This disclosure relates to endoprostheses, such as stents.
The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprostheses include stents, covered stents, and stent-grafts.
Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, e.g., so that it can contact the walls of the lumen. Stent delivery is further discussed in Heath, U.S. Pat. No. 6,290,721, the entire contents of which are hereby incorporated by reference herein.
The expansion mechanism may include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn from the lumen.
Passageways containing endoprostheses can become re-occluded. Re-occlusion of such passageways is known as restenosis. It has been observed that certain drugs can inhibit the onset of restenosis when the drug is contained in the endoprosthesis. It is sometimes desirable for an endoprosthesis-contained therapeutic agent, or drug to elute into the body in a predetermined manner once the endoprosthesis is implanted.
In an aspect, the invention features an endoprosthesis, comprising a channel on a surface region. The channel includes a ceramic coating on at least a portion of its interior surface. The coating has a defined grain morphology.
In another aspect, the invention features a method of forming an endoprosthesis, comprising forming a channel on the endoprosthesis, treating the interior surface of the channel such that at least a portion of the surface has an Sdr of 30 or greater, and applying a polymer, e.g. a polymer containing a drug to the channel.
Embodiments may also include one or more the following features. The channel can include a polymer containing a drug adhered to the ceramic. The polymer can be swellable on exposure to body fluid. The coating can have an Sdr of about 3 or more. The ceramic can include oxides and nitrides of iridium, titanium, zirconium, hafnium, niobium, tantalum, ruthenium, platinum, and aluminum. The ceramic can be IROX. The coating can have a thickness of about 10 to 500 nm. The surface region can be the abluminal surface of a stent wall. The channel can have a depth of about 50% or less of the thickness of the stent wall. The polymer can have a thickness smaller than the depth of the channel.
Embodiments may also include one or more the following features. The channel can be formed by a laser ablation process. The channel can be formed in the body of the endoprosthesis. A coating can be formed on the endoprosthesis and the channel can be formed in the coating. The coating can be a ceramic. The ceramic can be formed by pulsed laser deposition (PLD). The polymer can be applied by dipping, spraying, or vapor deposition. The interior surface can be treated by etching. The interior surface can be treated by depositing a ceramic layer. The ceramic layer can be applied by PLD. The ceramic can have a defined grain morphology. The ceramic can be IROX.
Embodiments may include one or more of the following advantages. Continuous or discrete depressions (e.g., in the form of channels) and/or ridges can provide a cavity to contain biologically active substances, such as drugs as well as provide more surface areas. The drug may be provided in a carrier, e.g. a polymer that is swellable. The cavity into which a polymer that might swell also creates forces that confine the polymer within the cavities. The depression (e.g., in the form of a channel) defined in a surface of a medical device (e.g., a stent) or the channel defined by ridges protects the drugs during delivery of the device into the body. During delivery, e.g., via a catheter, drugs and drug eluting polymers located within such depressions remain generally undisturbed and in place, while substances located on a generally flat surface of currently available medical devices are exposed and thus subject to shear forces that can strip the substances off the surface. Roughening surfaces of the depressions and ridges can further help confining drugs in place by enhancing adhesion of the drug eluting polymers to the surfaces. The surfaces can be roughened by forming a coating with predetermined texture or surface morphology over the select surface regions of the depressions, ridges, and/or stent. The coating can be formed of a ceramic, e.g. IROX, which can have therapeutic advantages such as reducing the likelihood of restenosis and enhancing endothelialization. The coating can be formed by physical vapor deposition process, such as PLD. The surfaces can also be roughened directly by, e.g. chemical etching, such as electrochemical etching lasers, ion bombardment, or macroblasting. Stents can be formed with high loadings of drug in the depressions or channels formed by the ridges (e.g., a drug reservoir) on select portions, such as the abluminal surface. The drug can be loaded in large amount.
Still further aspects, features, embodiments, and advantages follow.
Referring to
Referring to
Referring to
In this embodiment, the thickness of the polymer layer 36 is less than the depth of the depressions such that the coating is protected from sheer forces, e.g., during handling and delivery into the body. Because the devices described herein can minimize loss of the biocompatible substances, relatively lower amounts of the substances can be provided in the stent. The drug-containing polymer can have a reduced thickness, for example, the stents described herein can include biocompatible substance having a thickness of about 5 μm or less, e.g. about 3 μm, containing biodegradable polymers, and having up to an 80% or more, e.g. 90% or 100% release ratio of a biologically active substance, as such substance is now protected during delivery.
