1. Field of the Invention
The invention relates to document processing, and to compact, desktop document processors for capturing data and images from checks and other financial and payment-related documents. The invention further relates to document processors designed for processing documents at a teller window.
2. Background Art
Historically, banks processed large volumes of paper checks in centralized locations, either a central bank or a clearing house. Document processing machines in such locations were large, processing up to 2000 documents per minute. These machines were supported by dedicated, trained operators.
However, centralized processing costs banks typically three days in clearing a document. The “Check Clearing for the 21st Century Act” or the “Check 21 Act” was enacted by Congress to facilitate check truncation by authorizing substitute checks, to foster innovation in the check collection system without mandating receipt of checks in electronic form, and to improve the overall efficiency of the Nation's payments system. The Check 21 legislation has driven the demand for decentralized check imagers and sorters in financial institutions. Check 21 gives equal legal validity to electronic data obtained from documents, and has made it possible for banks to distribute document processing to speed the clearing process. Check 21 has made it advantageous for banks to convert paper checks to electronic data as early as possible.
In the recent past, banks have partially converted paper check information to electronic data. In some cases this partial information was used internally. In other cases two banks would agree on standards for electronic data transfer. In either case, the paper check was still the only legal document for the transaction. Check 21 has standardized these agreements across the banking industry, and given the electronic data legal merit, if the electronic data meet the requirements set forth in Check 21.
Accordingly, Check 21 has led to a rapid expansion of check-processing solutions based upon interchange of electronic images rather than paper checks, and with this there has been a flood of smaller, cheaper check-processing devices which all have the aim of capturing check images ever-more-early in the payment transaction. This process, known as truncation, aims to remove the physical paper check from the process of payment clearing as quickly as possible—ideally, at the point of presentment (cashier station, merchant counter, etc.). Because it is advantageous for banks to convert paper checks to Check 21 valid electronic data as early as possible, compact, desktop document processors have been developed. Some of these payment system devices are designed for use on a counter top, or at a teller window.
As these processing solutions have become smaller and cheaper, the process of endorsement has become more and more problematic. Everyone associated with a check-clearing transaction wants to place an endorsement on the rear of the check—typically, an alphanumeric imprint which records when, where, and by whom the check was accepted—and they want this endorsement to be placed on the check early enough that it is captured into check images which form part of the truncation process. But the means for applying such an endorsement which is selectable and programmable have become (proportionally) more and more costly relative to the total cost of the check processing machine, to the point where the endorsement means may increase the cost of the machine above what the market can bear. The relative size of conventional endorsement means has also become more and more problematic as check-processing machines become ever-smaller.
The conventional approach to endorsing checks for at least the last 30 years has been inkjet printing. This process has been very apt for endorsing because of its high speed and relatively low cost, and the lack of any practical alternative. However, as check-processing solutions become smaller and cheaper, and as speed becomes less important, inkjet printing becomes less and less attractive. For example, an inkjet printer may well be capable of operating at equivalent paper speeds of 100 inches-per-second or more—but this capacity is mostly wasted when applied in a machine which is only required to operate at equivalent paper speeds of 15 inches-per-second.
A further disincentive to inkjet printing in smaller, slower and cheaper machines is the prevalent business model by which inkjet printing means are marketed. Since the technology of inkjet printing is so complex and the barriers to development so high, inkjet printers tend to be based around proprietary and patent-protected cartridge-based designs, in which as much of the complex technology as possible is embedded. This allows the makers to charge very high prices for replacement cartridges, and leads to a classic razor-blade type business approach, in which the printer mechanism is very cheap, but the replacement cartridges required to make it function are very costly. This places a very high cost-of-ownership on an inkjet endorsing solution in a small, cheap and slow check-processing machine, since a replacement inkjet cartridge may well cost more than the entire machine.
For the foregoing reasons, there is a need for an approach to providing a low-cost programmable endorsement on checks without the use of inkjet printing means.
In one embodiment, an apparatus for capturing data from checks and other financial and payment-related documents is provided. The apparatus comprises a compact, desktop document processor base unit including an input slot for receiving a check to be processed. A transport stage is located within the base unit. The transport stage includes a plurality of processing devices, and conveys documents past the plurality of processing devices. The processing devices perform operations on the documents. The transport stage receives a document in the input slot, and routes the document past the plurality of processing devices.
The plurality of processing devices includes a programmable endorser for printing an endorsement on a document as the document is processed. The programmable endorser includes a plurality of character segments in the form of various shapes such that the endorsement is printed by building characters from the character segments.
