Endoscope system with multiple connection interfaces to interface with different video data signal sources

Information

  • Patent Grant
  • 11672407
  • Patent Number
    11,672,407
  • Date Filed
    Tuesday, April 6, 2021
    3 years ago
  • Date Issued
    Tuesday, June 13, 2023
    a year ago
Abstract
Endoscopes having a tip section with viewing elements coupled to a CMOS image sensor and/or a CCD image sensor for transforming light captured by the viewing element into digital and/or analog signals are described. A main connector is coupled with the tip section for transmitting the signals to a main control unit of the endoscope. The main connector includes a pad for transmitting digital signals provided by the CMOS image sensor to a push pin probe in a receptacle of the main control unit. The main connector also include another interface for transmitting analog signals to the main control unit.
Description
FIELD

The present specification relates generally to endoscopes, and more specifically, to a main control unit for detecting and responding to different types of image sensors positioned within an endoscope.


BACKGROUND

Endoscopes have attained great acceptance within the medical community, since they provide a means for performing procedures with minimal patient trauma, while enabling the physician to view the internal anatomy of the patient. Over the years, numerous endoscopes have been developed and categorized according to specific applications, such as cystoscopy, colonoscopy, laparoscopy, upper GI endoscopy and others. Endoscopes may be inserted into the body's natural orifices or through an incision in the skin.


Some endoscopes have viewing elements for viewing an internal organ, such as the colon, and an illuminator for illuminating the field of view of the viewing elements. The viewing elements and illuminators are located in a tip of the endoscope and are used to capture images of the internal walls of the body cavity being endoscopically scanned. The captured images are sent to a control unit coupled with the endoscope via one of the channels present in the scope shaft, for being displayed on a screen coupled with the control unit. During an endoscopic procedure, an operating physician guides the endoscope within a patient's body by using the captured images displayed on the screen coupled with the control unit as a guide.


Endoscopes capture images of internal organs by means of one or more viewing elements such as cameras placed in a tip portion. Each viewing element is coupled with an image sensor to transform that light captured by the viewing element into at least one image. Image sensors may be Charged Coupled Devices (CCD's) or Complementary Metal Oxide Semiconductor (CMOS) image sensors, or other suitable devices having a light sensitive surface usable for capturing an image. Signals such as analog signals or digital signals generated by the image sensors are transmitted to a main control unit via a main connector of the endoscope for display on a screen coupled with the main control unit. CCD based endoscopes are fitted with main connectors having a push/pull electric connector, such as a LEMO® connector, which are commonly known in the art. A LEMO® connector fits into a corresponding LEMO® connector interface provided on a main control unit of the endoscope for transmission of the analog image signals having a bandwidth of ⅓ GHz. However, CMOS image sensors generate digital image/video signals having a bandwidth of the order of 1.5 GHz or more which is very high compared to signals generated by the CCD image sensors, and, as a result cannot be transmitted via a standard LEMO® interface.


There is a therefore a need for a main control unit interface and/or adapter that can support both CCD-based and CMOS-based main connector fittings in endoscopes.


What is also needed is a high-speed transmission interface that maintains signal integrity and does not result in signal distortion that can be employed with CMOS-based endoscopes.


SUMMARY

The present specification discloses an endoscope system comprising: an endoscope comprising a tip section having at least one viewing element; a main connector coupled with the tip section and configured to receive and transmit a first set of video data signals from the at least one viewing element wherein the main connector comprises at least one pad; and a control unit comprising a receptacle positioned on an exterior surface of the control unit and configured to receive the main connector, wherein the receptacle has a first region, wherein the first region comprises at least one probe, wherein said at least one probe comprises a spring loaded pin, and wherein, upon attachment of the main connector to said receptacle, the at least one probe abuts the at least one pad such that the at least one probe is compressed.


Optionally, the at least one pad is planar and metallic.


Optionally, the first region comprises a light guide, a gas channel, and a second probe.


Optionally, the main connector comprises a second pad wherein, upon attachment of the main connector to said receptacle, the second probe abuts the second pad such that the second probe is compressed.


Optionally, the receptacle further comprises a second region and wherein said second region comprises a multi-pin interface configured to receive a second set of video data signals and wherein the second set of video data signals have a lower bandwidth than a bandwidth of the first set of video data signals.


Optionally, the first set of video data signals are generated by a CMOS sensor in the at least one viewing element and have a bandwidth greater than 1 GHz.


Optionally, the second set of video data signals are generated by a CCD sensor in the at least one viewing element and have a bandwidth less than 0.5 GHz.


Optionally, the first region comprises a light guide, a gas channel, a second probe, and a third probe, wherein the at least one probe, the second probe and third probe are positioned circumferentially around at least one of the light guide and gas channel and wherein each of the second probe and the third probe comprises a spring-loaded pin.


Optionally, the main connector comprises a second pad and a third pad and wherein, upon attachment of the main connector to said receptacle, the second probe abuts the second pad such that the second probe is compressed and the third probe abuts the third pad such that the third probe is compressed.


The present specification also discloses an endoscope system comprising: an endoscope comprising a tip section having a first viewing element and a second viewing element; a main connector coupled with the tip section and configured to receive and transmit a first set of video data signals from the first viewing element and a second set of video data signals from the second viewing element, wherein the main connector comprises a first pad in data communication with the first viewing element and a second pad in data communication with the second viewing element; and a control unit comprising a receptacle positioned on an exterior surface of the control unit and configured to receive the main connector, wherein the receptacle has a first region, wherein the first region comprises a first probe and a second probe, wherein each of the first probe and second probe comprises a spring loaded pin, and wherein, upon attachment of the main connector to said receptacle, the first probe abuts the first pad such that the first probe is compressed and the second probe abuts the second pad such that the second probe is compressed.


Optionally, each of the first pad and second pad is planar and metallic.


Optionally, the receptacle further comprises a second region wherein said second region comprises a multi-pin interface configured to receive a third set of video data signals and the third set of video data signals have a lower bandwidth than a bandwidth of the first set of video data signals or a bandwidth of the second set of video data signals.


Optionally, the first set of video data signals are generated by a CMOS sensor and have a bandwidth greater than 1 GHz.


Optionally, the third set of video data signals are generated by a CCD sensor and have a bandwidth less than 0.5 GHz.


The present specification also discloses an endoscope control unit configured to attach to, and be in data communication with, an endoscope, the endoscope control unit comprising a receptacle positioned on an exterior surface of the control unit and configured to receive a main connector of the endoscope; a first region positioned within an exterior face of the receptacle, wherein the first region comprises a first probe, wherein the first probe comprises a spring loaded pin configured to receive a first set of video data signals having a first bandwidth; a second region positioned within the exterior face of the receptacle and separated from the first region, wherein the second region comprises an interface configured to receive a second set of video data signals having a second bandwidth.


Optionally, the interface of the second region comprises a multi-pin interface configured attach to a complementary multi-pin interface in a connector of the endoscope.


Optionally, the first probe is configured to be compressed upon attachment of the receptacle to a connector of the endoscope.


Optionally, the first set of video data signals comprise digital data with a bandwidth greater than 1 GHz.


Optionally, the second set of video data signals comprise digital data with a bandwidth less than 0.5 GHz.


Optionally, the first region further comprises a light guide, a gas channel, a second probe, and a third probe, wherein the first probe, the second probe and third probe are positioned circumferentially around at least one of the light guide and gas channel and wherein each of the second probe and the third probe comprises a spring loaded pin.


The present specification also discloses an endoscope comprising: a tip section comprising a plurality of viewing elements coupled with at least one CMOS image sensor for transforming light captured by at least one viewing element into digital signals representing at least one image; and a main connector coupled with the tip section for transmitting the digital signals to a main control unit of the endoscope, the main connector comprising: a plurality of pads for transmitting the digital signals to a plurality of probes provided on a main connector housing of the main control unit, the probes comprising spring loaded tips pushing against the pads during the digital signal transmission.


Optionally, the viewing elements are cameras.


Optionally, the digital signal generated by the CMOS sensor is a high-speed signal having a bandwidth of 1.5 GHz.


Optionally, the number of pads provided on the main connector corresponds to the number of probes provided on the main connector housing.


Optionally, each pad is positioned on the main connector in alignment with a corresponding probe on the main connector housing of the main control unit.


The present specification also discloses a main connector of an endoscope coupled with a tip section comprising: a plurality of viewing elements coupled with at least one CMOS image sensor for transforming light captured by the viewing element into digital signals representing at least one image, wherein the main connector comprises a plurality of pads for transmitting the digital signals to a plurality of probes provided on a main connector housing of the main control unit, and wherein the probes comprise spring loaded tips pushing against the pads during the digital signal transmission.


The present specification also discloses a control unit for coupling with main connectors of endoscopes comprising one or both of CCD based sensors and CMOS based sensors for transforming light captured by one or more viewing elements of the endoscope into signals representing at least one image, the control unit comprising a plurality of probes for receiving the signals from the endoscope via a main connector comprising one or more pads for transmitting the signals, the probes comprising spring loaded tips pushing against the pads during the signal transmission.


The present specification also discloses an endoscope comprising: a tip section comprising a plurality of viewing elements coupled with at least one or both of a CMOS image sensor and a CCD image sensor for transforming light captured by the viewing element into digital and/or analog signals; and a main connector coupled with the tip section for transmitting the signals to a main control unit of the endoscope, wherein the main connector comprises: a plurality of pads for transmitting digital signals provided by the CMOS image sensor to a plurality of probes provided on a main connector housing of the main control unit; and a connector for transmitting the analog signals having a bandwidth of less than 0.5 GHz provided by the at least one image sensor via the main connector housing of the main control unit.


