The present invention relates to an endoscope provided with a nozzle for cleaning at a distal end portion of an insertion portion and a distal end cover.
Endoscopes have been widely used in recent years in a medical field and an industrial field. An endoscope used in the medical field includes an elongated insertion portion that is inserted into a human body, and is widely used for such as observation of an organ, treatment with a treatment instrument, surgery under endoscopic observation.
A distal end portion of the insertion portion is provided with an observation window positioned at a distalmost end of an image pickup optical system and a nozzle for cleaning a surface of the observation window. When such as blood, body fluid, or dirt adhere to the surface of the observation window, cleaning water is ejected from the nozzle to remove the adhering matter and then air is ejected from the nozzle to remove water droplets remaining on the surface of the observation window.
Incidentally, such as the blood, the body fluid, or the dirt may not only adhere to the surface of the observation window, but also intrude into a fluid conduit communicating with the nozzle. The fluid conduit therefore needs to be reliably cleaned by such as brushing with a cleaning brush after use of the endoscope.
Japanese Patent Application Laid-Open Publication No. 5-317235 describes an endoscope in which an observation window cleaning nozzle (hereinafter simply referred to as nozzle) for directing an air/water feeding passage to the observation window is formed on a distal end cover made of elastic rubber. The endoscope allows a conduit cleaning brush to be inserted into the air/water feeding tube fixed to a distal end portion body, by detaching the distal end cover from the distal end portion body.
An endoscope of one aspect of the present invention includes: a distal end member provided at a distal end portion of an insertion portion configured to be inserted in a subject and including a fluid passage for allowing a fluid to flow; a first distal end cover made of an elastically deformable material and detachably attached to the distal end member; a second distal end cover made of a material harder than the material of the first distal end cover and attached to the distal end member; a nozzle including a nozzle channel portion communicating with the fluid passage in a mounted state in which the first distal end cover and the second distal end cover are attached to the distal end member, and an ejection port positioned at an end of the nozzle channel portion and configured to eject the fluid to an outside; and a first nozzle configuring portion provided to the first distal end cover, configuring at least part of the nozzle, and configuring at least part of a bending portion having a bent shape in the nozzle channel portion. The first nozzle configuring portion is covered by the second distal end cover in the mounted state.
A distal end cover of one aspect of the present invention is a distal end cover detachably attached to a distal end member including a fluid passage for allowing a fluid to flow through at a distal end portion of an insertion portion of an endoscope. The distal end cover includes: a first cover made of an elastically deformable material and detachably attached to the distal end member; a second cover made of a material harder than the material of the first cover and attached to the distal end member; a nozzle including a nozzle channel portion communicating with the fluid passage in a mounted state in which the first cover and the second cover are attached to the distal end member, and an ejection port positioned at an end of the nozzle channel portion and configured to eject the fluid to an outside; and a first nozzle configuring portion provided to the first cover, configuring at least part of the nozzle, and configuring at least part of a bending portion having a bent shape in the nozzle channel portion. The first nozzle configuring portion is covered by the second cover in the mounted state.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
A schematic configuration of an endoscope according to a first embodiment of the present invention will be described first.
The insertion portion 110 has an elongated shape, and includes a distal end portion 111 that is positioned at the distal end of the insertion portion 110, a bending portion 112 that is bendable, and a flexible tube portion 113 that has flexibility. The distal end portion 111, the bending portion 112, and the flexible tube portion 113 are connected to each other in this order from the distal end side of the insertion portion 110.
The distal end portion 111 includes an image pickup optical system and an illumination optical system that are optical members for observation, an image pickup apparatus, a treatment instrument outlet port 114 that is an opening portion of a treatment instrument channel provided in the insertion portion 110, and a raising base (forceps elevator) 115 that raises the treatment instrument. Note that only the raising base 115 is illustrated in
The endoscope 100 further includes a distal end member 1 constituting the distal end portion 111, a first distal end cover 2, a second distal end cover 3, and a nozzle 4. The distal end member 1 is provided at the distal end portion 111, and is a main portion of the distal end portion 111. The first distal end cover 2 and the second distal end cover 3 are attached to the distal end member 1. The nozzle 4 is illustrated such as in
The operation portion 120 includes a grasping portion 121. The grasping portion 121 is connected to the proximal end of the flexible tube portion 113. The grasping portion 121 is provided with a treatment instrument insertion port 122 communicating with the treatment instrument channel.
