrylate, 2,2′-bis [4-(3-methacryloxy-2-hydroxy propoxy)-phenyl]-propane (hereinafter abbreviated “BIS-GMA”).


The polymer matrix, which typically includes polymerization initiators, polymerization accelerators, ultra-violet light absorbers, anti-oxidants, fluorescent whitening agents, free radical initiators, and/or other additives well known in the art, may be visible light curable, self-curing, dual curing, or vacuum, heat, or pressure curable compositions, as well as any combination thereof. Heat and pressure or vacuum curable compositions include a heat cure initiator such as benzoyl peroxide, 1,1′-azobis(cyclohexanecarbo-nitrile) or other free radical initiators. The preferred polymeric matrix is a light and heat curable matrix, wherein light effects partial cure of the polymer matrix, while final curing is by heat under controlled atmosphere.


Fillers may be present in addition to or instead of fibers in an amount up to about 80 wt %, and preferably about 70 wt %. If fibers are present, the amount of filler is present in an amount of up to about 30 wt % of one or more fillers known in the art and used in dental restorative materials. Suitable fillers include those capable of being covalently bonded to the polymeric matrix itself or to a coupling agent that is covalently bonded to both. Fillers include silica, silicate glass, quartz, barium silicate, strontium silicate, barium borosilicate, strontium borosilicate, borosilicate, lithium silicate, amorphous silica, ammoniated or deammoniated calcium phosphate and alumina, zirconia, tin oxide, and titania, among other conventional fillers such as those disclosed in commonly assigned U.S. Pat. Nos. 4,544,359 and 4,547,531 to Waknine (which are incorporated herein by reference), while possible coupling agents include silanes, zirconates, and titanates. If the post is manufactured from a composite material, it is preferably in completely cured or hardened state.


Examples of metals useful as post section 11 include but are not limited to metals or alloys of Pd, Pt, Rh, Ir, Au, Ag, Ti, Co, Mo and mixtures thereof such as AgPd, AuPtPd, TiAlFe, TiAlV, CoCrMo, stainless steel and brass. Ceramic materials useful in the fabrication of post section 11 include but are not limited to alumina, zirconia, mullite, spinel, porcelain, titania, lithium disilicate, leucite, amorphous glass, lithium phosphate, and combinations thereof, or any high strength ceramic material which can withstand the stresses created in the mouth.


In accordance with one method of manufacture herein, post section 11 (which includes main body 12 and carrier 13) is manufactured in any known method in the art and depending upon the material used for the manufacture of post section 11. Such methods include but are not limited to matched die processes, autoclave molding, resin injection molding (RIM), sheet, dough and bulk molding, press molding, injection molding, reaction injection molding, resin transfer molding (RTM), compression molding, open molding, hand rolling, dipping and rolling, pressing, extrusion, pultrusion and filament winding. As discussed above, post section 11 is formed into a rod-shaped unit or main body 12 having a very fine or thin apical end or carrier 13. The final shape of post section 11 may be formed simultaneously during the manufacturing process thereof. Alternatively, a rod shaped material may be manufactured and thereafter shaped by grinding, cutting, milling or the like into the desired shape and size. As shown in FIGS. 1 and 2, post section 11 is a rod-shaped component having a main body 12 comprising slightly tapered stepped sections 16, all of the same dimensions and whereby one end of post section 11 comprises a very narrow section, 13, which acts as the carrier for the filling material. As with sections 16, carrier 13 may be formed during the actual manufacture of main body 12 or thereafter by grinding, cutting or similar means. Although main body 12 includes sections 16 to aid in the retention of the post in the canal, main body 12 may be of any surface (e.g., smooth, partly smooth and partly frustoconical,) and shape suitable for placement in the canal such as in the case of smaller diameter posts whereby the ledges may be eliminated so as to maintain the structural integrity and strength of the post. Carrier 13 preferably comprises a smooth surface, although it is in no way limited to such and may be of any surface suitable for application of filling material thereon. The post may be provided in an opaque tooth color or it may be colored similar to a tooth's pulp for enhanced esthetics. The post may include an appropriate amount of raadiopaque material such as titanium oxide, barium sulfate, and similar materials known in the dental industry to insure x-ray documentation which may be added to the post material during manufacture thereof.


After post section 11 has been manufactured, carrier 13 of post section 11 is then coated with a filling material such as gutta percha to obtain cone section 14 thereon. The filling material may be applied by any known means such as dipping, injection molding, hand rolling, and the like.