Optionally, the viewing elements are cameras.


Optionally, the digital signal generated by the CMOS sensor is a high-speed signal having a bandwidth of 1.5 GHz.


Optionally, the main connector comprises a plurality of pads for transmitting the digital signals to a plurality of probes provided on a main connector housing of the main control unit, the probes comprising spring-loaded tips pushing against the pads during the digital signal transmission.


Optionally, the main connector comprises a plurality of pads for transmitting the digital signals to a plurality of twisted pair cables provided on a main connector housing of the main control unit.


Optionally, the number of pads provided on the main connector corresponds to the number of probes provided on the main connector housing.


Optionally, each pad is positioned on the main connector in alignment with a corresponding probe on the main connector housing of the main control unit.


The present specification also discloses an endoscope comprising: a tip section comprising a plurality of viewing elements coupled with at least one image sensor for transforming light captured by the viewing elements into signals, and a main connector coupled with the tip section for transmitting the signals to a main control unit of the endoscope; the main connector comprising: a LEMO® connector for transmitting analog signals provided by the at least one image sensor via the main connector housing of the main control unit, and at least one pad for transmitting digital signals provided by at least one image sensor to at least one probe provided on a main connector housing of the main control unit.


Optionally, the at least one image sensor is a CMOS sensor. Still optionally, the at least one image sensor is a CCD sensor.


Optionally, the at least one probe is adapted to connect with at least one connection means for transmitting digital signals provided by the CMOS image sensor. Still optionally, the connection means may be one of a spring loaded push-pin probe, coaxial probe or twisted pair.


The present specification also disclose an endoscope comprising: a tip section comprising at least one viewing element coupled with an image sensor for transforming light captured by the at least one viewing element into signals, and a main connector coupled with the tip section for transmitting the signals to a main control unit of the endoscope, wherein the main connector comprises: a LEMO® connector for transmitting the analog signals provided by the image sensor via the main connector housing of the main control unit, and at least one pad for transmitting digital signals provided by the image sensor to at least one probe provided on a main connector housing of the main control unit.


Optionally, the at least one image sensor is a CMOS sensor. Still optionally, the at least one image sensor is a CCD sensor.


Optionally, the at least one probe is adapted to connect with at least one connection means for transmitting digital signals provided by the CMOS image sensor. Still optionally, the connection means may be one of a spring loaded push-pin probe, coaxial probe or twisted pair.


The present specification also discloses a control unit for coupling with main connectors of endoscopes comprising one or both of CCD based sensors and CMOS based sensors for transforming light captured by one or more viewing elements of the endoscope into digital and/or analog signals representing at least one image, the control unit comprising a plurality of probes for receiving the digital and/or analog signals from the endoscope via a main connector comprising one or more pads for transmitting the digital and/or analog signals, the probes comprising spring loaded tips pushing against the pads during the digital and/or analog signal transmission.


The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present specification will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:



FIG. 1A shows a semi-pictorial view of a multi-camera endoscopy system, according to some embodiments;



FIG. 1B shows a perspective view of one embodiment of a front panel of a main control unit of a multi-camera endoscopy system;



FIG. 2A illustrates a system for connecting a main connector to a main control unit of an endoscope, in accordance with an embodiment of the present specification;



FIG. 2B illustrates a main connector securely connected to a main control unit, in accordance with an embodiment of the present specification;



FIG. 3 illustrates a main connector housing on a front panel of a main control unit of an endoscope;



FIG. 4 illustrates a main connector of the endoscope;



FIG. 5A illustrates a main connector housing/receptacle of a main control unit that is interchangeably compatible with both a CCD-based endoscope as well as a CMOS-based endoscope, in accordance with an embodiment of the present specification;



FIG. 5B illustrates a main connector housing/receptacle of a main control unit that is interchangeably compatible with both a CCD-based endoscope as well as a CMOS-based endoscope, in accordance with an embodiment of the present specification;



FIG. 5C is a diagram of a probe employed in a main connector housing, in accordance with an embodiment of the present specification;



FIG. 6A is an illustration of a main connector of an endoscope comprising CMOS sensors, in accordance with an embodiment of the present specification;



FIG. 6B is an illustration of a main connector of an endoscope comprising CMOS sensors, in accordance with an embodiment of the present specification;



FIG. 7 details how a video controller or the controller circuit board of the main controller of an endoscope operatively connects with the endoscope and its display units; and



FIG. 8 is a flowchart illustrating a method of detecting and transferring signals captured by using CCD or CMOS sensors coupled with viewing elements of an endoscope, from the endoscope to a main control unit, in accordance with an embodiment of the present specification.





DETAILED DESCRIPTION

The present specification provides an endoscope that uses CMOS sensors in conjunction with cameras for capturing images of internal organs and converting the same into digital data. In an embodiment, the present specification provides a main control unit comprising an electrical interface for recognizing and subsequently connecting with both a CMOS sensor-based endoscope as well as a CCD sensor-based endoscope. In an embodiment, the present specification provides a main connector for CMOS based endoscopes comprising connector pads for connecting with probes provided on a main control unit of the endoscope. In some embodiments, the probe is a spring-loaded push-pin probe. In some embodiments, the present specification describes a main connector that can securely connect with a high-speed transmission interface provided in the main control unit. It should be appreciated that the term “pads” or “plurality of pads” refers to one or more planar surfaces, preferably metallic, configured to interface with the probes described herein. It should further be appreciated that the planar pad surface, with or without any extensions or members around a periphery of the pad, is configured to compress the probe, to thereby establish a data connection.


It is noted that the term “endoscope” as mentioned herein may refer particularly to a colonoscope, according to some embodiments, but is not limited only to colonoscopes. The term “endoscope” may refer to any instrument used to examine the interior of a hollow organ or cavity of the body.


It should also be noted that a plurality of terms, as follows, appearing in this specification are used interchangeably to apply or refer to similar components and should in no way be construed as limiting:

    • “Utility tube/cable” may also be referred to as an “umbilical tube/cable”.
    • A “main control unit” may also be referred to as a “controller unit”, “main controller” or “fuse box”.
    • A “viewing element” may also be referred to as an image capturing device/component, viewing components, camera, TV camera or video camera.


The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the specification. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the specification. In addition, the terminology and phraseology is used for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present specification is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the specification have not been described in detail so as not to unnecessarily obscure the present specification.


In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.


Reference is now made to FIG. 1A, which shows a multi-viewing elements endoscopy system 100. System 100 may include a multi-viewing elements endoscope 102. Multi-viewing elements endoscope 102 may include a handle 104, from which an elongated shaft 106 emerges. Elongated shaft 106 terminates with a tip section 108, which is turnable by way of a bending section 110. Handle 104 may be used for maneuvering elongated shaft 106 within a body cavity. The handle may include one or more buttons and/or knobs and/or switches 105, which control bending section 110 as well as functions such as fluid injection and suction. Handle 104 may further include at least one, and in some embodiments, one or more working channel openings 112 through which surgical tools may be inserted as well as one and more side service channel openings.


A utility cable 114, also referred to as an umbilical tube, may connect between handle 104 and a Main Control Unit 199. In embodiments, utility cable 114 connects with the main control unit 199 via a main connector (shown in FIG. 2A). Utility cable 114 may include therein one or more fluid channels and one or more electrical channels. The electrical channel(s) may include at least one data cable for receiving video signals from the front and side-pointing viewing elements, as well as at least one power cable for providing electrical power to the viewing elements and to the discrete illuminators.


The main control unit 199 contains the controls required for displaying the images and/or video streams of internal organs captured by the endoscope 102. The main control unit 199 may govern power transmission to the endoscope's 102 tip section 108, such as for the tip section's viewing elements and illuminators. The main control unit 199 may further control one or more fluid, liquid and/or suction pump(s), which supply corresponding functionalities to the endoscope 102. One or more input devices 118, such as a keyboard, a touch screen and the like may be connected to the main control unit 199 for the purpose of human interaction with the main control unit 199. In the embodiment shown in FIG. 1A, the main control unit 199 comprises a screen/display 120 for displaying operation information concerning an endoscopy procedure when the endoscope 102 is in use. The screen 120 may be configured to display images and/or video streams received from the viewing elements of the multi-viewing element endoscope 102. The screen 120 may further be operative to display a user interface for allowing a human operator to set various features of the endoscopy system.


Optionally, the images and/or video streams received from the different viewing elements of the multi-viewing element endoscope 102 may be displayed separately on at least one monitor (not seen) by uploading information from the main control unit 199, either side-by-side or interchangeably (namely, the operator may switch between views from the different viewing elements manually). Alternatively, these images and/or video streams may be processed by the main control unit 116 to combine them into a single, panoramic video frame, based on an overlap between fields of view of the viewing elements. In an embodiment, two or more displays may be connected to the main control unit 199, each for displaying a video stream from a different viewing element of the multi-viewing element endoscope 102. The main control unit 199 is described in U.S. patent application Ser. No. 14/263,896, entitled “Video Processing in A Compact Multi-Viewing Element Endoscope System”, and filed on Apr. 28, 2014, which is herein incorporated by reference in its entirety.



