An aneurysm is an abnormal dilation of a layer or layers of an arterial wall, usually caused by a structural defect due to hardening of the artery walls or other systemic defects such as aortic dissection due to high blood pressure. In the aorta leading into the heart, a thoracic aortic aneurysm (TAA) may occur when the arterial wall of the thoracic aorta is weakened due to the pressure of the blood being pumped by the heart. The TAA is typically presented as a large swelling or bulge under a chest X-ray or ultrasound. When left untreated, the aneurysm may rupture, usually causing rapid fatal hemorrhaging.
As is the case with abdominal aortic aneurysms, the widely accepted approach to treating an aneurysm in the thoracic aorta is surgical repair, involving replacing the aneurysmal segment with a prosthetic device. This surgery, as described above, is a major undertaking, with associated high risks and with significant mortality and morbidity.
One alternative to the surgical repair is to use an endovascular procedure, i.e., catheter directed, techniques for the treatment of aneurysms, specifically for TAA. This has been facilitated by the development of vascular stents, which can and have been used in conjunction with standard or thin-wall graft material in order to create a stent-graft or endograft. The potential advantages of less invasive treatments have included reduced surgical morbidity and mortality along with shorter hospital and intensive care unit stays.
One concern with the use of TAA is the prominence of endoleaks arising from a lack of apposition of a stent-graft to the aortic wall along the inside curve of the aorta. This is believed to be caused by a “bird-beak” (shown here in
Accordingly, I have devised an improved endoprosthesis that is believed to be heretofore not available in the prior art. My improvement is an endoprosthesis for repair of aneurysms. In particular, a thoracic endovascular implant is provided that includes a generally tubular graft, a plurality of stent hoops and at least one suture. The generally tubular graft extends along a longitudinal axis from a first opening to a second opening spaced apart along the longitudinal axis. The plurality of stent hoops is attached to the graft to define a stent graft. Each of the stent hoops has a sinusoidal configuration disposed about the longitudinal axis with apices spaced apart along the longitudinal axis. The apices of one stent hoop are spaced apart at a predetermined distance along the longitudinal axis from adjacent apices of another stent hoop. The at least one suture connects one apex of one stent hoop to two apices of another stent hoop to reduce the predetermined distance so that the stent-graft is generally linear in a constrained and compressed configuration and curved away from the longitudinal axis when in an uncompressed configuration in a blood vessel.
In yet another variation, an endovascular implant is provided that includes a generally tubular graft, a plurality of stent hoops and at least one suture. The generally tubular graft extends along a longitudinal axis from a first opening to a second opening spaced apart along the longitudinal axis. The plurality of stent hoops is attached to the graft to define a stent graft. Each of the stent hoops has a sinusoidal configuration disposed about the longitudinal axis with apices spaced apart along the longitudinal axis. The apices of one stent hoop are spaced apart at a predetermined distance along the longitudinal axis from adjacent apices of another stent hoop. The at least one suture connects one apex of one stent hoop to two apices of another stent hoop to reduce the predetermined distance so that in a compressed or crimped configuration (as inside a catheter sheath prior to delivery in a vessel), the stent-graft extends generally linearly as with the typical stent-graft. Yet in a released configuration (unconstrained in a catheter sheath) in a body vessel, the stent-graft is self-adjusting in-situ so as to curve away from the longitudinal axis to conform to the body vessel and reduce formation of a gap between one end of the stent-graft with an inner surface of the body vessel.
In addition to the embodiments described above, other features recited below can be utilized in conjunction therewith. For example, the at least one suture comprises three sutures in which each suture connects one apex of one stent hoop to two apices of another stent hoop; the one apex of one stent hoop is disposed between two apices of another stent hoop; the stent-graft is curved along a radius of about 3 centimeters. The radius of curvature defines an arcuate portion of a virtual circle, wherein the arcuate portion includes an angle of approximately 45 degrees; the generally tubular graft comprises a synthetic material selected from a group consisting of nylon, ePTFE, PTFE, Dacron and combinations thereof; the generally tubular graft comprises a generally constant inside diameter smaller than an outside diameter of the stent hoop; the generally tubular graft comprises at least one flared end; the plurality of stent hoops are disposed on the inside surface of the stent-graft; the predetermined distance comprises a distance selected from any value between about 1 mm to about 2 mm; another stent hoop configured with retention barbs is connected to a cranial end of the graft.
The foregoing and other features and advantages of the invention will be apparent from the following, more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements).
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±50% of the recited value, e.g. “about 50%” may refer to the range of values from 51% to 99%. In addition, as used herein, the terms “patient,” “host,” “user,” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment. The uses of the terms “cranial” or “caudal” are in this application are used to indicate a relative position or direction with respect to the person receiving the implant. As applied to “cranial,” the term indicates a position or direction closer to the heart, while the term “caudal” indicates a position or direction further away from the heart of such a subject.
