The present invention is directed to an optical system for an endoscope. More particularly, the present invention is directed to an optical system for a monoscopic endoscope, the optical system including a pupil expander assembly for creating two stereoscopic images.
BACKGROUND OF INVENTION
Technical and medical endoscopes are delicate optical instruments that are introduced in technical and human cavities to inspect the interior of the cavities. Such endoscopes can be rigid endoscopes containing a lens system, flexible endoscopes containing a flexible image guiding bundle or video endoscopes.
Endoscopes have a small diameter of a few millimeters and are often several hundreds of millimeter long. Endoscopes contain an outer tube and an inner tube. The space between the outer tube and the inner tube is filled with illumination fibers that guide externally created light inside the cavities. Inside the inner tube is an optical system that relays an image of the cavity from the distal tip of the endoscope back to the proximal end of the endoscope. This relayed image can be observed at the proximal end by the operator's eye, or a video camera can capture the image.
When the first endoscopes with such lens systems where introduced at the beginning of the 20th century surgeons and designers contemplated stereo endoscopic systems. Stereoscopic systems in general produce two images that show an object space from slightly different perspectives, namely, a left image and a right image. The human brain is capable of merging these two slightly different images and transferring the so-called disparity of the two images, via information about depth, and creates a three-dimensional impression.
Endoscopes with a single optical system, i.e., monoscopic endoscopes, create three-dimensional information about the object space. Objects in different distances appear in different sizes, and overlapping of objects informs the user which object is in the front and which is in the back. In this way, endoscopic instruments inserted through and viewed by an endoscope can be observed by the user moving back and forth in the object space. For many surgical applications in endoscopy this three dimensional information is sufficient, and there is no need for stereoscopic vision. However, with an increasing number of complex surgical procedures being performed and observed through endoscopes, the control of the position of endoscopic instruments has become more crucial for some surgeries. Such complex surgeries are now often performed with robotic assistance, and the position of the instruments is controlled by stereo endoscopic observations.
Stereo endoscopes typically include two optical systems that are difficult to assemble and align and expensive to manufacture. For these reasons, stereo endoscopes having two optical systems are not economically or technically feasible for certain applications. In those instances, it is preferred use a monoscopic endoscope that is modified to provide a stereo endoscopic capability by separating the pupil of the single optical system into a left portion and a right portion. A shortcoming of endoscopes of this type of modified endoscope, however, is that the stereoscopic eye base of such endoscopes is about half the entrance pupil of the endoscope. Such entrance pupils have a diameter of a few tenth of a millimeter. This results in a reasonable stereoscopic working distance of only around one mm or less than one mm. The present invention addresses the small stereoscopic eye base problem that is associated with monoscopic endoscopes that have been modified as explained above by providing an endoscope having a single optical system with a pupil expander.
The present invention is directed to stereo endoscopes that include a single optical system or train but that have an extended distance between the left image side and the right image side of the entrance pupil. According to the present invention, the optical train of a unitary optical system is separated into a left optical train and a right optical train. The separation into left and right optical trains is achieved by splitting the entrance pupil into a left and right pupil half.
To additionally achieve a significant stereoscopic disparity the distance between the left and right pupil half is expanded. The separation of the entrance pupil and the expansion of the left and right pupil halves are achieved by a distally located prism block. This prism block consists of a pair of rhomboidal prisms that are located exactly at the entrance pupil inside the endoscope objective. A front lens group is assembled in front of each of the two rhomboidal prisms. Such stereo endoscopes with expanded pupil halves enable to build stereo endoscopes with very small diameter or stereo endoscopes for special surgical applications.
The information for the left and right perspective of the endoscopic image is related to the left and right half of the entrance pupil. The circular entrance pupil of such a stereo endoscope can be optically separated, and the distance of the two halves of the entrance pupil can be expanded and the stereoscopic effect can be increased.