FIG. 1B shows a perspective view of one embodiment of a control panel of a main control unit of a multi-camera endoscopy system. As shown in FIG. 1B, the control panel 101 contains a main connector housing 103 having a front panel 107. The main connector housing front panel 107 comprises a first section 111, containing a light guide opening 113 and a gas channel opening 115, and a second section 117, comprising a utility cable opening 119. The light guide opening 113 and gas channel opening 115 are configured to receive and connect with a light guide and a gas channel respectively, on a main connector, and the utility cable opening 119 is configured to receive and connect with an electric connector of a scope. A switch 121 is used to switch on and switch off the main control unit.



FIG. 2A illustrates a main connector proximate to a main control unit, in accordance with an embodiment of the present invention. As illustrated, the main connector 202 comprises a jet connector 204, wherein the jet connector 204 is typically connected to a fluid supplier to provide fluid to a jet opening in an endoscope tip, a water bottle connector 206, wherein the water bottle connector 206 is typically engaged to a water supplier, such as a water bottle or hospital facilities, to provide fluid to an insufflation and/or irrigation system placed within the endoscope tip, an electric connector 208, wherein the electric connector 208 connects between electronics components within the endoscope, such as but not limited to, sensors, illuminators, handle of the endoscope and the main control unit to provide electricity to the various components, a gas channel 210, wherein the gas channel 210 typically provides gas flow to the tip of the endoscope and a light guide pin 212. The main connector 202 is connected with a utility cable 214. The main control unit 216 comprises a front panel 218 having a screen 220 for operation information concerning an endoscopy procedure when the endoscope is in use. The main control unit 216 also comprises a main connector housing 222 for receiving the main connector 202. The main connector housing 222 comprises a first section 224 for connecting with the light guide pin 212 and the gas channel 210 and a second section 226 for receiving the electric connector 208. The front panel 218 further comprises a button 228 for switching the main control unit 216 on or off.



FIG. 2B illustrates a main connector securely connected to a main control unit, in accordance with an embodiment of the present invention. Referring to both FIGS. 2A and 2B, in various embodiments, the main connector 202 is connected to the main control unit 216 when the light guide pin 212 and the gas channel 210 are inserted into a light guide opening and a gas channel opening, respectively both placed within the first section 224 opening of the main connector housing 222. Also, electric connector 208 is inserted into the second section 226 opening of the main connector housing 222.



FIG. 3 illustrates a main connector housing/receptacle on the main control unit front panel of an endoscope. FIG. 4 illustrates a main connector of an endoscope. Referring to FIGS. 3 and 4 simultaneously, the main control unit front panel 301 comprises a receptacle 302 comprising two sections, a first section comprising a light guide opening 304 and a gas channel opening 306 and a second section comprising a utility cable opening 308. The gas channel opening 306 receives and connects with a gas channel (shown in FIG. 2A) and the utility cable opening 308 receives and connects with a main connector (shown in FIG. 2A). In embodiments, the utility cable opening 308 comprises a push/pull electric connector interface, such as a LEMO® connector interface, which is commonly known in the art. Endoscopes comprising viewing elements coupled with CCD sensors are equipped with LEMO® connectors for transmission of the analog image signals captured by the viewing elements and CCD sensors to the main control unit via the utility cable opening 308 having the LEMO® connector interface.


However, endoscopes comprising CMOS sensors coupled with viewing elements for capturing images and videos of internal body organs that are being endoscopically scanned require a separate connection interface for transmission of the captured digital signals as these signals cannot be transmitted via a LEMO® interface. In an embodiment, an interface (described with reference to FIG. 5A), comprising probes used for transmitting such signals, may optionally also be provided on the receptacle 302 and is described with reference to FIG. 5A. The receptacle 302 may also comprise locking elements such as but not limited to a mechanical lever adjusted to mechanically engage and disengage the main connector from receptacle 302.


As illustrated in FIG. 4, the main connector 410 comprises a jet connector 412, a water bottle connector 414, and an electrical connector 416. Referring to FIGS. 3 and 4 simultaneously, in an embodiment, electrical connector 416 comprises, but is not limited to, a LEMO® connector 418, which connects with a LEMO® connector interface in the utility cable opening 308 provided on receptacle 302 of front panel 301 of the main control unit of the endoscope. It should be noted herein, as described in further detail below, that electrical connector 416 may also comprise a connector interface that enables connection of a CMOS-image based endoscopic device. Electrical connector 416 connects the electronics components within the endoscope, such as but not limited to, sensors, illuminators, handle of the endoscope to the main control unit via a utility cable 420. Utility cable 420 may include therein one or more fluid channels and one or more electrical channels. The electrical channel(s) may include at least one data cable for receiving video signals from the front and at least one side-pointing viewing elements, as well as at least one power cable for providing electrical power to the viewing elements and to the discrete illuminators. In endoscopes comprising CCD sensors coupled with the viewing elements, the data cable transmits the analog image signals captured by the viewing elements to the main control unit via LEMO® connector 418, which connects with the LEMO® connector interface 308 provided on receptacle 302 of the main control unit. In various embodiments, the data cable of the utility cable 420 also transmits digital signals provided by CMOS sensors present in the endoscope's tip to the main connector and then to the main control unit via connection means such as those described in FIGS. 5A, 5B and 5C provided on the main connector and the receptacle of the main control unit.


Main connector 410 further comprises a gas channel 422, which connects with the gas channel opening 306 and a light guide pin 424, which goes into the light guide opening 304 of receptacle 302 in order to connect the main connector 410 with the main control unit. Main connector further comprises pins 426, which enable secure locking of the main connector 410 with the utility cable opening 308. Also in embodiments, a connector cover cup may be provided to cover the electrical connector 416 during reprocessing cycles (washing/cleaning) of the endoscope in order to make the endoscope waterproof.



FIG. 5A illustrates a main connector housing of a main control unit that is compatible with both a CCD-based endoscope as well as a CMOS-based endoscope, in accordance with an embodiment of the present specification. Receptacle 500 is provided on a main control unit of an endoscope system as illustrated in FIGS. 1B, 2A, 2B and 3. The receptacle 500 comprises a first section 502 and a second section 510. In various embodiments, the second section 510 comprises a multi-pin analog interface 512 (308 of FIG. 3), such as a LEMO® interface, that is used to transmit analog signals captured by CCD sensors coupled with viewing elements of the endoscope to the main control unit. The first section 502 comprises openings 504 and 506 for connecting with a light guide pin and a gas channel, respectively, of a main connector of an endoscope. Further, since receptacle 500 is compatible with an endoscope having CMOS sensors coupled with viewing elements/cameras, the first section 502 also comprises at least one probe 508, which is used to transfer the high frequency digital image and video signals captured by the CMOS sensors and viewing elements to the main control unit. In embodiments, the at least one probe is preferably a spring-loaded push pin probe.


More generally, the main connector housing 500, which is configured to receive a proximal end of an endoscope, comprises two distinct connection regions that are separated by a planar portion of the housing 500. The first connection region comprises receiving portions 504 and 506 for connecting with a light guide pin and a gas channel, respectively, of a main connector of an endoscope. Positioned circumferentially around the light guide pin and gas channel are one or more interfaces 508 configured to receive digital data having a bandwidth of 1 GHz or more from one or more complementary interfaces positioned in the main connector of an endoscope. In an embodiment, an exemplary interface comprises a coaxial probe interface having a spring-loaded signal pin that compresses upon coupling with a complementary pad in the endoscope main connector and is adapted to receive digital transmissions having bandwidths of more than 1 GHz. In an embodiment, an exemplary interface comprises a probe interface having a spring-loaded push-pin. In another embodiment, an exemplary interface comprises a coaxial female receiver that receives a complementary male coaxial single pin connector and is optimized to receive digital signals having greater bandwidth than the data transmissions in the second region. The probe compression and pad combination is preferred, however, because it obviates the need for a user to precisely align multiple extending members with multiple holes in order to achieve the requisite fit. Rather, using compressible pins and pads, the digital data connections in the first region are automatically achieved when the other components, such as the light guide, gas channel, and second region analog connections, are properly mated.


The second connection region comprises a receiver interface that is adapted to connect to, and receive data through, one or more multi-pin analog connectors. An exemplary interface comprises a multi-pin interface that receives a single coaxial, push-pull, multi-pin connector and is adapted to receive analog transmissions having bandwidths of less than 0.5 GHz. In another embodiment, an exemplary interface comprises a multi-pin interface that receives a single coaxial, push-pull, multi-pin connector and is optimized to receive analog signals having less bandwidth than the data transmissions in the first region.


It should be appreciated that the light guide pin and gas channel could be positioned in the second region, rather than the first, that the light guide pin could be positioned in the second region while the gas channel is in the first region, or that the light guide pin could be positioned in the first region while the gas channel is in the second region. It should further be appreciated that the positions of the planar pad structures in the endoscope connector, configured to mate with the spring-loaded pin probes in the first region of the receptacle, can be switched, thereby placing the planar pad structures in the receptacle and the spring loaded pins in the endoscope connector.


In an embodiment, first section 502 comprises at least two probes 508 (one for each viewing element/camera of the endoscope) for transferring high-speed image and video data captured by using CMOS sensors from the endoscope to the main control unit via the receptacle 500. In an embodiment, first section 502 comprises at least three probes 508 (one for each viewing element/camera of the endoscope) for transferring high-speed image and video data captured by using CMOS sensors from the endoscope to the main control unit via the receptacle 500. In various embodiments, the probes 508 may be placed at any location on the receptacle 500.