The operation portion 120 is provided with two bending operation knobs 123 and 124, and a fixing lever 125. The bending portion 112 of the insertion portion 110 is configured to be bent in four directions, for example, up, down, right, and left, by a turning operation of the bending operation knobs 123 and 124. The fixing lever 125 fixes the bending operation knobs 123 and 124 in a desired turning position.
The operation portion 120 is further provided with a raising base operation lever 126. A raising base operation wire (hereinafter simply referred to as wire) 116 connected to the raising base 115 and the raising base operation lever 126 is provided in the insertion portion 110 and the operation portion 120. The raising base operation lever 126 manipulates the pulling or loosening of the wire 116. The pulling or loosening of the wire 116 by the raising base operation lever 126 causes the raising base 115 to rise or fall.
The operation portion 120 is further provided with an air/water feeding button 127, a suction button 128, and a cleaning tube attachment cap 129. The air/water feeding button 127 is a button to control an air feeding function and a water feeding function of the endoscope 100. The suction button 128 is a button to control a suction function of the endoscope 100.
The endoscope 100 is connected to external devices such as an air/liquid feeding device, a light source device, and a processor, which are not illustrated, via the connector 140. The connector 140 is provided with a signal transmission cable 150 extending from a side portion of the connector 140. An electrical connector 151 connected to the processor is provided at the distal end of the signal transmission cable 150.
The configuration of the distal end portion 111 will be described in detail with reference to
The distal end member 1 is made of a metal material such as stainless steel. The first distal end cover 2 is made of an elastically deformable material, and is detachably attached to the distal end member 1. The second distal end cover 3 is made of a material harder than that of the first distal end cover 2, and is attached to the distal end member 1.
A rubber material such as silicone rubber, for example, is used as a material for forming the first distal end cover 2. A resin material such as polysulfone resin, for example, is used as a material for forming the second distal end cover 3. Both of the first distal end cover 2 and the second distal end cover 3 are preferably formed of an insulation material that satisfies the above-described requirements relating to the material to prevent a high frequency current from leaking to the outside of the insertion portion 110, for a case a high frequency treatment instrument such as a high frequency electrical scalpel is used as a treatment instrument.
Hereinafter, the configuration of the distal end member 1 will be described. The distal end member 1 has a side surface 1a parallel to the insertion axis X of the insertion portion 110 as illustrated in
The nozzle 4 of the present embodiment serves to clean the surfaces of the observation window 11 and the illumination window 12, and is configured to be able to blow a predetermined fluid to the observation window 11 and the illumination window 12. The predetermined fluid is cleaning water and air, for example. The distal end member 1 further includes a fluid passage 13 for allowing the predetermined fluid to flow through, and a second nozzle configuring portion 14 configuring part of the nozzle 4 as illustrated in
The distal end member 1 further includes a rotation shaft 15 as illustrated in
A wire terminal member 117 is provided at the distal end of the wire 116 as illustrated in
The distal end member 1 further includes a restricting recess 16 and a locking pin 17 as illustrated in
The distal end member 1 further includes a proximal end portion 18 positioned at an end of the bending portion 112 side of the distal end member 1 as illustrated in
The configuration of the first distal end cover 2 will be described next. The first distal end cover 2 includes a cylindrical portion 21 having a cylindrical shape with both ends opened, a first nozzle configuring portion 22 configuring at least part of the nozzle 4, and a coupling portion 23 coupling the cylindrical portion 21 and the first nozzle configuring portion 22 as illustrated in
The cylindrical portion 21 has a groove portion 21a to engage with part of the second distal end cover 3. The groove portion 21a is formed in an inner peripheral portion of the cylindrical portion 21 in a direction around the axis of the cylindrical portion 21. The coupling portion 23 couples the inner peripheral portion of the cylindrical portion 21 and the first nozzle configuring portion 22.
