Endoscopic apparatus with integrated multiple biopsy device

Information

  • Patent Grant
  • 7846107
  • Patent Number
    7,846,107
  • Date Filed
    Friday, May 13, 2005
    19 years ago
  • Date Issued
    Tuesday, December 7, 2010
    13 years ago
Abstract
An imaging endoscope comprising a shaft having a proximal end adapted to be secured to a handle, and a distal end having a biopsy forceps disposed therein. The biopsy forceps includes one or more end-effector elements that are actuated with a control cable that may be connected to the handle. The endoscope shaft includes a biopsy sample lumen that is configured to receive a biopsy sample obtained from the forceps assembly. A sample collection apparatus is attached to the handle to capture multiple biopsy samples. In some embodiments, the endoscope is a single-use endoscope.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices in general and to biopsy devices in particular.


BACKGROUND OF THE INVENTION

It has become well established that there are major health benefits from regular endoscopic examinations of a patient's internal structures such as the alimentary canals and airways, e.g., the esophagus, stomach, lungs, colon, uterus, urethra, kidney, and other organ systems. Endoscopes are also commonly used to perform surgical, therapeutic, diagnostic, or other medical procedures under direct visualization. A conventional imaging endoscope used for such procedures includes an illuminating mechanism such as a fiber optic light guide connected to a proximal source of light, and an imaging means such as an imaging light guide to carry an image to a remote camera, or eye piece, or a miniature video camera within the endoscope itself. In addition, most endoscopes include one or more working channels through which medical devices such as biopsy forceps, snares, fulgration probes, and other tools may be passed in order to perform a procedure at a desired location in the patient's body.


At the proximal end of the endoscope is a handle that includes steering controls and other actuators that allow a user to control the orientation and operation of the endoscope. The endoscope is guided through the patient's tract or canal until an opening at or adjacent the distal end of the endoscope is proximate to the area of the patient's body which is to be examined or receive treatment. At this point, the endoscope allows other tools, such as a catheter or biopsy forceps, to access the targeted area.


Conventional endoscopes are expensive, hand assembled, medical devices costing in the range of $25,000 for an endoscope, and much more for the associated operator console. Because of this expense, these conventional endoscopes are built to withstand repeated disinfections and use upon many patients. Conventional endoscopes are generally built of sturdy materials, which decreases the flexibility of the scope and thus can decrease patient comfort. Furthermore, conventional endoscopes are complex and fragile instruments that frequently need expensive repair as a result of damage during use or during a disinfection procedure.


Low cost, disposable medical devices designated for a single use have become popular for instruments that are difficult to clean properly. Single-use, disposable devices are packaged in sterile wrappers to avoid the risk of pathogenic cross-contamination of diseases such as HIV, hepatitis, and other pathogens. Hospitals generally welcome the convenience of single-use disposable products because they no longer have to be concerned with product age, overuse, breakage, malfunction, and sterilization. One medical device that has not previously been inexpensive enough to be considered truly disposable is the endoscope, such as a colonoscope, bronchoscope, gastroscope, duodenoscope, etc. Such a single-use or disposable endoscope is described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and in a U.S. Continuation-in-Part patent application Ser. No. 10/956,007, filed Sep. 30, 2004, that are assigned to Scimed Life Systems, Inc., now Boston Scientific Scimed, Inc., and are hereby incorporated by reference.


Biopsies are often performed using an endoscope to determine whether a tumor is malignant or to determine the cause of an unexplained inflammation. For example, a gastrointestinal biopsy is typically performed through a flexible endoscope. The endoscope is guided by an operator to the desired location in the body and a tool is inserted through a lumen to the biopsy site. While viewing the biopsy site through the optical lens of the endoscope, an operator manipulates an actuating handle to effect a tissue sampling. After a sample has been obtained, the operator then carefully withdraws the biopsy tool from the endoscope while holding the actuating handle to maintain the jaws in a closed position. The above described endoscopic biopsy procedure generally requires two or three people, including the operator controlling the endoscope, and one or more assistants to actuate the biopsy forceps, withdraw the tissue specimen, place the specimen into a sterile container with a label, and send the container to pathology for analysis.


The process of taking a biopsy presents several challenges, including accurate targeting of the biopsy site, precise and accurate penetration of the biopsy site, preservation of the biopsy tissue upon extraction, and tracking the source of the biopsy sample. Multiple biopsies are often required in order to obtain an accurate diagnosis of malignant tumors, inflammatory conditions, and infectious processes and are also used to improve the diagnostic yield of tissue for later analysis. Multiple biopsies during a single clinical procedure amplify the above-mentioned challenges.