FIG. 5B illustrates another exemplary position of the probes 508 shown in FIG. 5A, in accordance with an embodiment of the present specification. As shown in FIG. 5B the probes 508 are positioned in the second section 510, which also comprises the electrical push/pull multi-pin interface 512 for connecting with a main connector of a CCD based endoscope. The probes 508 transfer high-speed image and video data, captured using CMOS sensors, from the endoscope to the main control unit via the receptacle 500.


In an embodiment, a probe 508 has an impedance of 50 ohms, is capable of transmitting high-speed signals in the range of 0 to 2 GHz capacity without compromising the signal integrity, and comprises a spring-loaded tip. In embodiments, any commonly available probe capable of transmitting high-speed signals of about 2 GHz may be employed in the main connector housing/receptacle 500. In an embodiment, probes designed to make a spring-loaded connection to sub miniature version A (SMA) sockets may be employed, as this substitutes the need for sacrificial plugs and sockets. In an exemplary embodiment, a probe having the following specifications may be employed:

    • Impedance: 50 Ohms;
    • Working travel: 4.24 mm (0.167″);
    • Spring force at working travel for outer shield: 57 g (2.0 oz);
    • Spring force at working travel for inner contact: 113 g (4.0 oz);
    • Current rating (DC): 3 Amp;
    • Maximum Frequency (3 db c/o): 2.5 GHz;
    • YSWR: 1.15:1@1 GHz;
    • Ins loss: 0.13 db@1 Ghz;
    • Required tail connector: SMB Plug.



FIG. 5C illustrates a diagrammatical view of a probe employed in a main connector housing, in accordance with an embodiment of the present specification. Probe 508 comprises a spring loaded tip portion 514 and an insulator portion 516 surrounded by a metallic shield 518. Probe 508 transfers high speed digital image and video signals captured by CMOS sensors provided in an endoscope's tip portion via a utility cable to a main connector of the endoscope and then to the endoscope's main control unit via SMA connectors provided within the receptacle 500 into which a distal end 520 of the probe 508 is fitted. In various embodiments, the same utility cable that is used to transfer images captured by the CCD sensors of the endoscope to the control unit is used for transferring high-speed digital image and video signals captured by CMOS sensors provided in an endoscope's tip to the control unit.



FIGS. 6A and 6B illustrate a main connector of an endoscope comprising CMOS sensors, in accordance with an embodiment of the present specification. As illustrated in FIG. 6A, main connector 600 comprises a first section 602 which further comprises at least a light guide pin 604, which fits into a light guide pin opening (such as opening 504 shown in FIG. 5A) on a main control unit; and a gas channel 606, which fits into a gas channel opening (such as opening 506 shown in FIG. 5A) on a main control unit. First section 602 is also equipped with one or more pads 608, such that each pad is placed in alignment with a probe (such as probe 508 shown in FIG. 5A) provided on a receptacle of a main control unit of the endoscope. Main connector 600 may also comprise a second section 612, which includes a LEMO® connector 610.



FIG. 6B illustrates a main connector 600 comprising a first section 602 which further comprises at least a light guide pin 604, which fits into a light guide pin opening (such as opening 504 shown in FIG. 5B) on a main control unit; and a gas channel 606 which fits into a gas channel opening (such as opening 506 shown in FIG. 5B) on a main control unit. A second section 612 of main connector 600 comprises the LEMO® connector 610 and is also provided with one or more pads 608, such that each pad is placed in alignment with a probe (such as probe 508 shown in FIG. 5B) provided on a receptacle of a main control unit of the endoscope. Pads 608 are resistant to aggressive substances. Between each medical procedure, the endoscope must be reprocessed, which may include the use of chemical ingredients to clean the endoscope and prepare it for the next patient. In various embodiments, pads 608 are resistant towards alteration or damage by any chemicals used for reprocessing the endoscope. In various embodiments, the pads 608 are commonly available and comprise a metal coating/cover for establishing an electrical connection with tips of cables, such as but not limited to coaxial cables. In an embodiment, pads 608 are covered with gold for enabling connectivity.


When the connector 600 is connected to a main control unit's receptacle, such as shown in FIGS. 5A, 5B, the pads 608 press against spring loaded tips of the probes causing a secure connection through which high-speed signals from CMOS sensors employed in the endoscope's tip may be transmitted to the main control unit. The high speed signals are transferred from the viewing elements to the pads 608 via the utility cable (shown in FIG. 1A); and from the pads 608 to the main control unit via the cables through the probes provided on the receptacle.


In various embodiments, the number of pads 608 provided on main connector 600 corresponds to the number of probes provided on the main control unit. In the embodiment illustrated in FIGS. 5A, 5B and 6A, 6B, each probe and pad pair is coupled with a viewing element placed in a tip portion of the endoscope for transmitting the image/video captured by the viewing element to the main control unit. Main connectors of endoscopes employing only CCD based image sensors are not provided with pads 608. Image data from such endoscopes is transmitted to the main control unit via LEMO® connector 610 provided on the second section 612 of main connector 600. In an embodiment, pads 608 may be replaced by any other suitable connecting element for transferring high-speed signals from CMOS sensors employed in the endoscope's tip to the main control unit via the main connector.


In another embodiment, twisted-pair cabling commonly known in the art may be used for transferring the high frequency digital image and video signals captured by the CMOS sensors and viewing elements to the main control unit, instead of coaxial cables. Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of canceling out electromagnetic (EMI) from external sources. Referring to FIGS. 5A and 5B, in an embodiment, first section 502 comprises at least one twisted pair for transferring high-speed video data from the endoscope to the main control unit via the receptacle 500.


As may be apparent to persons of skill in the art, in various embodiments, other suitable means may be provided on the endoscope connector and receptacle, to transfer high speed video data from CMOS sensors of the endoscope to the main control unit, along with a LEMO® connector; thereby making the endoscope and receptacle compatible with both CCD and CMOS sensors.



FIG. 7 details how a video controller or the controller circuit board 720 of the main controller of an endoscope operatively connects with the endoscope 710 and the display units 750. Referring to FIG. 7, video controller/controller circuit board 720 comprises a camera board 721 that controls the power supplies to the LEDs 711, transmits controls for the operation of image sensor(s) 712 (comprising one or more cameras) in the endoscope, and converts pre-video signals from image sensors to standard video signals. The image sensor 712 may be a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) imager.


The camera board 721 receives pre-video signal(s) 713 generated by the CCD imager and also other remote commands 714 from the endoscope 710.


Controller circuit board 720 further comprises elements for processing the video obtained from the image sensors 712 through the camera board 721, as well as other elements for system monitoring and control.


These elements are connected with the Base Board Module 752, which is a PCB. In one embodiment, elements which are ICs (Integrated Circuits) are connected by soldering, element 726 (SOM or System on Module) is connected by mounting, while all other elements are connected by means of cables.


Various elements on the Base Board Module 9052 are described as follows:


FPGA (Field Programmable Gate Array) 723:


FPGA 723 is a logic device programmed specifically for the system requirements and performs tasks that may be categorized by two types: logic tasks which are preferably implemented by hardware (as opposed to software), and logic tasks related to video image processing. In one embodiment, the Base Board Module 752 includes one or more double data rate type three synchronous dynamic random access memory modules (DDR3) 733 in communication with the FPGA 723.


Logic tasks, which are preferably implemented by hardware, include, but are not limited to:

    • Initializing some Base Board Module's 752 ICs upon system power-up;
    • Monitoring the buttons 740 for White Balance, LED on/off, Air Flow, and Power on/off on the front-panel 735;
    • Monitoring SOM's 726 proper operation using a watch-dog mechanism;
    • Backing-up some of the system's parameters (example: airflow level), even while the system is switched off; and
    • Communicating with the Camera Board 721.


Logic tasks related to video image processing, which are implemented by software or hardware include, but are not limited to:

    • Multiplexing video inputs—Each of the multiple imaging elements has several video interfaces, which are multiplexed via Video Input Interface 751. Further, several auxiliaries are multiplexed via Auxiliary Video Input Interface 725.
    • Optional digital signal processor (DSP) 722 playback output and DSP record input.
    • Internal test pattern to video outputs via Video Output Interface 724 to multiple displays.
    • Conversion between cameras' video standard to display video standard.
    • OSD (On Screen Display) insertion, also known as graphic overlay.
    • PIP (Picture-in-Picture).
    • Stitching images from several cameras into one image displayed on a single screen.
    • Image adjustments, such as brightness, contrast, etc.


      DSP (Digital Signal Processor) 722:


DSP 722 is used for recording compressed (coded) video and playing back decompressed (decoded) video. In one embodiment, the standard of compressed video is H264 or equivalent (such as MPEG).


Operationally, FPGA 723 selects for the DSP 722 the desired video to be recorded, i.e. any of the inputs, or, more likely, a copy of one or more of the screens. In the latter case, this includes the OSD and format conversion. In the likely case of the screen's format differing from that of DSP's 722 required video input format, the FPGA 723 also converts the screen's format to the desired DSP 722 format while transmitting video to the DSP 722.


Auxiliary Video Input Interface 725:


In one embodiment, the video input to the Auxiliary Video Input Interface 725 may comprise analog video, such as in CVBS (color, video, blanking, sync), S-Video or YPBPR format or digital video (DVI), and may be displayed as such.


SOM (System on Module) 726:


The SOM 726 provides an interface to input devices such as keyboard, mouse, and touchscreen via Touch I/F 727. Through these input devices, together with the buttons 740 in the Front Panel 735, the user controls the system's functionality and operational parameters. In one embodiment, a peripheral component interconnect express (PCIe) bus connects the SOM 726 with the FPGA 723. Most common types of data traffic over the PCIe are:


a. SOM 726 to FPGA 723: Commands (for example, when the user changes operational parameters); and


b. FPGA 723 to SOM 726: Registers values, which provide an indication of the internal status, and captured images.