The configuration of the second distal end cover 3 will be described next. The second distal end cover 3 has a cylindrical shape covering the distal end member 1 as illustrated in
The second distal end cover 3 further has an opening portion 33 provided at the distal end portion 32 as illustrated in
The second distal end cover 3 further includes a restricting protrusion 34 to fit in the restricting recess 16 of the distal end member 1 as illustrated in
The second distal end cover 3 further includes a fragile portion 35 as illustrated in
The second distal end cover 3 further includes an engagement hole 38, an engagement portion 39, and a joint opening 40 provided to the proximal end portion 31 as illustrated in
A procedure for attaching the first distal end cover 2 and the second distal end cover 3 to the distal end member 1 (hereinafter referred to as procedure for attaching) will be described next. In the procedure for attaching, firstly, the first nozzle configuring portion 22 of the first distal end cover 2 is passed through the joint opening 40 of the second distal end cover 3, and the engagement portion 39 of the second distal end cover 3 is engaged with the groove portion 21a of the first distal end cover 2. Thus, the first distal end cover 2 is joined to the second distal end cover 3 (see
The first nozzle configuring portion 22 of the first distal end cover 2 is covered by the distal end portion 32 of the second distal end cover 3 in the state illustrated in
In the procedure for attaching, then, the restricting recess 16 of the distal end member 1 and the restricting protrusion 34 of the second distal end cover 3 are aligned with each other. While the restricting protrusion 34 is inserted into the restricting recess 16, the first and second distal end covers 2 and 3 integrated with each other are joined to the distal end member 1 (see
The restricting recess 16 and the restricting protrusion 34 have a function to restrict the postures of the first and second distal end covers 2 and 3. The function prevents the rotation of the first and second distal end covers 2 and 3 in the direction around the insertion axis X of the insertion portion 110 illustrated in
In the procedure for attaching, then, the first and second distal end covers 2 and 3 are pushed toward the arrow D direction from the state illustrated in
Hereinafter, a state in which the first distal end cover 2 and the second distal end cover 3 are attached to the distal end member 1 will be referred to as a “mounted state”.
Note that the first nozzle configuring portion 22 of the first distal end cover 2 is covered by the second distal end cover 3 in the mounted state. The cylindrical portion 21 of the first distal end cover 2 covers a portion where the locking pin 17 of the distal end member 1 and the engagement hole 38 of the second distal end cover 3 are engaged with each other (see
The configuration of the nozzle 4 will be described in detail with reference to
At least part of the ejection port 42 is configured by the first nozzle configuring portion 22. Both of the nozzle channel portion 41 and the ejection port 42 are configured by the first nozzle configuring portion 22 and the second nozzle configuring portion 14 in the present embodiment.
The nozzle channel portion 41 includes a channel bending portion 41a as a bending portion having a bent shape as illustrated in
The first nozzle configuring portion 22 configures at least part of the channel bending portion 41a. Part of the first nozzle configuring portion 22 has a plane that is part of the inner peripheral surface of the nozzle channel portion 41 and configures an upper plane in
The first nozzle configuring portion 22 is sandwiched between the second distal end cover 3 and the second nozzle configuring portion 14 and the position thereof is restricted in the mounted state as illustrated in
A procedure for detaching the first distal end cover 2 and the second distal end cover 3 from the distal end member 1 (hereinafter referred to as “procedure for detaching”) will be described next. A detaching jig 300 illustrated in
Hereinafter, the procedure for detaching will be described with reference to
When the fragile portion 35 is broken, the engagement hole 38 of the second distal end cover 3 is disengaged from the locking pin 17 of the distal end member 1. In the procedure for detaching, then, the detaching jig 300 is removed from the distal end portion 111. The first distal end cover 2 and the second distal end cover 3 in which the fragile portion 35 is broken are pulled out from the distal end member 1. Thus, the first distal end cover 2 and the second distal end cover 3 are detached from the distal end member 1.
