The present invention relates to the field of inspecting mechanical parts, and in particular inspecting mechanical parts that are difficult to access.
The person skilled in the art knows that endoscopes can be used for visually inspecting mechanical parts that are difficult to access. An endoscope, of the kind used in mechanical engineering, in building, and also in medicine, typically comprises an endoscopic head, a device for displaying images that have been picked up by means of said endoscopic head, and an elongate member connected to the endoscopic head. Thus, the endoscopic head can be inserted through a narrow orifice, and the elongate member can be used to guide it towards a subject for inspection in order to proceed with visual inspection via the endoscopic head and the display device. Such endoscopes include rigid endoscopes and also endoscopes that are flexible in order to be capable of going round obstacles on the path followed by the endoscopic head. Furthermore, optical endoscopes are also known in which the endoscopic head is connected to the display device by at least one optical fiber directly transmitting the light picked up by the endoscopic head, as are video endoscopes in which the endoscopic head has a video sensor connected in wired or wireless manner to the display device. Such an endoscope is normally also provided with a lighting device, either directly on the endoscopic head, or else connected thereto by at least one optical fiber, thus enabling subjects for inspection to be lighted to enable them to be inspected visually.
Nevertheless, in some circumstances, mere visual inspection is not sufficient in order to determine the integrity state of a mechanical part. Thus, certain defects that are hidden from mere visual inspection can be detected by frequency inspection, also referred to as a “ping” test. With such frequency inspection, the subject for inspection is subjected to at least one tap in order to trigger vibration, and analyzing the frequencies of the vibratory mechanical response can make it possible to detect potential defects in the subject for inspection or merely to characterize the subject for inspection. In its simplest version, an inspector lightly taps the subject for inspection and listens to the sound it gives off in response.
Nevertheless, in the state of the art, in order to perform such frequency inspection on a part that is difficult to access, it is often necessary to dismantle it, which can be very expensive in terms of time and manpower. Also, frequency inspection that is performed on a part that has been dismantled can be un-representative.
The present invention seeks to remedy those drawbacks. In particular, the present disclosure seeks to propose an endoscope that makes it possible to perform not only visual inspection, but also frequency inspection of a part that is difficult to access.
In at least one embodiment, this object is achieved by the fact that the endoscopic head of the endoscope includes a frequency inspection device comprising at least one vibration sensor, a contact element for mechanically exciting a subject for frequency inspection, and an actuator for tapping said contact element against the subject for frequency inspection.
By means of these provisions, the endoscopic head can be guided visually to a subject for frequency inspection that is difficult to access in order to bring this part into range of the vibration sensor and the contact element so as to be able to perform frequency inspection of the subject.
In particular, the frequency inspection device may comprise at least one electromechanical microsystem, including the vibration sensor and/or at least the actuator of the contact element for mechanically exciting the subject for frequency inspection, thus making it possible to limit the space occupied by the endoscopic head so as to enable it to access locations that are particularly inaccessible.
In order to enable the vibratory response of the subject for inspection to be picked up in particularly accurate manner, the vibration sensor may in particular be a microphone.
In order to make it possible to go round obstacles on the path of the endoscopic head, the endoscope may be a flexible endoscope, i.e. an endoscope in which the elongate member can bend, e.g. through at least 30°. Alternatively, it is nevertheless possible for the endoscope to be a rigid endoscope, i.e. an endoscope in which the elongate member cannot bend in this way.
The endoscope may be an optical endoscope, i.e. an endoscope in which the endoscopic head is connected to the image display device via at least one optical fiber. Alternatively, it is nevertheless possible for the endoscope to be a video endoscope, i.e. an endoscope in which the endoscopic head has a video sensor connected to the image display device.
Naturally, the endoscope may further include a lighting device. In particular, the lighting device may be mounted directly on the endoscopic head, or it may be connected thereto via at least one optical fiber.
Furthermore, the actuator may be distinct from the vibration sensor, however it may also be combined therewith, particularly if the actuator is a piezoelectric, magnetic, or electromechanical actuator. Furthermore, other types of actuator, in particular pneumatic actuators and resilient springs may equally well be envisaged for driving the striker. The actuator may be configured to cause the contact element to give the subject for inspection a single tap, so as to give rise to the vibratory response of the subject by a single impact, or else to cause the contact element to vibrate, thereby enabling the response of the subject for frequency inspection to be analyzed at at least one predetermined excitation frequency.