Other Functionalities:


The controller circuit board 720 may further control one or more fluid, liquid and/or suction pump(s), which supply corresponding functionalities to the endoscope through pneumatic I/F 728, pump 729 and check valve 730. The controller circuit board 720 further comprises an on-board power supply 745 and a front panel 735, which provides operational buttons 740 for the user.


The camera board 721 receives video signal 713 which, in one embodiment, comprises three video feeds, corresponding to video pickups by three endoscopic tip viewing elements (one front and two side-looking viewing elements), as generated by the image sensor 712. In one embodiment, the three video feed pickups, corresponding to the three viewing elements (the front-looking, left-side looking and right-side looking viewing elements) of an endoscopic tip, are displayed on three respective monitors.



FIG. 8 is a flowchart illustrating the method of detecting and transferring signals captured by using CCD or CMOS sensors coupled with viewing elements of an endoscope, from the endoscope to a main control unit, in accordance with an embodiment of the present specification. In various embodiments, the endoscope is provided with means to transfer both the analog signals captured by using CCD sensors as well as high speed digital signals captured by using CMOS sensors and the main control unit is provided with means for receiving both the kinds of signals. In embodiments, the endoscope is connected to the main control unit by using a connector comprising a LEMO® connector (such as LEMO® connector 610 shown in FIGS. 6a-6B) as well as one or more pads (such as pads 608 shown in FIGS. 6A-6B); and the main control unit comprises a receptacle having both a LEMO® interface (such as LEMO® interface 512 shown in FIGS. 5A-5B) and at least one probe (such as probe 508 shown in FIGS. 5A-5B) or a twisted pair cable.


At step 802, the main connector of the endoscope is inserted into the receptacle of the main control unit for transferring the signals captured by the viewing elements of the endoscope coupled with either CMOS or CCD sensors, to the main control unit. At step 804, it is determined if at least one pad of the connector is aligned with either a probe, such as a spring-loaded push-pin probe or a twisted pair cable present on the receptacle of the main controller. If at least one pad of the connector is aligned with either a probe or a twisted pair cable present on the receptacle, then at step 806 it is determined that the endoscope comprises CMOS sensors. Next, at step 808, high-speed image and video digital signals captured by using CMOS sensors coupled with the viewing elements of the endoscope are transferred to the main control unit via the connection between the pads on the connector and the probes or the twisted pair cables on the receptacle. If at least one pad of the connector is not aligned with either a probe or a twisted pair cable present on the receptacle, then at step 810 it is determined that the endoscope comprises CCD sensors. Next, at step 812 analog signals captured by using CCD sensors coupled with the viewing elements of the endoscope are transferred to the main control unit via the connection between the LEMO® connector provided on the endoscope's connector and the LEMO® interface provided on the receptacle.


The above examples are merely illustrative of the many applications of the system of present specification. Although only a few embodiments of the present specification have been described herein, it should be understood that the present specification might be embodied in many other specific forms without departing from the spirit or scope of the specification. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the specification may be modified within the scope of the appended claims.

Claims
  • 1. A control unit comprising: a receptacle configured to receive a connector of a medical device;a first region of the receptacle, wherein the first region comprises a first probe configured to receive a first set of video data signals having a first bandwidth; anda second region of the receptacle spaced from the first region, wherein the second region comprises an interface configured to receive a second set of video data signals having a second bandwidth.
  • 2. The control unit of claim 1, wherein the first probe comprises a spring loaded pin.
  • 3. The control unit of claim 1, wherein the second region comprises a multi-pin interface configured to attach to a complementary multi-pin interface in the connector of the medical device.
  • 4. The control unit of claim 1, wherein the first probe is configured to be compressed upon attachment of the receptacle to a connector of the medical device.
  • 5. The control unit of claim 1, wherein the first bandwidth is greater than the second bandwidth.
  • 6. The control unit of claim 5, wherein the first bandwidth is greater than 1 GHz and the second bandwidth is less than 0.5 GHz.
  • 7. The control unit of claim 1, wherein the first region further comprises a light guide, a gas channel, a second probe, and a third probe, wherein the first probe, the second probe, and third probe are positioned circumferentially around at least one of the light guide and the gas channel, and wherein each of the second probe and the third probe comprises a spring loaded pin.
  • 8. The control unit of claim 1, wherein the control unit is an endoscope control unit, and the medical device is an endoscope.
  • 9. A control unit comprising: a receptacle configured to receive a main connector of a medical device, wherein: the medical device comprises a tip section having at least one viewing element,the receptacle has 1) a first region comprising at least one probe configured to receive a first set of video data signals, and 2) a second region configured to receive a second set of video data signals, and wherein the second set of video data signals has a lower bandwidth than a bandwidth of the first set of video data signals;the main connector is configured to receive and transmit the first set of video data signals from the at least one viewing element, andupon attachment of the main connector to the receptacle, the at least one probe abuts at least one pad of the main connector.
  • 10. The control unit of claim 9, wherein upon attachment of the main connector to the receptacle, the at least one probe is compressed.
  • 11. The control unit of claim 9, wherein the at least one probe comprises a spring loaded pin.
  • 12. The control unit of claim 9, wherein the second region comprises a multi-pin interface.
  • 13. The control unit of claim 9, wherein the first set of video data signals comprise digital data with a bandwidth greater than 1 GHz.
  • 14. The control unit of claim 13, wherein the second set of video data signals comprise digital data with a bandwidth less than 0.5 GHz.
  • 15. The control unit of claim 9, wherein the first region further comprises a light guide, a gas channel, a second probe, and a third probe, wherein the first probe, the second probe, and third probe are positioned circumferentially around at least one of the light guide and the gas channel, and wherein each of the second probe and the third probe comprises a spring loaded pin.
  • 16. The control unit of claim 9, wherein the control unit is an endoscope control unit and the medical device is an endoscope.
  • 17. A control unit comprising: a receptacle configured to receive a connector of a medical device;a first region of the receptacle, wherein the first region is configured to receive a first set of video data signals having a first bandwidth; anda second region of the receptacle spaced from the first region, wherein the second region comprises an interface configured to receive a second set of video data signals having a second bandwidth, wherein the second bandwidth is lower than the first bandwidth.
  • 18. The control unit of claim 17, wherein the second region comprises a multi-pin interface configured to attach to a complementary multi-pin interface in the connector of the medical device.
  • 19. The control unit of claim 17, wherein the first set of video data signals comprise digital data with a bandwidth greater than 1 GHz.
  • 20. The control unit of claim 19, wherein the second set of video data signals comprise digital data with a bandwidth less than 0.5 GHz.
CROSS-REFERENCE

This application is a continuation of U.S. Nonprovisional patent application Ser. No. 15/602,411, filed May 23, 2017, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/352,898, filed on Jun. 21, 2016. The present application relates to U.S. patent application Ser. No. 14/468,189, which has been assigned United States Patent Publication Number 20150057500, entitled “System for Connecting and Disconnecting A Main Connector and a Main Control Unit of An Endoscope”, filed on Aug. 26, 2014, which in turn relies on U.S. Patent Provisional Application No. 61/870,144, of the same title, and filed on Aug. 26, 2013 and U.S. Patent Provisional Application No. 61/968,436, of the same title, and filed on Mar. 21, 2014, for priority. The above-listed applications are herein incorporated by reference in their entirety.