To obtain multiple samples with a conventional biopsy system, biopsy tools must be repeatedly inserted and the sample retrieved, thereby compounding the already awkward procedure. In addition, conventional biopsy systems are not equipped with a sample retrieval device for receiving and cataloging multiple samples, and such systems do not provide a method by which the precise location of the biopsy site can be tracked and correlated with the biopsy sample.


SUMMARY OF THE INVENTION

To address these and other concerns, in one embodiment the present invention is an imaging endoscope comprising a shaft having a proximal end adapted to be secured to a handle, and a distal end with biopsy forceps disposed within the distal end. The biopsy forceps includes a shaft coupled to a bite assembly. The bite assembly includes two or more cooperating end-effector elements that are actuated with one or more control cables. The endoscope shaft includes a biopsy sample lumen that is configured to receive a biopsy sample obtained with the bite assembly. In one embodiment, the handle includes a housing that includes at least one actuator for actuating control wires connected to the biopsy forceps, and a sample collection apparatus configured to capture multiple biopsy samples obtained with the biopsy forceps. The sample collection apparatus includes one or more sample chambers each adapted to receive a sample vial. Each sample chamber includes a port for forming a connection with the biopsy sample lumen in the endoscope shaft and a vacuum inlet port configured to permit a vacuum to be selectively applied to the sample chamber. In some embodiments, the sample chamber is located within the handle. In other embodiments, one or more sample chambers are located in a cassette comprising a plurality of sample vials that is removably coupled to an attachment element on the handle.


In another embodiment, the present invention is a multiple biopsy system that includes an imaging endoscope with a biopsy forceps disposed within a distal end. At a proximal end is a handle having an actuator capable of actuating a control cable connected to the biopsy forceps apparatus. In some embodiments, the biopsy forceps is an apparatus that is separate from the endoscope and is capable of insertion into a tool lumen. In other embodiments, the biopsy forceps apparatus is an integral component of the endoscope. The handle further includes a sample collection apparatus comprising a sample chamber adapted to receive a sample vial and a removable cassette comprising a plurality of sample vials. In some embodiments, the system further comprises a control unit having a tracking system that records coordinates corresponding to each biopsy sample. In additional embodiments, the control unit further includes a digital monitor, graphical user interface, and multiplexer so that biopsy information can be multiplexed onto the display and/or recorded for labeling each biopsy sample.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a diagram illustrating a multiple biopsy system in accordance with one embodiment of the present invention;



FIG. 2 is a cross-sectional view of an endoscope shaft formed in accordance



FIG. 3 illustrates a representative embodiment of biopsy forceps disposed within the distal end of an imaging endoscope in accordance with an embodiment of the present invention;



FIG. 4A illustrates an embodiment of a bite assembly on biopsy forceps disposed within the distal end of an imaging endoscope in accordance with an embodiment of the present invention;



FIG. 4B illustrates another embodiment of a bite assembly on biopsy forceps disposed within the distal end of an imaging endoscope in accordance with an embodiment of the present invention;



FIG. 5A is a partial cut-away view of an embodiment of an endoscope shaft connected to a handle in accordance with an embodiment of the present invention;



FIG. 5B is a partial cut-away view of another embodiment of an endoscope shaft connected to a handle in accordance with an embodiment of the present invention;



FIG. 6A is a partial cut-away view of a handle comprising a sample chamber for retrieving a biopsy sample in accordance with an embodiment of the present invention;



FIG. 6B is a partial cut-away view of the handle shown in FIG. 6A, illustrating a sample retrieval lumen positioned adjacent a sample collection chamber;



FIG. 6C is a partial cut-away view of an embodiment of a sample collection vial;



FIG. 7 is a perspective view of an exemplary embodiment of a sample vial cassette in accordance with an embodiment of the present invention;



FIG. 8A is a perspective view of an embodiment of a handle comprising a circular sample vial cassette in accordance with an embodiment of the present invention;



FIG. 8B is a detailed view of the embodiment of the sample vial cassette shown in FIG. 8A; and



FIG. 9 is a block diagram of one embodiment of a control unit for use with the endoscope system of FIG. 1 formed in accordance with aspects of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

To address the problems associated with obtaining multiple biopsy samples using conventional endoscope systems and others, the present invention is an imaging endoscope having an elongated shaft with a proximal and distal end with biopsy forceps capable of taking multiple biopsy samples disposed within the distal end. The present invention provides many advantages over conventional endoscope systems and biopsy devices. For example, the present invention provides ease of use such that a single operator may obtain multiple biopsy samples without withdrawing the endoscope or the biopsy tool. Other advantages include, but are not limited to, the ability to capture a plurality of biopsy samples into individual sterile containers, the ability to map the location coordinates of the biopsy site, and the use of a programmable firing mechanism for obtaining precise and high quality tissue samples.