The length of post unit 10 may vary depending upon the length of the root into which it will be inserted. It is preferable that post 10 be manufactured in a variety of lengths and widths to fit the many different root canals of dental patients and the differing lengths of the anterior (central and lateral incisors, bicuspids and premolars) and molar teeth. Preferably, post unit 10 is about 14 to about 31 mm in length and more preferably about 16 to about 25 mm in length. For the length parameter, post section 11 may be divided into three sections. Section 13 is the apical section and is about 3 to about 12 mm in length and preferably about 5 to about 8 mm in length. If section 13 is tapered as in FIG. 2, the taper may be continuous at about 0.02 mm/per mm or less from the apical tip 13t to the end 13e of carrier 13, or preferably 0.04 mm/per mm from the apical tip 13t to the end 13e of carrier 13. As stated above, carrier 13 is covered with a filling material such as a thermoplastic material which does not extend more than a few mm in length past the tip of 13 (13t). Main body 12 comprises a main section from point 13e to point 12m which is about 5 to about 13 mm in length and preferably about 7 to about 11 mm in length, and a supracoronal portion or “head” of post section 11 from point 12m to point 12h which about 2 to about 8 mm and more preferably about 4 to about 6 mm in length. The supracoronal portion of post unit 11 will be used to build a core upon which a crown will be placed. The main section (from 13e to 12m) of main body 12 of post section 11 may be slightly flexible to negotiate curved canals.


The diameter of post section 11 will also vary and range from about 0.02 to about 0.15 at the apical end (13t13e) and preferably from about 0.02 to about 0.09 at the apical end (13t13e). If carrier 13 is tapered, the diameter at 13t is in the range of about 0.02 to about 0.15 and preferably about 0.05 to about 0.1 mm and the diameter at 13e is in the range of about 0.2 to about 0.6 and preferably about 0.25 to about 0.4 mm. At the supracoronal end, the diameter is about 0.4 to about 2.0 and preferably about 0.5 to about 1.75 mm.


Tip section 14 comprising the filling material is about 0.5 to 1 mm longer than carrier 13, but the diameter of tip section 14 is tapered from point 13e to point 13t in accordance with ISO standards to correspond to current obturating techniques utilizing master cones of thermoplastic material. Accordingly, tip section 14 can be tapered at least 0.02 mm/per mm in accordance with ISO standards, and preferably 0.04 or 0.06 mm/per mm, or greater, measuring from tip 14t to 14e, for insertion into canals created with 0.02, 0.04, 0.06, or greater, tapered files. The diameter of tip 14 at point 14e is in the range of about 0.30 to about 2.0 mm and preferably 0.40 to about 1.5 mm. The diameter of tip 14 at point 14t is in the range of about 0.20 to about 1.0 mm and preferably about 0.25 to about 0.80 mm. When using the post unit in canals of 0.02 taper, the filling material such as thermoplastic material will be compressed by the canal and forced toward the coronal end of the canal. This will result in an apical seal in excess of 8 mm. The excess thermoplastic material can be removed with a heated instrument after it has hardened. When using the post unit in 0.06 tapered canals, the filling material can be condensed down toward the apex to fill the void created by the greater taper. This will result in an apical seal less than 8 mm, but in excess of 4 mm which is sufficient to maintain the apical seal.


To use the post unit, the device is placed in or near an oven or heater to heat and soften the filling material or dipped in a chemical solution such as chloroform to soften the filling material. The device will then be placed in a root canal that has been opened to a predetermined dimension by use of endodontic files, to seal the apical end. If necessary, the gutta percha can be compacted toward the apex, while it is still in the softened state, to ensure the apex is adequately sealed. The post is then cemented into place by lining the canal walls with a bonding agent and filling the interface between the post and the walls of the canal with a resin cement, such as a dual cure cement. This will result in a coronal seal of the canal via resin restorative material and an apical seal of the canal by means of gutta percha and sealant. The remaining portion of the post, extending supra-gingivally, will be used to build a core around it, and if necessary, for placement of a crown thereon. Any excess of the post will be cut off. One length of the device will be longer to accommodate the longer roots in anterior teeth. Another length will be shorter to accommodate smaller roots in the molar region.



FIG. 3 shows a root canal 30 with post unit 32 therein. Post unit 32 comprises a post section 33 having a main body 34 and a carrier 36 that carries the filling material 38. As shown in FIG. 3, the thermoplastic material 38 was softened prior to insertion and fills the apex of the canal.