US Referenced Citations (403)
Number Name Date Kind
3639714 Fujimoto Feb 1972 A
3955064 Demetrio May 1976 A
4027697 Bonney Jun 1977 A
4037588 Heckele Jul 1977 A
4084401 Belardi Apr 1978 A
4402313 Yabe Sep 1983 A
4461282 Ouchi Jul 1984 A
4494549 Namba Jan 1985 A
4532918 Wheeler Aug 1985 A
4588294 Siegmund May 1986 A
4641635 Yabe Feb 1987 A
4727859 Lia Mar 1988 A
4764001 Yokota Aug 1988 A
4801792 Yamasita Jan 1989 A
4825850 Opie May 1989 A
4877314 Kanamori Oct 1989 A
4902115 Takahashi Feb 1990 A
4976522 Igarashi Dec 1990 A
4984878 Miyano Jan 1991 A
5007406 Takahashi Apr 1991 A
5014685 Takahashi May 1991 A
5193525 Silverstein Mar 1993 A
5224929 Remiszewski Jul 1993 A
5296971 Mori Mar 1994 A
5359456 Kikuchi Oct 1994 A
5395329 Fleischhacker Mar 1995 A
5447148 Oneda Sep 1995 A
5460167 Yabe Oct 1995 A
5464007 Krauter Nov 1995 A
5475420 Buchin Dec 1995 A
5489256 Adair Feb 1996 A
5518501 Oneda May 1996 A
5518502 Kaplan May 1996 A
5547455 McKenna Aug 1996 A
5547457 Tsuyuki Aug 1996 A
5575755 Krauter Nov 1996 A
5587839 Miyano Dec 1996 A
5630782 Adair May 1997 A
5630798 Beiser May 1997 A
5662588 Iida Sep 1997 A
5674182 Suzuki Oct 1997 A
5685821 Pike Nov 1997 A
5685823 Ito Nov 1997 A
5702347 Yabe Dec 1997 A
5707344 Nakazawa Jan 1998 A
5725474 Yasui Mar 1998 A
5725476 Yasui Mar 1998 A
5725477 Yasui Mar 1998 A
5725478 Saad Mar 1998 A
5777797 Miyano Jul 1998 A
5782751 Matsuno Jul 1998 A
5800341 McKenna Sep 1998 A
5810715 Moriyama Sep 1998 A
5810717 Maeda Sep 1998 A
5810770 Chin Sep 1998 A
5830121 Enomoto Nov 1998 A
5836894 Sarvazyan Nov 1998 A
5860913 Yamaya Jan 1999 A
5870234 EbbesmeiemeeSchitthof Feb 1999 A
5916148 Tsuyuki Jun 1999 A
5940126 Kimura Aug 1999 A
6058109 Lechleider May 2000 A
6095970 Hidaka Aug 2000 A
6095971 Takahashi Aug 2000 A
6117068 Gourley Sep 2000 A
6181481 Yamamoto Jan 2001 B1
6196967 Lim Mar 2001 B1
6261226 McKenna Jul 2001 B1
6277064 Yoon Aug 2001 B1
6359674 Horiuchi Mar 2002 B1
6375610 Verschuur Apr 2002 B2
6402738 Ouchi Jun 2002 B1
6419626 Yoon Jul 2002 B1
6476851 Nakamura Nov 2002 B1
6520908 Ikeda Feb 2003 B1
6636254 Onishi Oct 2003 B1
6638214 Akiba Oct 2003 B2
6673012 Fujii Jan 2004 B2
6690337 Mayer, III Feb 2004 B1
6712760 Sano Mar 2004 B2
6832984 Stelzer Dec 2004 B2
6888119 Iizuka May 2005 B2
6997871 Sonnenschein Feb 2006 B2
7154378 Ertas Dec 2006 B1
7435218 Krattiger Oct 2008 B2
7621869 Ratnakar Nov 2009 B2
7630148 Yang Dec 2009 B1
7701650 Lin Apr 2010 B2
7713246 Shia May 2010 B2
7746572 Asami Jun 2010 B2
7813047 Wang Oct 2010 B2
7828725 Maruyama Nov 2010 B2
7918788 Lin Apr 2011 B2
7927272 Bayer Apr 2011 B2
7967745 Gilad Jun 2011 B2
7976462 Wright Jul 2011 B2
8064666 Bayer Nov 2011 B2
8182422 Bayer May 2012 B2
8197399 Bayer Jun 2012 B2
8235887 Bayer Aug 2012 B2
8262558 Sato Sep 2012 B2
8287446 Bayer Oct 2012 B2
8289381 Bayer Oct 2012 B2
8300325 Katahira Oct 2012 B2
8310530 Bayer Nov 2012 B2
8353860 Boulais Jan 2013 B2
8447132 Galil May 2013 B1
8449457 Aizenfeld May 2013 B2
8460182 Ouyang Jun 2013 B2
8585584 Ratnakar Nov 2013 B2
8587645 Bayer Nov 2013 B2
8672836 Higgins Mar 2014 B2
8715168 Ratnakar May 2014 B2
8797392 Bayer Aug 2014 B2
8872906 Bayer Oct 2014 B2
8926502 Levy Jan 2015 B2
9044185 Bayer Jun 2015 B2
9101266 Levi Aug 2015 B2
9101268 Levy Aug 2015 B2
9101287 Levy Aug 2015 B2
9144664 Jacobsen Sep 2015 B2
9289110 Woolford Mar 2016 B2
9314147 Levy Apr 2016 B2
9320419 Kirma Apr 2016 B2
10993605 Levy May 2021 B2
20010036322 Bloomfield Nov 2001 A1
20020017515 Obata Feb 2002 A1
20020047897 Sugimoto Apr 2002 A1
20020087047 Remijan Jul 2002 A1
20020109771 Ledbetter Aug 2002 A1
20020109774 Meron Aug 2002 A1
20020161279 Luloh Oct 2002 A1
20020161281 Jaffe Oct 2002 A1
20020172498 Esenyan Nov 2002 A1
20020183591 Matsuura Dec 2002 A1
20030030918 Murayama Feb 2003 A1
20030063398 Abe Apr 2003 A1
20030076411 Iida Apr 2003 A1
20030083552 Remijan May 2003 A1
20030128893 Castorina Jul 2003 A1
20030139650 Homma Jul 2003 A1
20030153897 Russo Aug 2003 A1
20030158503 Matsumoto Aug 2003 A1
20030163029 Sonnenschein Aug 2003 A1
20040015054 Hino Jan 2004 A1
20040046865 Ueno Mar 2004 A1
20040061780 Huffman Apr 2004 A1
20040064019 Chang Apr 2004 A1
20040077927 Ouchi Apr 2004 A1
20040106850 Yamaya Jun 2004 A1
20040133072 Kennedy Jul 2004 A1
20040138532 Glukhovsky Jul 2004 A1
20040158129 Okada Aug 2004 A1
20040160682 Miyano Aug 2004 A1
20040190159 Hasegawa Sep 2004 A1
20040249247 Iddan Dec 2004 A1
20040260151 Akiba Dec 2004 A1
20050018042 Rovegno Jan 2005 A1
20050020876 Shioda Jan 2005 A1
20050038317 Ratnakar Feb 2005 A1
20050047134 Mueller Mar 2005 A1
20050057687 Irani Mar 2005 A1
20050090709 Okada Apr 2005 A1
20050096501 Stelzer May 2005 A1
20050119527 Banik Jun 2005 A1
20050124858 Matsuzawa Jun 2005 A1
20050222499 Banik Oct 2005 A1
20050234296 Saadat Oct 2005 A1
20050234347 Yamataka Oct 2005 A1
20050251127 Brosch Nov 2005 A1
20050272975 McWeeney Dec 2005 A1
20050277808 Sonnenschein Dec 2005 A1
20050283048 Gill Dec 2005 A1
20060004257 Gilad Jan 2006 A1
20060047184 Banik Mar 2006 A1
20060063976 Aizenfeld Mar 2006 A1
20060069314 Farr Mar 2006 A1
20060111613 Boutillette May 2006 A1
20060114986 Knapp Jun 2006 A1
20060134997 Curtis et al. Jun 2006 A1
20060149129 Watts Jul 2006 A1
20060171693 Todd Aug 2006 A1
20060173245 Todd Aug 2006 A1
20060183975 Saadat Aug 2006 A1
20060184037 Ince Aug 2006 A1
20060189845 Maahs Aug 2006 A1
20060215406 Thrailkill Sep 2006 A1
20060235306 Cotter Oct 2006 A1
20060252994 Ratnakar Nov 2006 A1
20060264704 Fujimori Nov 2006 A1
20060293556 Garner Dec 2006 A1
20070015989 Desai Jan 2007 A1
20070049803 Moriyama Mar 2007 A1
20070055100 Kato Mar 2007 A1
20070079029 Carlson Apr 2007 A1
20070088193 Omori Apr 2007 A1
20070100206 Lin May 2007 A1
20070106119 Hirata May 2007 A1
20070118015 Wendlandt May 2007 A1
20070142711 Bayer Jun 2007 A1
20070162095 Kimmel Jul 2007 A1
20070167681 Gill Jul 2007 A1
20070177008 Bayer Aug 2007 A1
20070177009 Bayer Aug 2007 A1
20070185384 Bayer Aug 2007 A1
20070188427 Lys Aug 2007 A1
20070197875 Osaka Aug 2007 A1
20070203396 McCutcheon Aug 2007 A1
20070206945 Delorme Sep 2007 A1
20070213591 Aizenfeld Sep 2007 A1
20070229656 Khait Oct 2007 A1
20070241895 Morgan Oct 2007 A1
20070244353 Larsen Oct 2007 A1
20070244354 Bayer Oct 2007 A1
20070247867 Hunter Oct 2007 A1
20070249907 Boulais Oct 2007 A1
20070265492 Sonnenschein Nov 2007 A1
20070265498 Ito Nov 2007 A1
20070270642 Bayer Nov 2007 A1
20070279486 Bayer Dec 2007 A1
20070286764 Noguchi Dec 2007 A1
20070293720 Bayer Dec 2007 A1
20080009673 Khachi Jan 2008 A1
20080021274 Bayer Jan 2008 A1
20080025413 Apostolopoulos Jan 2008 A1
20080036864 McCubbrey Feb 2008 A1
20080045797 Yasushi Feb 2008 A1
20080058601 Fujimori Mar 2008 A1
20080071290 Larkin Mar 2008 A1
20080091065 Oshima Apr 2008 A1
20080130108 Bayer Jun 2008 A1
20080151070 Shiozawa Jun 2008 A1
20080161646 Gomez Jul 2008 A1
20080163652 Shatskin Jul 2008 A1
20080167529 Otawara Jul 2008 A1
