Various endoscopic systems have been successfully used to perform a wide variety of diagnostic and surgical procedures. Most of these types of systems having a steering capability. Specifically, the leading or distal end of the endoscopic surgical instrument can be introduced into the body, for example into the stomach via the throat, with the physician then steering the tip of instrument. The steering is typically achieved via four steering wires attached to wheels, levers, or other actuators on the handle of the instrument, which remains outside of the body. By manipulating the actuators, the physician can steer the tip of the instrument in the up/down and left/right directions. This allows the physician to position surgical tools as desired.
In order to provide the most steering flexibility, the distal end of the instrument advantageously can bend into a tight radius, via control of the actuators on the handle. However, the bending radius is limited by certain factors. One factor is that the pivoting links that make up the skeleton or frame of the instrument can only pivot to limited angle relative to each other. Another factor is that the left/right and up/down steering movements are not entirely independent. Specifically, when the distal end of the instrument is steering to it maximum left or right steering position, the ability to also steer in the up or down direction becomes very limited, and vice versa. As a result, operating the instrument to position the instrument tip as desired can become difficult.
Accordingly, engineering challenges remain in designing endosurgical systems allow for highly flexible positioning options.
In a first aspect, an endoluminal surgical instrument has first and second steering controls on a handle. A flexible shaft attached to the handle has a distal steerable end including a first link and a second link separated by a plurality of intermediate links. First and second steering elements, such as pairs of steering wires, are linked to first and second steering controls and to the first and second links. One or more of the links is pivotable through an angle of at least 30 degrees relative to an adjoining link. The set back position of the second steering elements and the pivoting capability of the links allows the steerable end to be steered into a small bend radius. This makes the instrument highly maneuverable for use in endoluminal surgery, such as incision-less surgery of the stomach.
Turning to the drawings, as shown in
The sheath 38 includes a tip 58 attached to the distal end of a steerable section 42. A body section 40 of the sheath 38 extends proximally from the steerable section 42 to the handle 36. A lock nut or similar attachment holds the proximal end of the body section 40 of the sheath 38 onto the handle 36.
Referring to
Referring still to
As shown in
A second pair of steering wires 80B are attached to opposite sides of a second or proximal link 75 at attachment points 81. The proximal link 75 is spaced 4-30, 8-24 or 12-20 cm behind the first link 74, with several intervening links 77 between the first link 74 and the proximal link, for steering the steerable section 42. The steering wires 80A and 80B extend back from the first link 74 and the proximal link 75 and subsequent proximal links of the steering section 42, through the sheath 38 to the handle 36.
Alternatively, the subsequent proximal links, i.e., links between the handle and the proximal link 75 may be omitted and replaced with a tubular structure not having any links. The links are pivotally attached to each, with alternating angular positions, i.e., with even links pivotable in the up/down direction and with odd links pivotable in the left/right direction. The links are designed to allow at least 30, 35, 40, 45, or more degrees of pivot movement or angular rotation between adjoining links. The attachment of the second steering wires 80B onto the proximal link spaced behind the first link 74, and the pivoting capability of the links, allows the steerable end to be steered into a small bend radius. This makes the instrument highly maneuverable for use in endoluminal surgery.
The steering wires may be provided within coils 82 or other column strength element. The coils 82, if used, allow the steering wires to be tensioned without buckling the sheath 38. The steering section may be about 4-10 cm long, whereas the sheath 38 is typically between 20-200 cm.
Referring to
As shown in
Referring to
Toward the proximal end of the sheath 38, the steering wires are contained within the passageways 212 and extend to the handle 36, where the steering wires 80 are operably connected to the control knobs 140 and 144.
Consequently, the shape lock 34 may be inserted into the central sheath opening 220 without contacting or interfering with the steering wires.
Turning to
The outer diameter of the sheath 38 may preferably be in the range of about 10 mm to about 30 mm. The steering wires 80 extend from the steering controls 140 and 144 on the handle 36 through the sheath 38 to the distal end of the shaft at links 74 and 75. The steering wire coils 82, if used, receive and retain the steering wires 80. The steering wire coils 82 may be formed integrally with or embedded in the sheath structure. Alternatively, the steering wire coils 82, along with the tubes 44-50, may float within the inner lumen 220.
Thus, novel methods and apparatus have been shown and described. Various changes and substitutions may of course be made without departing from the spirit and scope of the invention. The invention, therefore, should not be limited except by the following claims, and their equivalents.
This Application is a Continuation of U.S. patent application Ser. No. 13/483,371, filed May 30, 2012, now pending, which is a Continuation-in-Part of U.S. patent application Ser. No. 12/061,591, filed Apr. 2, 2008, now pending. These applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13483371 | May 2012 | US |
Child | 14141237 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12061591 | Apr 2008 | US |
Child | 13483371 | US |