In an alternate embodiment herein, reference is made to FIG. 4 wherein a post unit 40 comprises a post section 42 fabricated of fiber reinforced composite material wherein the fibers comprise optical fibers 44 such as glass fibers or a central core of a material such as metal which is able to transmit heat energy to the filling material. Glass fibers 44 extend out through post section 42 into carrier 46 and tip section 48. To use the post unit 40, the filling material 48 does not have to be softened or heated prior to insertion into the canal. Post unit 40 is inserted into the canal with tip 48 in its hardened state. A curing light or other heat source is applied to the coronal portion of the post, transmitting light or heat down toward the apex. Fibers 44 convert the light into heat or, alternatively, the core section transmits heat to the filling material. The heat then plasticizes the filling material such as gutta percha at the apex. The post is then pushed toward the apex using gentle finger pressure. This last step insures that the plasticized gutta percha is compressed apically and laterally, sealing the tooth and any lateral canals.


One of the benefits of this alternative embodiment is that it insures plasticized gutta percha is only introduced to the apical portion of the root and that the coronal portion of the root is free of gutta percha which could negatively affect the retentive strength of the post/core.


In yet another embodiment herein, reference is made to FIG. 5 wherein a post unit 50 comprises a post section 52 fabricated of fiber reinforced composite material. Post section 52 includes main body 54 and carrier 56. Carrier 56 is coated with a filling material such as gutta percha to obtain cone section 58 thereon. As shown in the drawing, main body 54 is tapered to provide ease of placement into the canal. The cross-section of post unit 50 may be smaller than the cross-section of a standard post to fit in thinner or smaller auxiliary canals which are normally filled with a thermoplastic material. Accordingly, post unit 50 can act as an obturator. As an obturator, better support is provided due to the fiber-reinforced composite structural component 54 upon which cone section 58 is applied in comparison to using only a thermoplastic material as an obturator. Moreover, the obturator may be easily cemented in place in the canal. The size of post unit 50 is about 15 to about 30 mm in length with a diameter in the range of about 1.0 to about 1.75 mm. The taper of the post unit is about 0.02 to about 0.06 mm/per mm. Although carrier section 56 is shown as being tapered, it may also be of constant diameter. Post unit 50 may also include a handle 60 which is beneficial when the post unit is used as an obturator. Section 54 of unit 50 within handle 60 may be tapered or straight. Handle 60 may be any filled or unfilled polymeric material, such as those mentioned above and used in the fabrication of the post.