The various embodiments of the endoscope described herein may be used with both reusable and low cost, disposable endoscopes, such as an endoscope that is sufficiently inexpensive to manufacture such that it can be a single-use device as described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and in a U.S. Continuation-in-Part patent application Ser. No. 10/956,007, filed Sep. 30, 2004, that are assigned to Scimed Life Systems, Inc., now Boston Scientific Scimed, Inc, and are hereby incorporated by reference.


While the invention is described in terms of a multiple biopsy system and apparatus, it will be understood by one of skill in the art that the endoscope having the integrated biopsy apparatus is a multifunctional device that may also be used for a variety of different diagnostic and interventional procedures, including colonoscopy, upper endoscopy, bronchoscopy, thoracoscopy, laparoscopy, and video endoscopy, etc., in addition to multiple biopsy.



FIG. 1 illustrates the major components of an endoscopic multiple biopsy system 10 according to an embodiment of the present invention. The components of the system 10 include an imaging endoscope 20 comprising an elongated shaft 34 having a distal end 36 and a proximal end 38. The distal end 36 includes an imaging system and the proximal end 38 is connected to a handle 24. The endoscope 20 is functionally connected and controlled by the handle 24, which is, in turn, connected to a control unit 28 via a conduit 80. The control unit 28 functions to provide image processing capabilities for image display on a display monitor 90, as well as a supply of power, fluids, vacuum, and the like to the endoscope 20. A user input device 500, such as a joystick, keyboard or the like allows an operator to input patient data and control the operation of the control unit 28. The endoscope 20 further includes a biopsy forceps 50 that is disposed within the endoscope shaft 34 and is extendable beyond the distal end 36 of the endoscope 20. The biopsy forceps 50 comprises a shaft 56 and a bite assembly 60 that is actuated by an actuator on the handle 24. Tissue samples obtained with the bite assembly 60 are retrieved through a biopsy sample lumen 52 (shown in FIG. 2) and placed in a collection apparatus 200 as described in more detail below. In some embodiments, the biopsy forceps 50 is a separate instrument that is insertable into a lumen in the endoscope 20. In other embodiments, the biopsy forceps 50 is integrally formed with the endoscope 20.


The endoscope 20 can be any single-use or reusable, flexible, partially-flexible, or rigid elongated probe such as, for example, a bronchoscope or a colonoscope. In the embodiment shown in FIG. 1, the endoscope includes an articulation joint 40 proximal to the distal end to provide sufficient flexibility to the distal end 36 of the shaft 34 such that the distal end 36 can be directed over a required deflection range (e.g., 180° or more). The endoscope 20 has a set of control cables, shown best in FIG. 2, that control the motion of the distal end 36. The distal ends of the control cables are attached at, or adjacent to the distal end 36 of the shaft, while the proximal ends of the control cables are attached to actuators in the handle 24.



FIG. 2 is a cross-sectional view of an embodiment of the elongated shaft 34 of the endoscope 20. The endoscope shaft 34 includes a working channel or lumen(s) 42 for the purpose of performing endoscopic procedures and for the purpose of facilitating the delivery or extraction of fluids, gases, and/or medical devices into and out of the body. Also included in the shaft 34 is a biopsy sample lumen 52 that has a distal end that is functionally connected to, or integrally formed with, the biopsy forceps 50 at the distal end 36 of the endoscope 20. The biopsy sample lumen 52 has a proximal end that is functionally connected to the biopsy sample collection apparatus 200. In the embodiment of the endoscope shaft 34 shown in FIG. 2, the biopsy sample lumen 52 is disposed within the biopsy forceps shaft 56, which in turn is disposed within a tool lumen 45. The forceps shaft 56 contains two control cables 55A and 55B that control the bite assembly 60 of the biopsy forceps 50. With continued reference to FIG. 2, the endoscope shaft 34 also includes one or more electrical wires 44, 46 that extend from the distal end 36 of the endoscope to the handle 24 for supplying power to illumination LEDs in the distal end 36 and to transmit images from an image sensor (not shown) in the distal end 36 back to the control unit 28, respectively.


With continued reference to FIG. 2, the shaft 34 also includes at least one pair of control cables 47A, 47B, and preferably two pairs of control cables 47A, 47B and 48A, 48B, that are connected at, or adjacent to, the distal end 36 of the shaft and are actuated to control the distal end 36 of the shaft 34. As best shown in FIG. 1, the handle 24 contains a manually actuated steering mechanism 102 for effecting 4-way steering of the distal end 36 in the up/down and right/left directions. This mechanism 102 includes an inner knob 104 to control up/down steering and an outer knob 103 to control right/left steering. The knobs 103 and 104 are connected to the proximal ends of the control cables 47A, 47B and 48A, 48B, respectively (see FIG. 2), that extend through the endoscope shaft 34 so that rotation of the knobs selectively tightens or relaxes the control cables in order to bend the distal end 36.