The action and the effect of the endoscope 100 according to the present embodiment will be described next. The endoscope 100 according to the present embodiment includes the first distal end cover 2 made of an elastically deformable material, and the first nozzle configuring portion 22 provided to the first distal end cover 2. The first nozzle configuring portion 22 configures the channel bending portion 41a having a bent shape in the nozzle channel portion 41 of the nozzle 4 in the present embodiment. The first nozzle configuring portion 22 is covered by the second distal end cover 3 made of a material harder than that of the first distal end cover 2 in the mounted state. With this, according to the present embodiment, the first distal end cover 2 may be prevented from being deformed as compared with a case where the first distal end cover 2 is not covered by another member or a case where the second distal end cover 3 is made of the same material as that of the first distal end cover 2. That is, according to the present embodiment, a deformation of the first nozzle configuring portion 22 caused by pressure or impact generated by a fluid may be prevented. The pressure or impact is generated when a fluid such as cleaning water or air passes through the channel bending portion 41a. Thus, according to the present embodiment, a decrease of the amount of fluid ejected from the nozzle 4 may be prevented, and deterioration of a cleaning ability for the observation window 11 and the illumination window 12 may be prevented.
The first nozzle configuring portion 22 also configures part of the ejection port 42 of the nozzle 4, particularly in the present embodiment. As described above, according to the present embodiment, the deformation of the ejection port 42 may be prevented by preventing the deformation of the first nozzle configuring portion 22. As a result, according to the present embodiment, the deviation of the direction of the fluid ejected from the ejection port 42 may be prevented, whereby deterioration of the cleaning ability for the observation window 11 and the illumination window 12 may be prevented.
The endoscope 100 according to the present embodiment further includes the second nozzle configuring portion 14 that is provided to the distal end member 1 and configures another part of the nozzle 4. The nozzle channel portion 41 and the ejection port 42 of the nozzle 4 are configured by the first nozzle configuring portion 22 and the second nozzle configuring portion 14 in the present embodiment. The first nozzle configuring portion 22 is sandwiched between the second distal end cover 3 and the second nozzle configuring portion 14, and the position thereof is restricted in the mounted state. The first distal end cover 2 is formed of an elastically deformable material in the present embodiment. This configuration allows the first nozzle configuring portion 22 to be in close contact with the second distal end cover 3 and the second nozzle configuring portion 14. With this, according to the present embodiment, it is possible to prevent the fluid from leaking from the gap between the first nozzle configuring portion 22 and the second distal end cover 3, and between the first nozzle configuring portion 22 and the second nozzle configuring portion 14.
In addition, the fragile portion 35 of the second distal end cover 3 is to be broken to detach the first and second distal end covers 2 and 3 from the distal end member 1 in the present embodiment. With this, according to the present embodiment, an unnecessary external force may be prevented from applying to the second nozzle configuring portion 14 upon detaching the second distal end cover 3 from the distal end member 1, and as a result, deformation or breakage of the second nozzle configuring portion 14 may be prevented.
Note that an unnecessary external force is less likely to apply to the second nozzle configuring portion 14 upon detaching the first distal end cover 2 from the distal end member 1, since the first distal end cover 2 is formed of an elastically deformable material in the present embodiment.
Part of the first distal end cover 2, specifically the cylindrical portion 21 and the end surface 22a of the first nozzle configuring portion 22 of the first distal end cover 2 are exposed in the mounted state in the present embodiment. In the abnormal mounted state, the position or shape of part of the first distal end cover 2 changes from that in the normal mounted state illustrated in
Meanwhile, in a case where a nozzle for cleaning the observation window 11 and the illumination window 12 is provided separately from the first and second distal end covers 2 and 3, problems may arise. The problems include to forget to detach the nozzle from the endoscope 100 after use, or to forget to clean the fluid passage 13 because of having forgotten to detach the nozzle. In contrast, in the present embodiment, the nozzle 4 is configured by the first nozzle configuring portion 22 provided to the first distal end cover 2 and the second nozzle configuring portion 14 provided to the distal end member 1. With this, according to the present embodiment, the occurrence of the above-described problems may be prevented. Further, according to the present embodiment, the number of components may be reduced as compared with the above-described case and the number of work steps may be reduced by omitting the work for attaching the nozzle.