Referring to
Referring to
In embodiments, the depth of channel D can constitute on average up to about 50% (e.g., about 35%, or 25%, or 15%, or 10%, or 5% or less) of the thickness of the stent wall 23, in which the channel is defined. In embodiments, the channel width W2 or the average distance of the two parallel side walls of the channel is about 50% or less than the width of the stent body region (e.g., a strut region) on which the depression is located and/or greater than the opening width W1. As a result, the channel has lips or ledges that can further confine the biocompatible substance inside the channel through e.g., mechanical retention. The channel can be continuous or discrete along the stent axes. The channel can have a perimeter of various shapes, e.g., a generally rectangular shape as shown in
Referring to
Referring to
Referring particularly to step 51 in
Referring to
In other embodiments, the surface of the depression is treated by chemical etching the select stent surface. For example, a stent formed of an alloy, e.g., a stainless steel alloy stent, can be electrochemically etched in a solution, e.g., sulfuric acid, to form surfaces with texture of roughness in the range of a few nanometers to a few micrometers. Other methods can also be used to modify surfaces of the depression and ridges to increase roughness, such as laser microblasting, ion bombardment, e.g. with argon or helium, or electroplasma treatment. Description of forming porous surface regions through dealloying is provided in ______ [Attorney docket number 10527-820001].
Referring to
Referring to
In particular, a ceramic coating has a select morphology or roughness that enhances the adhesion of the drug-eluting polymer. The morphology of the surface of the ceramic is characterized by its visual appearance, its roughness, and/or the size and arrangement of particular morphological features such as local maxima. In embodiments, the surface is characterized by definable sub-micron sized grains. Referring particularly to
Referring particularly to
The roughness of the surface is characterized by the average roughness, Sa, the root mean square roughness, Sq, and/or the developed interfacial area ratio, Sdr. The Sa and Sq parameters represent an overall measure of the texture of the surface. Sa and Sq are relatively insensitive in differentiating peaks, valleys and the spacing of the various texture features. Surfaces with different visual morphologies can have similar Sa and Sq values. For a surface type, the Sa and Sq parameters indicate significant deviations in the texture characteristics. Sdr is expressed as the percentage of additional surface area contributed by the texture as compared to an ideal plane the size of the measurement region. Sdr further differentiates surfaces of similar amplitudes and average roughness. Typically Sdr will increase with the spatial intricacy of the texture whether or not Sa changes.
In embodiments, the ceramic has a defined grain type morphology. The Sdr is about 30 or more, e.g. about 40 to 60. In addition or in the alternative, the morphology has an Sq of about 15 or more, e.g. about 20 to 30. In embodiments, the Sdr is about 100 or more and the Sq is about 15 or more. In other embodiments, the ceramic has a globular type surface morphology. The Sdr is about 20 or less, e.g. about 8 to 15. The Sq is about 15 or less, e.g. about less than 8 to 14. In still other embodiments, the ceramic has a morphology between the defined grain and the globular surface, and Sdr and Sq values between the ranges above, e.g. an Sdr of about 1 to 200 and/or an Sq of about 1 to 30.
In particular embodiments, the ceramic is iridium oxide. Other suitable ceramics include metal oxides and nitrides, such as of iridium, zirconium, titanium, hafnium, chromium, niobium, tantalum, ruthenium, platinum and aluminum. The ceramic can be crystalline, partly crystalline or amorphous. The ceramic can be formed entirely of inorganic materials or a blend of inorganic and organic material (e.g. a polymer). In other embodiments, the morphologies described herein can be formed of metal. As discussed above, different ceramic materials can be provided in different regions of a stent. For example, different materials may be provided on different surfaces of the depression or ridge. A rougher, defined grain material may be provided on the interior surface to, e.g. enhance adhesion while a material with globular features can be provided on the exterior surfaces to enhance endothelialization. Different materials may also be provided on different stent surfaces. A rougher, defined grain material may be provided on the abluminal surface to, e.g. enhance adhesion while a material with globular features can be provided on the adluminal surface to enhance endothelialization. Further discussion of ceramic morphology including suitable methods for characterizing morphologies and computing roughness parameters is provided in U.S. patent application Ser. No. 11/752,736, [Attorney Docket No. 10527-801001], filed May 23, 2007, and U.S. patent application Ser. No. 11/752,772, [Attorney Docket No. 10527-805001], filed May 23, 2007.