As an alternative to incorporating the contact element and the actuator in the same endoscopic head as the vibration sensor, the present disclosure also provides a set comprising a first endoscope with an endoscopic head having a frequency inspection device with a vibration sensor, an image display device for displaying images picked up via the endoscopic head, and an elongate member connected to the endoscopic head, together with a second endoscope comprising an endoscopic head with at least one contact element for mechanically exciting the subject for frequency inspection, an actuator for tapping the contact element against the subject for frequency inspection, an image display device for displaying images picked up via the endoscopic head of the second endoscope, and an elongate member connected to the endoscopic head of said second endoscope. A single device may possibly be used for displaying images from the first and second endoscopes, so as to share resources, and the first and second endoscopes may equally well be optical or video endoscopes, and they may be flexible or rigid. All of the above-mentioned types of actuator can likewise be used in this alternative.
The invention also provides a method of using the endoscope for frequency inspection of a subject for inspection. In at least one implementation, this method may comprise causing the endoscope to approach the subject for inspection in guided manner, exciting the subject for inspection by using the actuator to tap the contact element against the subject for inspection so as to cause a vibratory response, and receiving said vibratory response via the vibration sensor. The vibratory response picked up by the vibration sensor may then be subjected in particular to frequency analysis in order to determine the integrity state of the subject for inspection.
The invention can be well understood and its advantages appear better on reading the following detailed description of several embodiments shown as nonlimiting examples. The description refers to the accompanying drawings, in which:
An endoscope 1 in a first embodiment is shown in
In this first embodiment, the actuator 9 and the vibration sensor 10 are two distinct electromechanical microsystems. By way of example, the actuator 9 may be piezoelectric, electrostatic, or electromagnetic, while the vibration sensor 10 is a microphone that may likewise be piezoelectric, electrostatic, or electromagnetic, for example. Alternatively, the actuator 9 may nevertheless be a pneumatic actuator, while the vibration sensor 10 may be some other type of vibration sensor with or without contact, such as for example a laser vibrometer or accelerometer, or an optical fiber microphone.
The video sensor 5 is connected to the display device 3 via the elongate member 4, and the actuator 9 and the vibration sensor 10 may also be connected via the elongate member 4 respectively to a control device (not shown) and to a signal analysis device (not shown) so as to be able to trigger a tap of the contact element 8 against the subject for frequency inspection and then be able to analyze the vibration of the subject for frequency inspection in response to being tapped in order to evaluate its integrity. These connections may be wired connections, e.g. electrical or by optical fiber, or else they may be wireless connections, e.g. via radio or ultrasound transponders.
Thus, while it is in use, the endoscopic head 2 may be inserted into a confined space that is difficult to access, and it can be visually guided up to the subject that is to be frequency inspected by using the images picked up by the video sensor 5 with the light from the lighting device 6. In the proximity of said subject for frequency inspection, the actuator 9 can be activated in order to tap the contact element 8 against the subject for frequency inspection. Vibration is triggered in the subject for frequency inspection by this tap, and the vibration is picked up by the sensor 10, possibly for transmitting via the elongate member 4 for analysis in order to determine the integrity of the subject for frequency inspection.
In
In
In
Alternative embodiments can also be envisaged for the endoscope. Thus, in
In both of the above embodiments, the contact element is secured to its actuator, thereby limiting its range. In the third embodiment shown in
In all three of the above embodiments, the endoscope 1 is a video endoscope. Nevertheless, it is also possible to envisage applying the same principles to an optical endoscope, such as that of the fourth embodiment, having its endoscopic head 2 shown in
Furthermore, it is not essential for the endoscope to be flexible.
Nor is it essential for the means that are to give rise to the vibratory response to be installed on the same endoscopic head as the vibration sensor that is to pick up the response. Thus, in a sixth embodiment shown in
Although the present invention is described with reference to specific embodiments, it is clear that various modifications and changes may be made to these embodiments without going beyond the general ambit of the invention as defined by the claims. Also, individual characteristics of the various embodiments mentioned may be combined in additional embodiments. In particular, even though both of the endoscopes in the set of the sixth embodiment are analogous to the endoscope of the first embodiment, each of them could also incorporate characteristics of other embodiments as an alternative or in addition to those shown. Consequently, the description and the drawings should be considered in a sense that is illustrative rather than restrictive.
Number | Date | Country | Kind |
---|---|---|---|
1363338 | Dec 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2014/053249 | 12/10/2014 | WO | 00 |