A second embodiment of the present invention will be described next. First, a configuration of an endoscope 100 according to the present embodiment will be described with reference to
The configuration of the endoscope 100 according to the present embodiment is different from that of the first embodiment in following points. The second nozzle configuring portion 14 in the first embodiment is not provided to the distal end member 1 in the present embodiment. Further, the first distal end cover 2 includes a first nozzle configuring portion 24 instead of the first nozzle configuring portion 22 in the first embodiment. The nozzle 4 according to the present embodiment is entirely configured by the first nozzle configuring portion 24.
In addition, the coupling portion 23 of the first distal end cover 2 couples the inner peripheral portion of the cylindrical portion 21 of the first distal end cover 2 and the first nozzle configuring portion 24 in the present embodiment. The boundary between the cylindrical portion 21, the coupling portion 23, and the first nozzle configuring portion 24 is indicated by a dotted line in
The insertion axis X of the insertion portion 110 (central axis of insertion portion 110) is indicated by a dashed-and-dotted line in
The procedure for attaching according to the present embodiment will be briefly described next. The procedure for attaching according to the present embodiment is basically the same as the procedure for attaching in the first embodiment. However, in the present embodiment, when the first distal end cover 2 is joined to the second distal end cover 3, the first nozzle configuring portion 24 of the first distal end cover 2 is passed through the joint opening 40 of the second distal end cover 3 (see
The configuration of the nozzle 4 according to the present embodiment will be described with reference to
As described in the first embodiment, the nozzle channel portion 41 includes the channel bending portion 41a having a bent shape. The entire channel bending portion 41a is configured by the above-described conduit in the first nozzle configuring portion 24 in the present embodiment.
The first nozzle configuring portion 24 is covered by the second distal end cover 3 in the mounted state as illustrated in
Other configurations, actions, and effects in the present embodiment are the same as those in the first embodiment.
A third embodiment of the present invention will be described next. First, a configuration of the endoscope 100 according to the present embodiment will be described with reference to
The configuration of the endoscope 100 according to the present embodiment is different from that of the first embodiment in following points. In the present embodiment, the first distal end cover 2 includes a first nozzle configuring portion 25 instead of the first nozzle configuring portion 22 in the first embodiment. The first nozzle configuring portion 25 configures part of the nozzle 4 in the present embodiment.
In addition, the coupling portion 23 of the first distal end cover 2 couples the inner peripheral portion of the cylindrical portion 21 of the first distal end cover 2 and the first nozzle configuring portion 25 in the present embodiment. The boundary between the cylindrical portion 21, the coupling portion 23, and the first nozzle configuring portion 25 is indicated by a dotted line in
The endoscope 100 according to the present embodiment includes a third nozzle configuring portion 32a provided to the second distal end cover 3 and configuring another part of the nozzle 4 in the present embodiment. The third nozzle configuring portion 32a is part of the distal end portion 32 of the second distal end cover 3.
The insertion axis X of the insertion portion 110 (central axis of insertion portion 110) is indicated by a dashed-and-dotted line in
The procedure for attaching according to the present embodiment will be briefly described next. The procedure for attaching according to the present embodiment is basically the same as the procedure for attaching in the first embodiment. However, in the present embodiment, when the first distal end cover 2 is joined to the second distal end cover 3, the first nozzle configuring portion 25 of the first distal end cover 2 is passed through the joint opening 40 of the second distal end cover 3 (see
Part of the first distal end cover 2 is exposed in the mounted state. The cylindrical portion 21 is exposed as part of the first distal end cover 2 in the present embodiment. Further, the third nozzle configuring portion 32a of the second distal end cover 3 is configured by a portion of the distal end portion 32 that is in contact with the end surface 25a of the first nozzle configuring portion 25 in the mounted state.
The configuration of the nozzle 4 according to the present embodiment will be described with reference to
In addition, the ejection port 42 is configured by the third nozzle configuring portion 32a in the present embodiment.