An endovascular implant 100 that can be used in a thoracic aortic aneurysm is shown in
Referring back to
As shown diagrammatically in
Referring to
Referring back to
As can be seen in
It should be noted that the connector 400 is not required to connect to the respective apices such as that shown in
Depending on the number of sutures and the separation distance y1, y2, y3 . . . so on, different radii of curvature could be attained. For example, as shown in
One of the many benefits of this design is that in the constrained or compressed configuration, there is no increase in the overall profile (or thickness when the stent-graft is viewed in a side cross-sectional view) of the implant. This and advantage is due to the combination of design features taught in this application that allow virtually no increase in the profile in the delivery stage but yet allow for a pre-configured curved once deployed in the blood vessel.
It is noted that while one curvilinear configuration is shown in
It is noted that in the application of the endoprosthesis for aneurysms, the suture 400 may be a non-bioresorbable material. In other applications, suture 400 may be formed from a bioresorbable material. Suitable biodegradable materials may include polymers such as polylactic acid (i.e., PLA), polyglycolic acid (i.e., PGA), polydioxanone (i.e., PDS), polyhydroxybutyrate (i.e., PHB), polyhydroxyvalerate (i.e., PHV), and copolymers or a combination of PHB and PHV (available commercially as Biopol®), polycaprolactone (available as Capronor®), polyanhydrides (aliphatic polyanhydrides in the back bone or side chains or aromatic polyanhydrides with benzene in the side chain), polyorthoesters, polyaminoacids (e.g., poly-L-lysine, polyglutamic acid), pseudo-polyaminoacids (e.g., with back bone of polyaminoacids altered), polycyanocrylates, or polyphosphazenes. As used herein, the term “bio-resorbable” includes a suitable biocompatible material, mixture of materials or partial components of materials being degraded into other generally non-toxic materials by an agent present in biological tissue (i.e., being bio-degradable via a suitable mechanism, such as, for example, hydrolysis) or being removed by cellular activity (i.e., bioresorption, bioabsorption, or bio-resorbable), by bulk or surface degradation (i.e., bioerosion such as, for example, by utilizing a water insoluble polymer that is soluble in water upon contact with biological tissue or fluid), or a combination of one or more of the bio-degradable, bio-erodable, or bio-resorbable material noted above. In yet other applications, the suture 400 may be a shape memory material such as shape memory metal or polymers.
The suture 10 or 400 can be infused or loaded with bioactive agents to aid in the healing response or to achieve a desired physiological response. For example, bio-active agents such as blood de-clotting agent (e.g., heparin, warfarin, etc.,) anti-proliferative/antimitotic agents including natural products such as vinca alkaloids (i.e. vinblastine, vincristine, and vinorelbine), paclitaxel, epidipodophyllotoxins (i.e. etoposide, teniposide), antibiotics (dactinomycin (actinomycin D) daunorubicin, doxorubicin and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin, enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents such as G(GP) IIb/IIIa inhibitors and vitronectin receptor antagonists; anti-proliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nirtosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes-dacarbazinine (DTIC); anti-proliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate), pyrimidine analogs (fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine {cladribine}); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones (i.e. estrogen); anti-coagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory; antisecretory (breveldin); anti-inflammatory: such as adrenocortical steroids (cortisol, cortisone, fludrocortisone, prednisone, prednisolone, 6α-methylprednisolone, triamcinolone, betamethasone, and dexamethasone), non-steroidal agents (salicylic acid derivatives i.e. aspirin; para-aminophenol derivatives i.e. acetominophen; indole and indene acetic acids (indomethacin, sulindac, and etodalac), heteroaryl acetic acids (tolmetin, diclofenac, and ketorolac), arylpropionic acids (ibuprofen and derivatives), anthranilic acids (mefenamic acid, and meclofenamic acid), enolic acids (piroxicam, tenoxicam, phenylbutazone, and oxyphenthatrazone), nabumetone, gold compounds (auranofin, aurothioglucose, gold sodium thiomalate); immunosuppressives: (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); angiogenic agents: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF); angiotensin receptor blockers; nitric oxide donors; anti-sense oligionucleotides and combinations thereof; cell cycle inhibitors, mTOR inhibitors, and growth factor receptor signal transduction kinase inhibitors; retenoids; cyclin/CDK inhibitors; HMG co-enzyme reductase inhibitors (statins); and protease inhibitors.
All of the stent hoops described herein are substantially tubular elements that may be formed utilizing any number of techniques and any number of materials. In the preferred exemplary embodiment, all of the stent hoops are formed from a nickel-titanium alloy (Nitinol), shape set laser cut tubing.
The graft material utilized to cover all of the stent hoops may be made from any number of suitable biocompatible materials, including woven, knitted, sutured, extruded, or cast materials forming polyester, polytetrafluoroethylene, silicones, urethanes, and ultra-light weight polyethylene, such as that commercially available under the trade designation SPECTRA™. The materials may be porous or nonporous. Exemplary materials include a woven polyester fabric made from DACRON™ or other suitable PET-type polymers.
As noted above, the graft material is attached to each of the stent hoops. The graft material may be attached to the stent hoops in any number of suitable ways. In the exemplary embodiment, the graft material is attached to the stent hoops by sutures.
Depending on the stent hoops location, different types of suture knots may be utilized for retainer suture 10. Details of various embodiments of the suture knots for suture 10 or suture 400 can be found in US Patent Application Publication No. US20110071614 filed on Sep. 24, 2009, which is hereby incorporated by reference as if set forth herein.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.