Embodiments of the invention comprehend a variety of additional, optional, features. For example, preferably, the plurality of character segments take the form of various shapes such that alphanumeric characters are built from the character segments. The programmable endorser may be configured to print a linear endorsement composed of a sequence of characters. In a particular implementation, the programmable endorser further comprises a self-inking printing device composed of an elastomeric foam substrate material impregnated with a printing ink and faced with a selectively-permeable outer membrane so as to form a character segment when pressed against the document.
The self-inking printing device may take the form of a cylindrical, self-inking print roller. Further, the selectively-permeable outer membrane may have a surface divided into a plurality of chordal segments. Each chordal segment is configured to produce a character segment. Multiple chordal segments may be configured to produce the same character segment. A print hammer arrangement may be employed to press the document against the self-inking print roller to produce a character segment when desired. The cylindrical, self-inking print roller may be driven by a programmable rotary actuator. Various control mechanisms are possible.
Further, in carrying out the invention, although one approach provides a compact, desktop document processor, other approaches are not limited to desktop devices. In another embodiment of the invention, the apparatus comprises a feeder stage for receiving a check to be processed, and a transport stage including a plurality of processing devices. The transport stage conveys documents past the plurality of processing devices, and the processing devices perform operations on the documents.
In this embodiment, the transport stage receives a document from the feeder stage, and routes the document past the plurality of processing devices. The plurality of processing devices includes a programmable endorser for printing an endorsement on a document as the document is processed. The programmable endorser includes a plurality of character segments in the form of various shapes such that the endorsement is printed by building characters from the character segments.
In this embodiment, various additional, optional, features may also be included such as the self-inking printing device and programmable rotary actuator.
Still further, embodiments of the invention are not specifically limited to payment system devices. In yet another embodiment, an apparatus for capturing data from documents comprises a document processor for receiving a document to be processed. The document processor includes a plurality of processing devices and conveys documents past the plurality of processing devices to allow the processing devices to perform operations on the documents. The plurality of processing devices includes a programmable device for printing a message on a document as the document is processed. The programmable device includes a plurality of character segments in the form of various shapes such that the message is printed by building characters from the character segments.
As shown in
The apparatus 10 may be constructed to perform any number of known document processing actions as appreciated by one of ordinary skill in the art. Suitable electronics and mechanical mechanisms are located within base unit 12. For example, apparatus 10 may perform front and rear image capture, magnetic ink character recognition (MICR) reading, optical character recognition (OCR) reading, endorsing, and/or bar code reading depending on the application. Advantageously, the electronics and mechanical mechanisms required for the document processing actions are provided within base unit 12 as readily understood by one of ordinary skill in the art. The apparatus may be provided with a suitable network connection interface such as Ethernet or Universal Serial Bus (USB).
Input hopper 14 is an automatic, hands-off device that will feed a batch of checks into the base unit 12. Input hopper 14 receives and holds a batch of checks between side wall portion 20 and spring-loaded flag 22 which presses up against the last document in the loaded batch to keep the checks together. It is appreciated that apparatus 10 is suitable for processing checks as well as other financial and payment-related documents.
Divider element 24 includes a pocket selector 26 that allows checks to be sorted into, as shown, two pockets based on criteria such as high value amounts, image quality, reader rejects, and others. The pockets include first and second pockets 30 and 32, respectively. First pocket 30 is bound by side wall 34 of input hopper 14, and divider element 24. Second pocket 32 is bound by divider element 24 and wall 36.
Embodiments of the invention relate to providing a low-cost programmable endorsement on checks without the use of inkjet printing means. The apparatus 10 is an example of a document processor for which embodiments of the invention may be used to provide endorsement capability. Embodiments of the invention may also be implemented in other, smaller and cheaper devices, or in larger devices.
Accordingly, embodiments of the invention comprehend a novel, selectable printing means for endorsing checks which provides a real alternative to inkjet printing, and which can provide suitable alphanumeric endorsements at lower first cost, lower speed and at lower cost-of-ownership.
The illustrated embodiment is based in the technology of self-inking printing means, in which an elastomeric foam substrate material is impregnated with a printing ink, and then faced with a selectively-permeable outer membrane which is locally-pierced or otherwise made permeable to the ink within so as to form a message or other imprint to be printed when pressed against a material to be printed on, for example, paper. Workers will be familiar with this technology of self-inking stamps which are used for a variety of printing tasks. These are typically disposable printing means which are discarded when the self-contained supply of ink in the foam substrate is depleted, there being no practical way to replenish it.