As described in the first embodiment, the nozzle channel portion 41 includes the channel bending portion 41a having a bent shape. The first nozzle configuring portion 25 has a plane part of which configures the top plane of the nozzle channel portion 41 in the present embodiment. Hereinafter, also the plane of the first nozzle configuring portion 25 configuring the top plane of the nozzle channel portion 41 will be referred to as the top plane. The top plane of the first nozzle configuring portion 25 includes a bending portion having a bent shape. The channel bending portion 41a is configured by the bending portion of the top plane of the first nozzle configuring portion 25.
The first nozzle configuring portion 25 is covered by the second distal end cover 3 in the mounted state as illustrated in
Other configurations, actions, and effects in the present embodiment are the same as those in the first embodiment.
Incidentally, the description has been made on a side viewing endoscope or an oblique viewing endoscope for an example in the above-described embodiments. The same structure as that of the fragile portion 35 in each of the above embodiments can also be applied to a distal end cover used for a forward viewing endoscope. Hereinafter, a description will be given of an embodiment relating to a forward viewing endoscope.
First, the configuration of the endoscope will be described with reference to
The distal end portion 210 is provided with an image pickup optical system and an illumination optical system that are optical members for observation, an image pickup apparatus, a treatment instrument outlet port 214 that is an opening portion of a treatment instrument channel provided in the insertion portion 200, and a forward water feeding port 215. The image pickup apparatus includes an image pickup device that picks up an image of a subject.
The endoscope further includes a distal end member 201, a first distal end cover 202, a second distal end cover 203, and a nozzle 204 that configure the distal end portion 210. The distal end member 201 constitutes the main portion of the distal end portion 210. The first distal end cover 202 and the second distal end cover 203 are attached to the distal end member 201. The distal end member 201 is made of a metal material such as stainless steel, for example.
The insertion axis X of the insertion portion 200 (central axis of insertion portion 200) is indicated by a dashed-and-dotted line in
The first distal end cover 202 is made of an elastically deformable material, and is detachably attached to the distal end member 201. The second distal end cover 203 is made of a material harder than that of the first distal end cover 202, and is attached to the distal end member 201. The first distal end cover 202 is formed of the same material as that of the first distal end cover 2 in the first embodiment, for example. The second distal end cover 203 is formed of the same material as that of the second distal end cover 3 in the first embodiment, for example.
The distal end member 201 has a substantially columnar shape extending in the direction of the insertion axis X of the insertion portion 200, and has an end surface 201a perpendicular to the insertion axis X of the insertion portion 200 as illustrated in
The nozzle 204 serves to clean the surface of the observation window 211, and is configured to be able to blow a predetermined fluid to the observation window 211. The predetermined fluid is cleaning water and air, for example. The distal end member 201 further includes a fluid passage 213 for allowing the predetermined fluid to flow through as illustrated in
The distal end member 201 further includes a restricting recess 216 and a locking pin 217 as illustrated in
An insulation ring 218 made of an insulation material is provided at the proximal end portion of the distal end member 201 as illustrated in
The first distal end cover 202 includes a cylindrical portion 221 having a cylindrical shape with both ends opened, and a channel connection portion 222 communicating with the fluid passage 213 in a mounted state described later, as illustrated in
The second distal end cover 203 includes a cylindrical portion 231 having a cylindrical shape with both ends opened, and a nozzle configuring portion 232 coupled to the cylindrical portion 231 as illustrated in
The second distal end cover 203 further includes a restricting protrusion 234 to fit in the restricting recess 216 of the distal end member 201 as illustrated in
The second distal end cover 203 further includes a fragile portion 235 as illustrated in
The second distal end cover 203 further includes an engagement hole 238, an engagement portion 239, and a joint opening 240 as illustrated in
A procedure for attaching the first distal end cover 202 and the second distal end cover 203 to the distal end member 201 (hereinafter referred to as procedure for attaching) will be described next. In the procedure for attaching, firstly, the channel connection portion 222 of the first distal end cover 202 and the vicinity portion thereof is passed through the joint opening 240 of the second distal end cover 203, and the engagement portion 239 of the second distal end cover 203 is engaged with the groove portion 221a provided to the first distal end cover 202. Thus, the first distal end cover 202 is joined to the second distal end cover 203 (see