20080177139 Courtney Jul 2008 A1
20080183034 Henkin Jul 2008 A1
20080183043 Spinnler Jul 2008 A1
20080221388 Courtney Jul 2008 A1
20080246771 ONeal Oct 2008 A1
20080253686 Bayer Oct 2008 A1
20080262312 Carroll Oct 2008 A1
20080275298 Ratnakar Nov 2008 A1
20080303898 Nishimura Dec 2008 A1
20090005643 Smith Jan 2009 A1
20090023998 Ratnakar Jan 2009 A1
20090030275 Nicolaou Jan 2009 A1
20090054790 Czaniera Feb 2009 A1
20090062615 Yamaya Mar 2009 A1
20090076327 Ohki Mar 2009 A1
20090082624 Joko Mar 2009 A1
20090086017 Miyano Apr 2009 A1
20090135245 Luo May 2009 A1
20090137875 Kitagawa May 2009 A1
20090143647 Banju Jun 2009 A1
20090147076 Ertas Jun 2009 A1
20090182917 Kim Jul 2009 A1
20090209811 Higuchi Aug 2009 A1
20090213211 Bayer Aug 2009 A1
20090216084 Yamane Aug 2009 A1
20090225159 Schneider Sep 2009 A1
20090231419 Bayer Sep 2009 A1
20090234183 Abe Sep 2009 A1
20090253966 Ichimura Oct 2009 A1
20090287188 Golden Nov 2009 A1
20090287192 Vivenzio Nov 2009 A1
20090299144 Shigemori Dec 2009 A1
20100010309 Kitagawa Jan 2010 A1
20100015833 Laughlin et al. Jan 2010 A1
20100016673 Bandy Jan 2010 A1
20100053312 Watanabe Mar 2010 A1
20100069713 Endo Mar 2010 A1
20100073470 Takasaki Mar 2010 A1
20100073948 Stein Mar 2010 A1
20100076268 Takasugi Mar 2010 A1
20100123950 Fujiwara May 2010 A1
20100130822 Katayama May 2010 A1
20100141763 Itoh Jun 2010 A1
20100160729 Smith Jun 2010 A1
20100174144 Hsu Jul 2010 A1
20100231702 Tsujimura Sep 2010 A1
20100245653 Bodor Sep 2010 A1
20100249513 Tydlaska Sep 2010 A1
20100280322 Mizuyoshi Nov 2010 A1
20100296178 Genet Nov 2010 A1
20100326703 Gilad Dec 2010 A1
20110004058 Oneda Jan 2011 A1
20110004059 Arneson Jan 2011 A1
20110034769 Adair Feb 2011 A1
20110063427 Fengler Mar 2011 A1
20110084835 Whitehouse Apr 2011 A1
20110140003 Beck Jun 2011 A1
20110160530 Ratnakar Jun 2011 A1
20110160535 Bayer Jun 2011 A1
20110169931 Pascal Jul 2011 A1
20110184243 Wright Jul 2011 A1
20110211267 Takato Sep 2011 A1
20110254937 Yoshino Oct 2011 A1
20110263938 Levy Oct 2011 A1
20110282144 Gettman Nov 2011 A1
20110292258 Adler Dec 2011 A1
20120040305 Karazivan Feb 2012 A1
20120050606 Debevec Mar 2012 A1
20120053407 Levy Mar 2012 A1
20120057251 Takato Mar 2012 A1
20120065468 Levy Mar 2012 A1
20120076425 Brandt Mar 2012 A1
20120162402 Amano Jun 2012 A1
20120200683 Oshima Aug 2012 A1
20120209071 Bayer Aug 2012 A1
20120209289 Duque Aug 2012 A1
20120212630 Pryor Aug 2012 A1
20120220832 Nakade Aug 2012 A1
20120224026 Bayer Sep 2012 A1
20120229615 Kirma Sep 2012 A1
20120232340 Levy Sep 2012 A1
20120232343 Levy Sep 2012 A1
20120253121 Kitano Oct 2012 A1
20120277535 Hoshino Nov 2012 A1
20120281536 Gell Nov 2012 A1
20120289858 Ouyang Nov 2012 A1
20120300999 Bayer Nov 2012 A1
20130053646 Yamamoto Feb 2013 A1
20130057724 Miyahara Mar 2013 A1
20130060086 Talbert Mar 2013 A1
20130066297 Shtul Mar 2013 A1
20130077257 Tsai Mar 2013 A1
20130085329 Morrissette Apr 2013 A1
20130109916 Levy May 2013 A1
20130116506 Bayer May 2013 A1
20130131447 Benning May 2013 A1
20130137930 Menabde May 2013 A1
20130141557 Kawata Jun 2013 A1
20130150671 Levy Jun 2013 A1
20130158344 Taniguchi Jun 2013 A1
20130169843 Ono Jul 2013 A1
20130172670 Levy Jul 2013 A1
20130172676 Levy Jul 2013 A1
20130197309 Sakata Aug 2013 A1
20130197556 Shelton Aug 2013 A1
20130222640 Baek Aug 2013 A1
20130253268 Okada Sep 2013 A1
20130264465 Dai Oct 2013 A1
20130267778 Rehe Oct 2013 A1
20130271588 Kirma Oct 2013 A1
20130274551 Kirma Oct 2013 A1
20130281925 Benscoter Oct 2013 A1
20130296649 Kirma Nov 2013 A1
20130303979 Stieglitz Nov 2013 A1
20130317295 Morse Nov 2013 A1
20140018624 Bayer Jan 2014 A1
20140031627 Jacobs Jan 2014 A1
20140046136 Bayer Feb 2014 A1
20140107418 Ratnakar Apr 2014 A1
20140148644 Levi May 2014 A1
20140184766 Amling Jul 2014 A1
20140213850 Levy Jul 2014 A1
20140225998 Dai Aug 2014 A1
20140275763 King et al. Sep 2014 A1
20140276207 Ouyang Sep 2014 A1
20140296628 Kirma Oct 2014 A1
20140296643 Levy Oct 2014 A1
20140296866 Salman Oct 2014 A1
20140298932 Okamoto Oct 2014 A1
20140309495 Kirma Oct 2014 A1
20140316198 Krivopisk Oct 2014 A1
20140316204 Ofir Oct 2014 A1
20140320617 Parks Oct 2014 A1
20140333742 Salman Nov 2014 A1
20140333743 Gilreath Nov 2014 A1
20140336459 Bayer Nov 2014 A1
20140343358 Hameed Nov 2014 A1
20140343361 Salman Nov 2014 A1
20140343489 Lang Nov 2014 A1
20140364691 Krivopisk Dec 2014 A1
20140364692 Salman Dec 2014 A1
20140364694 Avron Dec 2014 A1
20150005581 Salman Jan 2015 A1
20150045614 Krivopisk Feb 2015 A1
20150057500 Salman Feb 2015 A1
20150094536 Wieth Apr 2015 A1
20150099925 Davidson Apr 2015 A1
20150099926 Davidson Apr 2015 A1
20150105618 Levy Apr 2015 A1
20150164308 Ratnakar Jun 2015 A1
20150182105 Salman Jul 2015 A1
20150196190 Levy Jul 2015 A1
20150201827 Sidar Jul 2015 A1
20150208900 Vidas Jul 2015 A1
20150208909 Davidson Jul 2015 A1
20150223676 Bayer Aug 2015 A1
20150230698 Cline Aug 2015 A1
20150305601 Levi Oct 2015 A1
20150313445 Davidson Nov 2015 A1
20150313450 Wieth Nov 2015 A1
20150313451 Salman Nov 2015 A1
20150320300 Gershov Nov 2015 A1
20150342446 Levy Dec 2015 A1
20150359415 Lang Dec 2015 A1
20150374206 Shimony Dec 2015 A1
20160015257 Levy Jan 2016 A1
20160015258 Levin Jan 2016 A1
20160058268 Salman Mar 2016 A1
Foreign Referenced Citations (128)
Number Date Country
2297986 Mar 1999 CA
2765559 Dec 2010 CA
2812097 Mar 2012 CA
2798716 Jun 2013 CA
2798729 Jun 2013 CA
103348470 Oct 2013 CN
103403605 Nov 2013 CN
103491854 Jan 2014 CN
103702604 Apr 2014 CN
103732120 Apr 2014 CN
104717916 Jun 2015 CN
105246393 Jan 2016 CN
105324065 Feb 2016 CN
105324066 Feb 2016 CN
105338875 Feb 2016 CN
105358042 Feb 2016 CN
105358043 Feb 2016 CN
105377106 Mar 2016 CN
105407788 Mar 2016 CN
202010016900 May 2011 DE
1690497 Aug 2006 EP
1835844 Sep 2007 EP
1968425 Sep 2008 EP
1986541 Nov 2008 EP
1988813 Nov 2008 EP
2023794 Feb 2009 EP
2023795 Feb 2009 EP
2190341 Jun 2010 EP
2211683 Aug 2010 EP
2457492 May 2012 EP
2457493 May 2012 EP
1988812 Nov 2012 EP
2520218 Nov 2012 EP
2604175 Jun 2013 EP
2618718 Jul 2013 EP
2635932 Sep 2013 EP
2648602 Oct 2013 EP
2649648 Oct 2013 EP
2672878 Dec 2013 EP
2736400 Jun 2014 EP
2744390 Jun 2014 EP
2442706 Nov 2014 EP
2865322 Apr 2015 EP
2908714 Aug 2015 EP
2979123 Feb 2016 EP
2991537 Mar 2016 EP
2994032 Mar 2016 EP
2994033 Mar 2016 EP
2994034 Mar 2016 EP
2996536 Mar 2016 EP
2996541 Mar 2016 EP
2996542 Mar 2016 EP
2996621 Mar 2016 EP
12196628 Mar 2015 GB
H1043129 Feb 1998 JP
H10239740 Sep 1998 JP
11137512 May 1999 JP
2000092478 Mar 2000 JP
2004236738 Aug 2004 JP
2005253543 Sep 2005 JP
2006025888 Feb 2006 JP
2006068109 Mar 2006 JP
2007209656 Aug 2007 JP
2009000334 Jan 2009 JP
2010178766 Aug 2010 JP
2012135432 Jul 2012 JP
2013116277 Jun 2013 JP
2013123647 Jun 2013 JP
2013123648 Jun 2013 JP
2013208459 Oct 2013 JP
2013215582 Oct 2013 JP
2013230383 Nov 2013 JP
2013542467 Nov 2013 JP
2013544617 Dec 2013 JP
2014524303 Sep 2014 JP