While various descriptions of the present invention are described above, it should be understood that the various features can be used singly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims
  • 1. An endodontic post comprising: a post section; the post section comprising a rigid endodontic section and a tip section, wherein the tip section is a flexible carrier surrounded by a filler cone; and wherein the filler cone comprises polyacrylate, polyurethane, polypropylene, polyethylene, polyamide, fluoropolymer, polyester, polyphosphazene, polyanhydride, polysulfide, polyether, epoxy, polycarbonate, polystyrene, polybutadiene, polyphenylene oxide, silicone rubber or a mixture thereof.
  • 2. The endodontic post of claim 1 wherein the polyacrylate comprises polymethyl methacrylate, polyhydroxy ethyl methacrylate, or hydroxy ethyl methacrylate (HEMA).
  • 3. The endodontic post of claim 1 wherein the fluoropolymer comprises Teflon® PTFE or Teflon® PFA.
  • 4. The endodontic post of claim 1 wherein the polyester comprises polylactic acid, glycolide, polycaprolactone or a co-polymer thereof.
  • 5. The endodontic post of claim 1 wherein the silicone rubber comprises polysiloxane.
  • 6. The endodontic post of claim 1 wherein the flexible carrier is integral to the post section.
  • 7. The endodontic post of claim 1 wherein the post section comprises an apical portion and an endodontic portion and wherein the apical portion comprises the flexible carrier.
  • 8. The endodontic post of claim 7 wherein the apical portion of the post is narrower in diameter than the diameter of the endodontic portion.
  • 9. The endodontic post of claim 7 wherein the post further comprises a supracoronal portion.
  • 10. The endodontic post of claim 1 wherein the post section is fabricated of metal, plastic, composite, ceramic, glass or polymeric material.
  • 11. An endodontic post comprising: a post section; the post section comprising a rigid endodontic section and a tip section, wherein the tip section is a flexible carrier surrounded by a filler cone; and wherein the filler cone comprises a plasticizing agent, antibiotic agent, cariostatic agent, antibacterial agent, anti-inflammatory agent, biologically active agent, or therapeutic agent, or mixture thereof.
  • 12. A method for restoring the root canal of a toot comprising: preparing the root canal;providing a post for insertion into the canal, whereby the post comprises a post section, the post comprising a rigid endondontic section and a tip section, wherein the tip section is a flexible carrier surrounded by a filler cone;inserting the post into the canal, whereby the root canal is scaled by the filling material.
  • 13. The method of claim 12 further comprising inserting a sealing material into the canal to bond the post to the canal.
  • 14. The method of claim 12 further comprising building a core on an end of the post that extends from the canal.
  • 15. The method of claim 14 further comprising placing a crown on the core.
  • 16. An obturator comprising: a post section;wherein the post section is tapered; anda wherein the post section comprises a rigid endodontic section and a tip section;wherein the tip section is a flexible carrier surrounded by a filler cone; andwherein the filler cone comprises polyacrylate, polyurethane, polypropylene, polyethylene, polyamide, fluoropolymer, polyester, polyphosphazene, polyanhydride, polysulfide, polyether, epoxy, polycarbonate, polystyrene, polybutadiene, polyphenylene oxide, silicone rubber or a mixture thereof.
  • 17. The obturator of claim 16 wherein the polyacrylate comprises polymethyl methacrylate, polyhydroxy ethyl methacrylate, or hydroxy ethyl methacrylate (HEMA).
  • 18. The obturator of claim 16 wherein the fluoropolymer comprises Teflon® PTFE or Teflon® PFA.
  • 19. The obturator of claim 16 wherein the polyester comprises polylactic acid, glycolide, polycaprolactone or a co-polymer thereof.
  • 20. The obturator of claim 16 wherein the silicone rubber comprises polysiloxane.
  • 21. The obturator of claim 16 further comprising a handle.
  • 22. The obturator of claim 16 wherein the flexible carrier is integral to the post section.
  • 23. The obturator of claim 16 wherein the post section comprises an apical portion and an endodontic portion and wherein the apical portion comprises the flexible carrier.
  • 24. The obturator of claim 23 wherein the apical portion of the post is narrower in diameter than the diameter of the endodontic portion.
  • 25. The obturator of claim 16 wherein the post section is fabricated of metal, plastic, composite, ceramic, glass or polymeric material.
  • 26. An obturator comprising: a post section;wherein the post section is tapered;wherein the post section comprises a rigid endodontic section and a tip section;wherein the tip section is a flexible carrier surrounded by a filler cone; andwherein the filler cone comprises a plasticizing agent, antibiotic agent, cariostatic agent, antibacterial agent, anti-inflammatory agent, biologically active agent, or therapeutic agent, or mixture thereof.
  • 27. The obturator of claim 26 further comprising a handle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. patent application Ser. No. 09/684,493 filed Oct. 6, 2000, now U.S. Pat. No. 6,428,319 which is a continuation-in-part application of U.S. patent application Ser. No. 09/571,040, filed May 12, 2000, now U.S. Pat. No. 6,447,297 which claims priority to U.S. Provisional Application No. 60/133,733, filed May 12, 1999, which are all incorporated herein by reference.