Referring to
In embodiments, the drug is provided directly into the depression or channel without a polymer. In other embodiments, multiple layers of polymer can be provided into the depression or channel. Such multiple layers are of the same or different polymer materials. For example, a biostable polymer such as parylene, Teflon can be first applied on top of the ceramic or metal coating before the drug-containing polymer is applied onto it to, e.g., further enhance adherence of the drug-containing polymer, e.g., a bioerodible polymer to the depression or channel. Examples of bioerodible polymers include polylactic acid (PLA), polylactic glycolic acid (PLGA), polyanhydrides (e.g., poly(ester anhydride)s, fatty acid-based polyanhydrides, amino acid-based polyanhydrides), polyesters, polyester-polyanhydride blends, polycarbonate-polyanhydride blends, and/or combinations thereof. Upon contacting the body fluid during stent delivery or when the stent is placed in desired location, the bioerodible polymer may swell and the volume can increase, e.g., to about twice of its original volume. Unless otherwise defined, the thickness of the polymer means the “dry” thickness in this disclosure. The depression or channel (e.g., one that has lips or ledges) also helps confine the bioerodible polymer in place even if polymer adhesion weakens upon swelling.
The ceramic or metal material can also be selected for compatibility with a particular polymer coating to, e.g. enhance adhesion. For example, for a hydrophilic polymer, the surface chemistry of the ceramic is made more hydrophilic by e.g., increasing the oxygen content, which increases polar oxygen moieties, such as OH groups. Drug eluting polymers may be hydrophilic or hydrophobic. The terms “drug-containing polymer”, “drug eluting polymer” and other related terms may be used interchangeably herein and include, but are not limited to, polycarboxylic acids, cellulosic polymers, including cellulose acetate and cellulose nitrate, gelatin, polyvinylpyrrolidone, cross-linked polyvinylpyrrolidone, polyanhydrides including maleic anhydride polymers, polyamides, polyvinyl alcohols, copolymers of vinyl monomers such as EVA, polyvinyl ethers, polyvinyl aromatics such as polystyrene and copolymers thereof with other vinyl monomers such as isobutylene, isoprene and butadiene, for example, styrene-isobutylene-styrene (SIBS), styrene-isoprene-styrene (SIS) copolymers, styrene-butadiene-styrene (SBS) copolymers, polyethylene oxides, glycosaminoglycans, polysaccharides, polyesters including polyethylene terephthalate, and polybutylene suucinate adipate (PBSA), polyacrylamides, polyethers, polyether sulfone, polycarbonate, polyalkylenes including polypropylene, polyethylene and high molecular weight polyethylene, halogenerated polyalkylenes including polytetrafluoroethylene, natural and synthetic rubbers including polyisoprene, polybutadiene, polyisobutylene and copolymers thereof with other vinyl monomers such as styrene, polyurethanes, polyorthoesters, proteins, polypeptides, silicones, siloxane polymers, polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxybutyrate valerate and blends and copolymers thereof as well as other biodegradable, bioabsorbable and biostable polymers and copolymers. Coatings from polymer dispersions such as polyurethane dispersions (BAYHDROL®, etc.) and acrylic latex dispersions are also within the scope of the present disclosure. The polymer may be a protein polymer, fibrin, collagen and derivatives thereof, polysaccharides such as celluloses, starches, dextrans, alginates and derivatives of these polysaccharides, an extracellular matrix component, hyaluronic acid, or another biologic agent or a suitable mixture of any of these, for example. U.S. Pat. No. 5,091,205 describes medical devices coated with one or more polyiocyanates such that the devices become instantly lubricious when exposed to body fluids. In embodiments, a suitable polymer is polyacrylic acid, available as HYDROPLUS® (Boston Scientific Corporation, Natick, Mass.), and described in U.S. Pat. No. 5,091,205, the disclosure of which is hereby incorporated herein by reference. Another polymer can be a copolymer of polylactic acid and polycaprolactone. Suitable polymers are discussed in U.S. Publication No. 2006/0038027.
The terms “therapeutic agent”, “pharmaceutically active agent”, “pharmaceutically active material”, “pharmaceutically active ingredient”, “biologically active substance”, “drug” and other related terms may be used interchangeably herein and include, but are not limited to, small organic molecules, peptides, oligopeptides, proteins, nucleic acids, oligonucleotides, genetic therapeutic agents, non-genetic therapeutic agents, vectors for delivery of genetic therapeutic agents, cells, and therapeutic agents identified as candidates for vascular treatment regimens, for example, as agents that reduce or inhibit restenosis. By small organic molecule is meant an organic molecule having 50 or fewer carbon atoms, and fewer than 100 non-hydrogen atoms in total.