2014524819 Sep 2014 JP
2015533300 Nov 2015 JP
2006073676 Jul 2006 WO
2006073725 Jul 2006 WO
2007070644 Jun 2007 WO
2007092533 Aug 2007 WO
2007092636 Aug 2007 WO
2007087421 Nov 2007 WO
2007136859 Nov 2007 WO
2007136879 Nov 2007 WO
2008015164 Feb 2008 WO
2009014895 Jan 2009 WO
2009015396 Jan 2009 WO
2009049322 Apr 2009 WO
2009049324 Apr 2009 WO
2009062179 May 2009 WO
2010146587 Dec 2010 WO
2011052408 May 2011 WO
2012038958 Mar 2012 WO
2012056453 May 2012 WO
2012075153 Jun 2012 WO
2012077116 Jun 2012 WO
2012077117 Jun 2012 WO
2012096102 Jul 2012 WO
2012120507 Sep 2012 WO
2013014673 Jan 2013 WO
2013024476 Feb 2013 WO
2014061023 Apr 2014 WO
2014160983 Oct 2014 WO
2014179236 Nov 2014 WO
2014182723 Nov 2014 WO
2014182728 Nov 2014 WO
2014183012 Nov 2014 WO
2014186230 Nov 2014 WO
2014186519 Nov 2014 WO
2014186521 Nov 2014 WO
2014186525 Nov 2014 WO
2014186775 Nov 2014 WO
2014210516 Dec 2014 WO
2015002847 Jan 2015 WO
2015047631 Apr 2015 WO
2015050829 Apr 2015 WO
2015084442 Jun 2015 WO
2015095481 Jun 2015 WO
2015112747 Jul 2015 WO
2015112899 Jul 2015 WO
2015134060 Sep 2015 WO
2015168066 Nov 2015 WO
2015168664 Nov 2015 WO
2015171732 Nov 2015 WO
2015175246 Nov 2015 WO
2016014581 Jan 2016 WO
2016033403 Mar 2016 WO
Non-Patent Literature Citations (78)
Entry
Corrected Notice of Allowance dated Apr. 13, 2016 for U.S. Appl. No. 13/680,646.
Notice of Allowance dated Mar. 28, 2016 for U.S. Appl. No. 13/413,059.
Notice of Allowance dated Mar. 29, 2016 for U.S. Appl. No. 13/680,646.
Office Action dated Feb. 26, 2016 for U.S. Appl. No. 14/274,323.
Office Action dated Feb. 4, 2016 for U.S. Appl. No. 14/271,234.
Office Action dated Mar. 23, 2016 for U.S. Appl. No. 13/713,449.
Office Action dated Mar. 24, 2016 for U.S. Appl. No. 13/212,627.
Office Action dated Mar. 28, 2016 for U.S. Appl. No. 13/119,032.
Office Action dated May 25, 2016 for U.S. Appl. No. 14/271,234.
Office Action dated May 5, 2016 for U.S. Appl. No. 14/278,338.
Office Action dated May 6, 2016 for U.S. Appl. No. 14/263,896.
Office Action dated Jun. 30, 2016 for U.S. Appl. No. 13/655,120.
Office Action dated Jun. 28, 2016 for U.S. Appl. No. 14/278,293.
Office Action dated Jul. 1, 2016 for U.S. Appl. No. 14/229,699.
Office Action dated Jul. 15, 2016 for U.S. Appl. No. 14/273,923.
Notice of Allowance dated Jul. 15, 2016 for U.S. Appl. No. 14/274,323.
Office Action dated Jul. 22, 2016 for U.S. Appl. No. 14/549,265.
Sherman L.M., Plastics That Conduct Hear, Plastics Technology, June 2001—article obtained online from http://www.ptonline.com/articles/plastics-that-conduct-heat.
Office Action dated Aug. 11, 2016 for U.S. Appl. No. 14/318,249.
Office Action dated Apr. 28, 2016 for U.S. Appl. No. 13/992,014.
Notice of Allowance dated Aug. 26, 2016 for U.S. Appl. No. 13/212,627.
Office Action dated Sep. 2, 2016 for U.S. Appl. No. 14/278,338.
Office Action dated Sep. 16, 2016 for U.S. Appl. No. 13/992,014.
Notice of Allowance dated Oct. 12, 2016 for U.S. Appl. No. 13/119,032.
Office Action dated Oct. 7, 2016 for U.S. Appl. No. 13/713,449.
Office Action dated Oct. 5, 2016 for U.S. Appl. No. 14/271,270.
Notice of Allowance dated Oct. 13, 2016 for U.S. Appl. No. 14/273,923.
Notice of Allowance dated Nov. 9, 2016 for U.S. Appl. No. 13/557,114.
Office Action dated Dec. 1, 2016 for U.S. Appl. No. 14/278,293.
Office Action dated Dec. 9, 2016 for U.S. Appl. No. 14/549,265.
Office Action dated Dec. 16, 2016 for U.S. Appl. No. 14/263,896.
Notice of Allowance dated Dec. 28, 2016 for U.S. Appl. No. 14/229,699.
Notice of Allowance dated Dec. 27, 2016 for U.S. Appl. No. 14/317,863.
Office Action dated Dec. 27, 2016 for U.S. Appl. No. 14/603,137.
Office Action dated Dec. 29, 2016 for U.S. Appl. No. 15/077,513.
Office Action dated Dec. 30, 2016 for U.S. Appl. No. 14/457,268.
Office Action dated Jan. 17, 2017 for U.S. Appl. No. 14/318,189.
Notice of Allowance dated Jan. 31, 2017 for U.S. Appl. No. 14/271,234.
Office Action dated Feb. 2, 2017 for U.S. Appl. No. 14/278,338.
Office Action dated Feb. 9, 2017 for U.S. Appl. No. 14/746,986.
Office Action dated Feb. 6, 2017 for U.S. Appl. No. 14/751,835.
Office Action dated Feb. 14, 2017 for U.S. Appl. No. 14/271,270.
Office Action dated Feb. 23, 2017 for U.S. Appl. No. 14/318,249.
Office Action dated Mar. 9, 2017 for U.S. Appl. No. 14/791,316.
Office Action dated Mar. 21, 2017 for U.S. Appl. No. 13/992,014.
Office Action dated Mar. 20, 2017 for U.S. Appl. No. 14/278,293.
Notice of Allowance dated Mar. 21, 2017 for U.S. Appl. No. 14/549,265.
Office Action dated Mar. 22, 2017 for U.S. Appl. No. 14/705,355.
Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/838,509.
Notice of Allowance dated Apr. 12, 2017 for U.S. Appl. No. 14/603,137.
Notice of Allowance dated Apr. 18, 2017 for U.S. Appl. No. 13/713,449.
Office Action dated Apr. 19, 2017 for U.S. Appl. No. 14/988,551.
Notice of Allowability dated Apr. 21, 2017 for U.S. Appl. No. 14/549,265.
Office Action dated May 11, 2017 for U.S. Appl. No. 14/278,293.
Office Action dated May 10, 2017 for U.S. Appl. No. 14/988,551.
Office Action dated May 5, 2017 for U.S. Appl. No. 15/077,513.
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 14/271,270.
Office Action dated May 15, 2017 for U.S. Appl. No. 14/278,293.
Office Action dated May 18, 2017 for U.S. Appl. No. 14/278,338.
Notice of Allowance dated May 16, 2017 for U.S. Appl. No. 14/746,986.
Office Action dated May 23, 2017 for U.S. Appl. No. 13/655,120.
Notice of Allowance dated May 25, 2017 for U.S. Appl. No. 14/318,189.
Office Action dated May 23, 2017 for U.S. Appl. No. 14/500,975.
International Search Report for PCT/US 14/37004, dated Sep. 25, 2014.
International Search Report for PCT/US 14/38094, dated Nov. 6, 2014.
International Search Report for PCT/US2014/037526, dated Oct. 16, 2014.
International Search Report for PCT/US2014/071085, dated Mar. 27, 2015.
International Search Report for PCT/US2014/58143, dated Jan. 21, 2015.
International Search Report for PCT/US2015/012506, dated Dec. 11, 2015.
International Search Report for PCT/US2015/012751, dated Jun. 26, 2015.
International Search Report for PCT/US2015/027902, dated Jul. 23, 2015.
International Search Report for PCT/US2015/28962, dated Jul. 28, 2015.
International Search Report for PCT/US2015/29421, dated Aug. 7, 2015.
International Search Report for PCT/US2015/41396, dated Sep. 29, 2015.
International Search Report for PCT/US2015/47334, dated Dec. 28, 2015.
International Search Report for PCT/US2015/6548, dated Feb. 26, 2016.
International Search Report for PCT/US2015/66486, dated Dec. 17, 2015.
Japanese Office Action in corresponding Japanese Application No. 2021-209619, dated Jan. 4, 2023 (3 pages).
Related Publications (1)
Number Date Country
20210219823 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62352898 Jun 2016 US
Continuations (1)
Number Date Country
Parent 15602411 May 2017 US
Child 17223847 US