US Referenced Citations (187)
Number Name Date Kind
277943 Richmond May 1883 A
674419 Kinsman May 1901 A
1312120 Hurtt Aug 1919 A
1463963 Miller Aug 1923 A
1469992 Card Oct 1923 A
1641844 Fisher Sep 1927 A
1649508 Carmichael Nov 1927 A
3066112 Bowen Nov 1962 A
3179623 Bowen Apr 1965 A
3194784 Bowen Jul 1965 A
3318000 Paris May 1967 A
3504438 Wittman et al. Apr 1970 A
3740851 Weissman Jun 1973 A
3751399 Lee, Jr. et al. Aug 1973 A
3813779 Tostl Jun 1974 A
3855702 Malmin Dec 1974 A
3899830 Malmin Aug 1975 A
3919774 Fishman Nov 1975 A
3926906 Lee, II et al. Dec 1975 A
3949479 Malmin Apr 1976 A
3968567 Nevins Jul 1976 A
4050156 Chasanoff et al. Sep 1977 A
4253829 Adelberger Mar 1981 A
4253835 Ware Mar 1981 A
4343608 Hodosh Aug 1982 A
4407675 Hodosh Oct 1983 A
4425094 Tateosian et al. Jan 1984 A
4480996 Crovatto Nov 1984 A
4480998 Carse Nov 1984 A
4505675 Albert Mar 1985 A
4505676 Gonser Mar 1985 A
4518356 Green May 1985 A
4525147 Pitz et al. Jun 1985 A
4538989 Apairo, Jr. et al. Sep 1985 A
4543065 Bushway Sep 1985 A
4544359 Waknine Oct 1985 A
4547531 Waknine Oct 1985 A
4622012 Smoler Nov 1986 A
4657592 Takubo Apr 1987 A
4681545 Lapcevic Jul 1987 A
4682949 Warrin Jul 1987 A
4684555 Neumeyer Aug 1987 A
4717341 Goldberg et al. Jan 1988 A
4721735 Bennett et al. Jan 1988 A
4738616 Reynaud Apr 1988 A
4740245 Futami et al. Apr 1988 A
4746292 Johnson May 1988 A
4758156 Johnson Jul 1988 A
4766200 Riazi Aug 1988 A
4801528 Bennett Jan 1989 A
4813876 Wang Mar 1989 A
4820152 Warrin et al. Apr 1989 A
4871312 Heath Oct 1989 A
4882407 Riazi Nov 1989 A
4894011 Johnson Jan 1990 A
4894012 Goldberg et al. Jan 1990 A
4931096 Fujisawa et al. Jun 1990 A
4934934 Arpaio, Jr. et al. Jun 1990 A
4936775 Bennett Jun 1990 A
4936776 Kwiatkowski Jun 1990 A
4950697 Chang et al. Aug 1990 A
4952150 Schiwiora et al. Aug 1990 A
4966952 Riaza Oct 1990 A
4986754 Chang et al. Jan 1991 A
5051093 Fitzmorris Sep 1991 A
5064373 Staubli et al. Nov 1991 A
5067900 McSpadden Nov 1991 A
5073112 Weil Dec 1991 A
5074792 Bernadat Dec 1991 A
5083923 McSpadden Jan 1992 A
5085586 Johnson Feb 1992 A
5088927 Lee Feb 1992 A
5089183 Johnson Feb 1992 A
5092773 Levy Mar 1992 A
5098298 Johnson Mar 1992 A
5104321 Filhol Apr 1992 A
5106298 Heath et al. Apr 1992 A
5118297 Johnson Jun 1992 A
5149268 Johnson Sep 1992 A
5161973 Johnson Nov 1992 A
5165893 Thompson Nov 1992 A
5171146 Guerci Dec 1992 A
5181850 Neumeyer Jan 1993 A
5190702 Johnson Mar 1993 A
5215461 Riazi Jun 1993 A
5232440 Wilk Aug 1993 A
RE34439 Heath Nov 1993 E
5275562 McSpadden Jan 1994 A
5276068 Waknine Jan 1994 A
5286193 Roane Feb 1994 A
5286423 Johnson Feb 1994 A
5302129 Heath et al. Apr 1994 A
5326263 Weissman Jul 1994 A
5328367 Johnson Jul 1994 A
5328372 Reynaud et al. Jul 1994 A
5372759 Johnson Dec 1994 A
5380200 Heath et al. Jan 1995 A
5382161 Roane Jan 1995 A
5395240 Paschke et al. Mar 1995 A
5409378 Pohl Apr 1995 A
5415547 Torabinejad et al. May 1995 A
RE35070 Fitzmorris Oct 1995 E
5464362 Heath et al. Nov 1995 A
5518399 Sicurelli, Jr. et al. May 1996 A
RE35264 Bennett Jun 1996 E
5527205 Heath et al. Jun 1996 A
5540766 Castellani Jul 1996 A
5564929 Alpert Oct 1996 A
5588835 Kert Dec 1996 A
5595486 Manocha Jan 1997 A
5605460 Heath et al. Feb 1997 A
