The present application is based upon and claims the benefit of priority from PCT/EP2011/005284 filed on Oct. 20, 2011, which claims benefit to DE 10 2010 056 025.1 filed on Dec. 27, 2010, the entire contents of each of which are incorporated herein by reference.
1. Field
The present invention generally relates to endoscopes, and more particularly to an endoscope of the type referred to in claim 1.
2. Prior Art
Endoscopes of this type have an elongated shaft intended for introduction into the body to be examined, which consists essentially of two metal tubes, the outer shaft tube, which forms the stable and sealing outer wall of the shaft, and the fibre tube, which is located on the inside and delimits the free cross-section intended to accommodate the fibres of the optical fibre bundle toward the inside, thus with respect to the image guide.
A design of this class is disclosed in DE 10 2007 002 042 B4. In the usual design, the image guide is round. It consists, for example, of the round lenses of a set of relay lenses or an image guide fibre bundle with a round cross-section. Correspondingly, the fibre tube is also round. The free cross-section between the two tubes has the usual half-moon-shaped cross-section.
The image guide with its distally positioned objective must be accommodated in the round cross-section of the fibre tube, which is unproblematic in the case of the usual rotationally symmetric design of image guides. More and more often, however, endoscopes with two viewing directions are being designed, as is shown for example by DE 10 2009 020 262 A1. In this way, it is possible to look, for example alternately, in the straight-ahead direction and a direction at an angle to this. In this case the image guide can remain round essentially over its length. In the distal end region, thus in the area of the objective, widening of the cross-section in the direction of the objective section is necessary for the oblique viewing direction. This leads to design problems. The invention can also be used in an endoscope with a continuously adjustable viewing direction, as is known from DE 10 2009 049 843 B3.
If one attempts to place this distal cross-sectional widening in a round fibre tube, the latter must be enlarged. This leads to a substantial narrowing of the free cross-section and thus to a decrease in the number of optical fibres. The light transmission deteriorates, and the image becomes darker. In addition, the half-moon-shaped free cross-section between the two tubes presents a number of drawbacks with regard to accommodating the optical fibre bundle. For example, it limits the possibilities for the distal arrangement of the radiating surface of the optical fibre bundle.
An objective of the present invention consists of reducing the problems relating to the configuration of the fibre tube.
According to the invention, the fibre tube is designed with an elongate cross-section. In this way, the possibility is created of advantageously fitting an objective into the fibre tube, said objective being designed for two viewing directions and being larger in one cross-sectional direction than perpendicular to this.
Thereby, through the oval design of the fibre tube, its cross-sectional area is kept relatively small, so that a large free cross-section remains between the tubes, in which thus a large amount of light can be transported. On the other hand, advantageously, the possibility exists of using the cross-sectional configuration resulting according to the invention to form two partial cross-sections within the shaft tube on either side of the oval fibre tube, in which respective separate parts of the optical fibre bundle can be placed. Compared to the unfavourable cross-sectional shape of the free cross-section in the known design, therefore, the possibility of a more symmetric light emission results.
Advantageously, two partial bundles of the optical fibre bundle are disposed in each of the partial cross-sections, one of which in each case can be made to emit light in the straight-ahead direction and the other at an angle, so that excellent illumination is achieved.
Advantageously, the shaft tube is round. This is a cross-sectional shape that is highly suitable for the design according to the invention, which also has the advantage of good availability. For the same reasons, the fibre tube is advantageously oval.
In the drawing, the invention will be illustrated by way of example and schematically. The Figures show:
In the interior of the shaft tube 2, an image guide 4, shown by broken lines in
The end face of the shaft of the endoscope 1 consists of two end face parts 9 and 10 at an angle to one another, shown in front view in
To simplify the graphical representation, the viewing direction 5 is shown looking straight ahead, thus in the direction of the axis of the shaft tube 2, and the viewing direction 7 is at a 45° angle. Instead, more common viewing directions are about 12° for viewing direction 5 and about 30° for viewing direction 7.