According to one aspect of the invention, there is provided a prism block that is located at the surface of the entrance pupil. The prism block includes of a pair of rhomboidal prisms that are located exactly at the entrance pupil inside the endoscope objective. The two rhomboidal prisms touch at one side and divide the entrance pupil in half. The rhomboidal prisms are arranged so that the entrance pupil of the endoscope sits exactly at the exit surface of the rhomboidal prisms. In this manner, one rhomboidal prism deflects all rays going through the left portion of the entrance pupil to the left and transfers this half of the entrance pupil to the left. The other rhomboidal prism deflects all rays going through the right portion of the entrance pupil to the right and transfers this half of the entrance pupil to the right. The deflection angles of the two rhomboidal prisms have a slightly different angle so that the optical axes of the left and right rhomboidal prisms converge in the working distance of the stereo endoscope.
The optical system further includes the two front lens groups that are aligned in front of the left and the right halves of the entrance pupil. The two front lens groups are glued on a wedged glass plate so that the optical axes of the negatives correspond to the converging optical axes exiting the two rhomboidal prisms. The two units, each consisting of one of the negative lens groups and one of the wedged glass plates, are then aligned under optical control so that the optical fields of the two optical trains overlap in the working distance.
According to another aspect of the invention, the two rhomboidal prisms are fixed on a triangle prism, and the combination of these three prisms is glued to a glass window. The glass window and the three prisms form a prism block that can be easily aligned in front of the entrance pupil of the stereo endoscope and fixed to a plano surface of the endoscope objective.
According to another aspect of the invention, at a proximal end of the described stereo endoscopes, the left half of the exit pupil contains the information gathered through the expanded left side of the entrance pupil and the right half of the exit pupil contains the information gathered through the expanded right side of the entrance pupil. This information in the exit pupil of the stereo endoscope can be separated by a prism block including two rhomboidal prisms placed in the tip of a stereo endoscope camera.
According to yet another aspect of the invention, the prism block comprising two rhomboidal prisms can be used to separate the entrance pupil of a video endoscope objective. In this embodiment, the prism block is positioned at the aperture which represents the entrance pupil of the video endoscope objective to create two halves of the aperture. On the video chip the two images from the left and right perspective are overlaid. The two images are alternatingly blocked by a LCD shutter thereby allowing the left and right image to be read out from the chip separately. Such a LCD shutter can be integrated in the prism block by substituting the prior described glass window holding the prisms with a pair of LCD shutters. If the image signal for the left and the right image is then processed separately, the stereo video signal can be displayed with the stereo endoscope system described in WO 2014012103, titled “Stereo Endoscope System”. In particular, the stereo endoscope of the present invention can be mechanically and optically coupled to the stereo video cameras described in WO 2014012103 A1.
The described prism block can also be used to separate the exit pupil of stereo endoscopes in a left and right half and expand the distance between the optical axes of the two halves to adapt the stereo endoscope to the optical axes of any stereo endoscope camera.
As described above, prior art stereo endoscope optical systems present in two basic configurations including those with two optical systems and those with a single optical system. Referring to
Referring to
The present invention relates to a stereo endoscope optical system that overcomes the shortcomings of prior art stereo endoscope optical systems by utilizing a single optical system or train in combination with a pupil expander assembly. The pupil expander assembly divides the single entrance pupil of the single optical train into a left half and a right half and separates the left half from the right by an extended distance. The resulting stereo endoscope optical system can be used in a distal end of a surgical endoscope having a diameter that is as small as the diameter of endoscopes including a conventional, single optical system, while providing perspective right and left views of an object field like what is afforded by endoscope that include two, separate optical systems.
Referring to
As depicted in
Referring to
Rhomboidal prisms 74, 76 of prism block 62 divide and separate entrance pupil 59 of the stereo endoscope. As depicted in
Referring to
Referring to
As will be apparent to one skilled in the art, various modifications can be made within the scope of the aforesaid description. Such modifications being within the ability of one skilled in the art form a part of the present invention and are embraced by the claims below.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/17153 | 2/19/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61766576 | Feb 2013 | US |