Exemplary therapeutic agents include, e.g., anti-thrombogenic agents (e.g., heparin); anti-proliferative/anti-mitotic agents (e.g., paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, inhibitors of smooth muscle cell proliferation (e.g., monoclonal antibodies), and thymidine kinase inhibitors); antioxidants; anti-inflammatory agents (e.g., dexamethasone, prednisolone, corticosterone); anesthetic agents (e.g., lidocaine, bupivacaine and ropivacaine); anti-coagulants; antibiotics (e.g., erythromycin, triclosan, cephalosporins, and aminoglycosides); agents that stimulate endothelial cell growth and/or attachment. Therapeutic agents can be nonionic, or they can be anionic and/or cationic in nature. Therapeutic agents can be used singularly, or in combination. Preferred therapeutic agents include inhibitors of restenosis (e.g., paclitaxel), immunosuppressants (e.g., everolimus, tacrolimus), anti-proliferative agents (e.g., cisplatin), and antibiotics (e.g., erythromycin). Additional examples of therapeutic agents are described in U.S. Published Patent Application No. 2005/0216074. Polymers for drug elution coatings are also disclosed in U.S. Published Patent Application Nos. 2005/0019265 and 2005/0251249. A functional molecule, e.g. an organic, drug, polymer, protein, DNA, and similar material can be incorporated into groves, pits, void spaces, and other features of the ceramic.
Any stent described herein can be dyed or rendered radiopaque by addition of, e.g., radiopaque materials such as barium sulfate, platinum or gold, or by coating with a radiopaque material. The stent can include (e.g., be manufactured from) metallic materials, such as stainless steel (e.g., 316L, BioDur® 108 (UNS S29108), and 304L stainless steel, and an alloy including stainless steel and 5-60% by weight of one or more radiopaque elements (e.g., Pt, Ir, Au, W) (PERSS®) as described in US-2003-0018380-A1, US-2002-0144757-A1, and US-2003-0077200-A1), Nitinol (a nickel-titanium alloy), cobalt alloys such as Elgiloy, L605 alloys, MP35N, titanium, titanium alloys (e.g., Ti-6A1-4V, Ti-50Ta, Ti-10Ir), platinum, platinum alloys, niobium, niobium alloys (e.g., Nb-1Zr) Co-28Cr-6Mo, tantalum, and tantalum alloys. Other examples of materials are described in commonly assigned U.S. application Ser. No. 10/672,891, filed Sep. 26, 2003; and U.S. application Ser. No. 11/035,316, filed Jan. 3, 2005. Other materials include elastic biocompatible metal such as a superelastic or pseudo-elastic metal alloy, as described, for example, in Schetsky, L. McDonald, “Shape Memory Alloys”, Encyclopedia of Chemical Technology (3rd ed.), John Wiley & Sons, 1982, vol. 20. pp. 726-736; and commonly assigned U.S. application Ser. No. 10/346,487, filed Jan. 17, 2003.
The stents described herein can be configured for vascular, e.g. coronary and peripheral vasculature or non-vascular lumens. For example, they can be configured for use in the esophagus or the prostate. Other lumens include biliary lumens, hepatic lumens, pancreatic lumens, and urethral lumens.
The stent can be of a desired shape and size (e.g., coronary stents, aortic stents, peripheral vascular stents, gastrointestinal stents, urology stents, tracheal/bronchial stents, and neurology stents). Depending on the application, the stent can have a diameter of between, e.g., about 1 mm to about 46 mm. In certain embodiments, a coronary stent can have an expanded diameter of from about 2 mm to about 6 mm. In some embodiments, a peripheral stent can have an expanded diameter of from about 4 mm to about 24 mm. In certain embodiments, a gastrointestinal and/or urology stent can have an expanded diameter of from about 6 mm to about 30 mm. In some embodiments, a neurology stent can have an expanded diameter of from about 1 mm to about 12 mm. An abdominal aortic aneurysm (AAA) stent and a thoracic aortic aneurysm (TAA) stent can have a diameter from about 20 mm to about 46 mm. The stent can be balloon-expandable, self-expandable, or a combination of both (e.g., U.S. Pat. No. 6,290,721). The ceramics can be used with other endoprostheses or medical devices, such as catheters, guide wires, and filters.
All publications, patent applications, and patents, are incorporated by reference herein in their entirety.
Still other embodiments are in the following claims.