For illuminating the field of view that can be observed through the windows 11, 12, an optical fibre bundle 13 is provided, the proximal end of which lies in an optical fibre connecting port 14, which in the usual design emerges from the side of the main body 3 and in a known embodiment can be designed for connecting an optical fibre cable, with which light can be transmitted from a remote light source to the proximal end of the optical fibre bundle 13 and connected into it at that point.
In the main body 3 the optical fibre bundle 13 splits into a total of four partial bundles 15, 16, 17 and 18, which can be seen in the cross-section of
At the distal ends, the partial bundles are parallel to the objective parts 6 and 8 and to the arrows of the viewing directions 9 and 10 and terminate in the end face parts 9 and 10 with their light-emitting end surfaces, as is shown in
Alternatively, instead of the one optical fibre bundle 13, two such bundles may be used, which are supplied separately and branch out differently in order to be assigned to one viewing direction each. Comparing this with
As
The free cross-section remaining between the two tubes 2 and 20 is divided into two partial cross-sections 21 and 22 in the design shown in
The partial cross-sections 21 and 22 present advantageous cross-sectional shapes for accommodating the partial bundles 15 and 16 or 17 and 18.
Deviating from the cross-sections shown, other cross-sectional shapes may also be used. For example, the shaft tube 2 could be made with a polygonal cross-section or could likewise be oval, but advantageously with its largest cross-section perpendicular to that of the fibre tube 20. The fibre tube 20 can also be designed with a different cross-section, e.g., elongate rectangular.
While there has been shown and described what is considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit of the invention. It is therefore intended that the invention be not limited to the exact forms described and illustrated, but should be constructed to cover all modifications that may fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 056 025 | Dec 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/005284 | 10/20/2011 | WO | 00 | 6/11/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/089289 | 7/5/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4706656 | Kuboto | Nov 1987 | A |
4802460 | Ohkuwa et al. | Feb 1989 | A |
4838247 | Forkner | Jun 1989 | A |
4867138 | Kubota et al. | Sep 1989 | A |
5423312 | Siegmund et al. | Jun 1995 | A |
5630784 | Siegmund et al. | May 1997 | A |
6324742 | Odanaka | Dec 2001 | B1 |
6471639 | Rudischhauser | Oct 2002 | B2 |
6827710 | Mooney et al. | Dec 2004 | B1 |
6840909 | Gatto | Jan 2005 | B2 |
7108657 | Irion et al. | Sep 2006 | B2 |
20010056222 | Rudischhauser et al. | Dec 2001 | A1 |
20050085692 | Kiehn et al. | Apr 2005 | A1 |
20050203341 | Welker et al. | Sep 2005 | A1 |
20050250992 | Scherr | Nov 2005 | A1 |
20060036132 | Renner et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
296 20 824 | Apr 1997 | DE |
197 20 163 | Nov 1997 | DE |
198 40 862 | Mar 2000 | DE |
19840862 | Mar 2000 | DE |
201 21 717 | Mar 2003 | DE |
103 07 903 | Sep 2004 | DE |
10 2004 023 024 | Dec 2005 | DE |
10 2007 002 042 | Jul 2008 | DE |
1 523 932 | Apr 2005 | EP |
2010-075321 | Apr 2010 | JP |
Entry |
---|
Sodji et al. (DE 198 40 862), machine translation on Jan. 22, 2015 from espacenet.com, 11 pages. |
International Search Report dated Jan. 2, 2012 issued in PCT/EP2011/005284. |
English Abstract of JP 9304693 A dated Nov. 28, 1997. |
English translation of International Preliminary Report on Patentability together with the Written Opinion dated Jul. 11, 2013 received in related International Application No. PCT/EP2011/005284. |
Number | Date | Country | |
---|---|---|---|
20130267782 A1 | Oct 2013 | US |