Such self-inking stamps are typically capable of printing only a fixed message, which is formed by the selectively-permeable facing membrane. Embodiments of the invention contemplate the use of this technology in such a way as to create the ability to print almost any alphanumeric character or characters at will, and so to produce a linear endorsement upon a moveable paper item such as a check.
With reference to
Upon feeding from the input slot or feeder, the document is captured between first drive roller 44 and pinch roller 60, and is driven forward. The document is then constrained to follow around drive roller 46 between drive roller 46 and pinch roller 62. At this time, magnetic ink character recognition (MICR) device 64 reads the MICR data off of the document. As well, front image camera 66 captures a front image of the passing document.
After the trailing edge of the document clears the MICR device 64, the data output from the MICR device 64 is processed to compose the programmable rear endorsement message for endorser 40.
As the document continues around drive roller 46 past pinch roller 70, the rear of the document is programmably endorsed by endorser 40. Following endorser 40, the document is franked by front franker 72 to prevent re-entry, and rear image camera 74 captures a rear image of the passing document as the document goes on to engage drive roller 44 and pinch roller 76, and exits the transport stage 50 as the document is routed to the output pocket or pockets.
In accordance with embodiments of the invention, the programmable endorser 40 includes a plurality of character segments in the form of various shapes such that the endorsement is printed by building characters from the character segments, as is further described below with reference primarily to
The invention, in one embodiment, comprehends a cylindrical, self-inking print roller for the endorser 40 (
As shown in
Referring again to
In the preferred embodiment, the rotary actuator 112 is a conventional electric stepper motor, but workers will understand that there are many other possibilities for the actuator 112. The print roller 90 is further constructed as to be removable from the actuator shaft 110 in such a manner as to make it disposable, to be replaced with an identically-constructed fresh roller when its internal ink supply is depleted.
With reference to
Workers will understand that there are a variety of suitable means for applying the print pressure described. A preferred embodiment employs a print hammer 122 operated by an electromagnetic solenoid 124, but such means as a rotary printing platen or a motor-driven eccentric print actuator would be equally apt for this application.
Workers will further understand that once a character has been generated from individual character elements by the methods described, if the paper 120 is then moved in a linear fashion to place an unprinted area in front of a print head, a second character can be printed, and so forth to create a line of printed characters.
Various different approaches can be employed to rotationally position the print wheel 90 so as to place the desired character element to be printed against the paper. For example, the print wheel 90 may always rotate in one direction with printing occurring the next time the desired character element is correctly placed. In the alternative, if a bi-directional rotary actuator is used, the next desired character element may be placed in the printing position by rotating the print wheel 90 in whichever direction is required to complete the motion more-quickly.
In another alternative, printing may be performed by rotating the print wheel 90 at a constant speed, or in a series of identical sequential steps, and applying print pressure only as each desired character element is next presented to the paper 120. This approach may have the advantage of simplified control of the rotary actuator, since it constantly performs the same step-wise motion and there is no requirement to continually calculate and program specific rotary motion increments. This approach, while simpler, is also likely to be slower to produce printed output, since the print roller 90 rotates continuously in a constant manner and its motions cannot be optimized to minimize the time spent rotating from one desired character element to the next.
In yet a further alternative, if space and other constraints permit, the print wheel 90 may be so constructed that each desired character element appears more than once on its circumference and/or that more frequently-used character elements appear more than once around the circumference, in each case increasing the number of available opportunities to print a desired character element in each rotation of the print wheel, and/or decreasing the angular motion required of the print wheel in order to reach the next desired character element. Workers will understand that there are many ways to optimize the basic printing approach, as size, cost, speed and complexity requirements may dictate.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6017161 | Harris et al. | Jan 2000 | A |
6103985 | Shell et al. | Aug 2000 | A |
6257783 | Hanaoka et al. | Jul 2001 | B1 |
7128260 | Updike et al. | Oct 2006 | B1 |
7216801 | Crews et al. | May 2007 | B1 |
7258500 | Furihata et al. | Aug 2007 | B2 |
7486421 | Yang | Feb 2009 | B2 |
7810714 | Murata | Oct 2010 | B2 |
8098391 | Kiplinger et al. | Jan 2012 | B2 |
20050127182 | Nagata et al. | Jun 2005 | A1 |
20100014743 | Spall | Jan 2010 | A1 |
20100166288 | Spall et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100165372 A1 | Jul 2010 | US |