5624259 Heath et al. Apr 1997 A
5624976 Klee Apr 1997 A
5628674 Heath et al. May 1997 A
5648403 Martin Jul 1997 A
5653590 Heath et al. Aug 1997 A
5655950 Heath et al. Aug 1997 A
5713736 Heath et al. Feb 1998 A
5741139 Sicurelli, Jr. et al. Apr 1998 A
5752825 Buchanan May 1998 A
5756559 Blackwell et al. May 1998 A
5762497 Heath Jun 1998 A
5762541 Heath et al. Jun 1998 A
5769638 Torabinejad et al. Jun 1998 A
5797748 Reynaud et al. Aug 1998 A
5803736 Merritt, Jr. Sep 1998 A
5807106 Heath Sep 1998 A
5816816 Scharf Oct 1998 A
5833457 Johnson Nov 1998 A
5833464 Foser Nov 1998 A
5882196 Kert Mar 1999 A
5915970 Sicurelli, Jr. et al. Jun 1999 A
5919044 Sicurelli, Jr. et al. Jul 1999 A
5921775 Buchanan Jul 1999 A
5925179 Mannschedel Jul 1999 A
5941760 Heath et al. Aug 1999 A
5948129 Nonami et al. Sep 1999 A
5989032 Reynaud et al. Nov 1999 A
6010335 Kert Jan 2000 A
6012924 Reynaud et al. Jan 2000 A
6024565 Sicurelli et al. Feb 2000 A
6024569 Ohne et al. Feb 2000 A
6028125 Combe et al. Feb 2000 A
6030220 Karmaker et al. Feb 2000 A
6039569 Prasad et al. Mar 2000 A
6074209 Johnson Jun 2000 A
6106296 Johnson Aug 2000 A
6120294 Engelbrecht et al. Sep 2000 A
6126446 Mannschedel Oct 2000 A
6162056 Mannschedel Dec 2000 A
6183253 Billet et al. Feb 2001 B1
6186791 Karmaker et al. Feb 2001 B1
6214048 Ito et al. Apr 2001 B1
6220863 Kamohara et al. Apr 2001 B1
6224377 Bachmann et al. May 2001 B1
6254392 Mannschedel et al. Jul 2001 B1
6261099 Senia et al. Jul 2001 B1
6264471 Martin Jul 2001 B1
6267597 Kim Jul 2001 B1
6287122 Seeram et al. Sep 2001 B1
6293795 Johnson Sep 2001 B1
6371763 Sicurelli, Jr. et al. Apr 2002 B1
6428319 Lopez et al. Aug 2002 B1
6447297 Lopez et al. Sep 2002 B1
6455608 Jia et al. Sep 2002 B1
6461420 Ikuta Oct 2002 B1
6472454 Qian Oct 2002 B1
4758156 Johnson Nov 2002 C1
6537563 Jia et al. Mar 2003 B1
6566418 Imai et al. May 2003 B1
6568937 Kamohara et al. May 2003 B1
6787584 Jia et al. Sep 2004 B1
20020019456 Jia Feb 2002 A1
20020072035 Hickok Jun 2002 A1
20020142261 Van Den Houdt Oct 2002 A1
20020147249 Klee et al. Oct 2002 A1
20020198283 Imai et al. Dec 2002 A1
20030045604 Klee Mar 2003 A1
20030113686 Jia et al. Jun 2003 A1
20030124483 Jia et al. Jul 2003 A1
20030207960 Jia Nov 2003 A1
20040115589 Karmaker et al. Jun 2004 A1
20040249015 Jia et al. Dec 2004 A1
20040265783 Karmaker et al. Dec 2004 A1
20050003328 Karmaker et al. Jan 2005 A1
20050066854 Jia et al. Mar 2005 A1
20050069836 Jia et al. Mar 2005 A1
Foreign Referenced Citations (20)
Number Date Country
34 08 503 Sep 1984 DE
35 04 472 Jul 1986 DE
35 12 938 Oct 1986 DE
35 13 864 Oct 1986 DE
38 39 466 Jun 1989 DE
41 03 355 Jun 1992 DE
0 329 098 Feb 1989 EP
0 539 751 Oct 1992 EP
557 756 May 1923 FR
1 180 326 Dec 1958 FR
2 616 653 Jun 1987 FR
2 669 211 May 1992 FR
2730 627 Aug 1996 FR
1412077 Oct 1975 GB
WO 9314714 Aug 1993 WO
WO9319687 Oct 1993 WO
WO 9811842 Mar 1998 WO
WO 0067659 Nov 2000 WO
WO 02078646 Oct 2002 WO
WO 2004037214 May 2004 WO
Related Publications (1)
Number Date Country
20040248067 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60133733 May 1999 US
Continuation in Parts (2)
Number Date Country
Parent 09684493 Oct 2000 US
Child 10164512 US
Parent 09571040 May 2000 US
Child 09684493 US