Next, the restricting recess 216 of the distal end member 201 and the restricting protrusion 234 of the second distal end cover 203 are aligned, and the first and second distal end covers 202 and 203 integrated with each other are joined to the distal end member 201 while inserting the restricting protrusion 234 into the restricting recess 216 (see
The restricting recess 216 and the restricting protrusion 234 have a function to restrict the postures of the first and second distal end covers 202 and 203. The function prevents the rotation of the first and second distal end covers 202 and 203 in the direction around the insertion axis X of the insertion portion 200 illustrated in
In the procedure for attaching, then, the joined first and second distal end covers 202 and 203 are pushed to the distal end member 201 in the arrow D direction illustrated in
Note that the cylindrical portion 221 of the first distal end cover 202 covers the portion where the locking pin 217 of the distal end member 201 and the engagement hole 238 of the second distal end cover 203 are engaged with each other, and protects the portion in the mounted state. The cylindrical portion 221 is in close contact with the insulation ring 218 (see
The configuration of the nozzle 204 will be described in detail with reference to
The nozzle channel portion 241 is connected to the fluid passage 213 of the distal end member 201 via the first distal end cover 202 made of an elastically deformable material in the mounted state as illustrated in
Note that the entire nozzle 204 is configured by the nozzle configuring portion 232 which is part of the second distal end cover 203 in the present embodiment. In a case where the second distal end cover 203 is formed of an elastically deformable material similarly to the first distal end cover 202, the nozzle configuring portion 232, that is, the nozzle 204 may deform because of the pressure and impact of a fluid when the fluid such as cleaning water or air passes through the nozzle channel portion 241. In contrast, the second distal end cover 203 is made of a material harder than that of the first distal end cover 202 in the present embodiment. With this, according to the present embodiment, the deforming of the nozzle 204 may be prevented.
Next, a procedure for detaching the first distal end cover 202 and the second distal end cover 203 from the distal end member 201 (hereinafter referred to as procedure for detaching) will be described. A detaching jig 400 illustrated in
Hereinafter, the procedure for detaching will be described with reference to
When the fragile portion 235 is broken, the engagement hole 238 of the second distal end cover 203 is disengaged from the locking pin 217 of the distal end member 201. In the procedure for detaching, then, the detaching jig 400 is removed from the distal end portion 210. The first distal end cover 202 and the second distal end cover 203 in which the fragile portion 235 is broken are pulled out from the distal end member 201. Thus, the first distal end cover 202 and the second distal end cover 203 are detached from the distal end member 201.
It is preferable that the arrangement of the nozzle configuring portion 232, the restricting protrusion 234, and the notch portion 237 in the second distal end cover 203 be determined based on the above-described rotation direction of the detaching jig 400. Specifically, in the mounted state, it is preferable that the nozzle configuring portion 232 be positioned in the rear side of the rotation direction relative to the notch portion 237, and the restricting protrusion 234 be positioned in the front side of the rotation direction relative to the notch portion 237 when the second distal end cover 203 is viewed in the direction parallel to the insertion axis X of the insertion portion 200 from the distal end side of the insertion portion 200. With this, an unnecessary external force may be prevented to apply to the fluid passage 213 of the distal end member 201 via the nozzle configuring portion 232 upon breaking the fragile portion 235, and as a result, the deformation or the breakage of such as the opening portion of the fluid passage 213 may be prevented. In addition, it is possible to prevent fragments of the second distal end cover 203, which are generated upon breaking the fragile portion 235, from entering the fluid passage 213.
The present invention is not limited to the embodiments described above, and various changes and modifications can be made without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2018-105956 | Jun 2018 | JP | national |
This application is a divisional application of U.S. patent application Ser. No. 17/106,662, filed on Nov. 30, 2020, which is a continuation application of PCT/JP2019/006567 filed on Feb. 21, 2019 and claims benefit of Japanese Application No. 2018-105956 filed in Japan on Jun. 1, 2018, the entire contents of each of which are incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17106662 | Nov 2020 | US |
Child | 18907858 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/006567 | Feb 2019 | WO |
Child | 17106662 | US |