In some embodiments, the endoscope 20 may contain a breakout box (not shown) that is positioned midway along the length of the shaft 34 and provides an entrance to the working channel 42 or tool lumen 45 so that additional medical devices such as forceps, snares, fulguration probes, and other tools may be passed through the breakout box and into the working channel 42 or tool lumen 45.



FIG. 3 illustrates a representative embodiment of the endoscope 20 and shows more detail of the biopsy forceps 50 disposed within the distal end 36 of the endoscope 20. As shown in FIG. 3, fitted onto the distal end 36 of the shaft 34 is a distal end cap 110 having a number of ports and the biopsy forceps 50 extending distally beyond the distal end cap 110. The biopsy forceps 50 comprises a shaft 56 having a distal end 58 and a proximal end that is disposed within the tool lumen 45 in the endoscope shaft 34 (hidden in FIG. 3). The biopsy shaft 56 is actuated by a ring 130 that is slidably engaged on the endoscope handle 24 (shown best in FIG. 6A) and is capable of a limited range of back and forth movement within the tool lumen 45. The tool lumen 45 is sized at its distal end so that the biopsy forceps 50 may be retracted into the distal end 36 of the endoscope shaft 34. In the embodiment shown in FIG. 3, the shaft 56 of the biopsy forceps 50 is hollow, and the sample biopsy lumen 52 extends through the hollow shaft 56.


With continued reference to FIG. 3, the biopsy forceps 50 further includes the bite assembly 60 having two or more cooperating end-effector elements 62A and 62B that are pivotably connected at the distal end of the shaft 56. In the embodiment of the forceps shaft 56 shown in FIG. 3, the end-effector elements 62A and 62B are located at positions adjacent to the sample biopsy lumen 52 such that a biopsy sample cut from a body by the end-effector elements 62A, 62B is pulled into the lumen 52 of the biopsy forceps 50 by a vacuum, or some other method.


The end-effector elements 62A and 62B may be in the form of various shapes that are capable of being actuated (e.g., fired) in a repetitive manner in order to obtain a plurality of individual tissue biopsy samples. For example, the end effector elements 62A and 62B may comprise jaws that are shaped into various forms, such as flat or cupped jaws that comprise teeth along their cutting edge to sever and retain a biopsy sample, such as those described in U.S. Pat. Nos. 5,507,296, and 5,666,965, both of which are hereby incorporated by reference. In another example, the end-effector elements 62A and 62B may be shaped into two substantially parallel tangs, one being shorter than the other, as described in U.S. Pat. No. 5,707,392, which is hereby incorporated by reference. In the embodiment of the endoscope 20 shown in FIG. 3, the bite assembly 60 comprises a pair of end-effector elements 62A and 62B in the form of movable cutting jaws. Each jaw 62A, 62B is generally elongated having a hemispherically shaped with an array of teeth 64 disposed along the rim of each jaw 62A and 62B such that closure of the jaws cuts a tissue sample.



FIG. 4A shows another embodiment of a biopsy forceps 50 disposed within the tool lumen 45. The biopsy forceps 50 includes a bite assembly 60 with a cutting blade 66 disposed between the two cutting jaws 62A and 62B. The cutting blade 66 may be located adjacent to the biopsy sample lumen 52 in the forceps shaft 56, or alternatively, the biopsy sample lumen 52 may connect to a hole through the blade 66. The cutting jaws 62A and 62B are levered about a clevis pin 65 which extends through a bore on each respective jaw. The distal end of each jaw 62A, 62B has cutting teeth and the proximal end of each jaw terminates in a pair of tangs 63A, 63B. The control cables 55A and 55B (shown in FIG. 2) are each connected at or adjacent to a tang 63A, 63B of each jaw 62A, 62B so that an actuator tensioning the control cables 55A, 55B engages the distal end 62A, 62B of the jaws to mate together in a cooperative biting action. In one embodiment, the control cables 55A, 55B terminate in the handle 24, and are actuated by a trigger 140 (shown best in FIG. 6B) as further described below.


Also included at the distal end cap 110 of the endoscope 20 is an imaging port 122 that houses an imaging system (not shown) and illumination ports 124A, 124B containing illumination port lenses (not shown). Further included on the distal end cap 110 is an access port 120 that defines the entrance to the working channel lumen 42. The imaging system in the endoscope 20 can be of the optical type (i.e., fiberscope) in which an optical image is carried on a coherent fiber optic bundle to a remote eyepiece or camera. Alternatively, the imaging system can include a distal imaging sensor or a miniature camera, which includes a charge coupled device (CCD) or CMOS imaging sensor. In one embodiment, the endoscope 20 includes a CMOS image sensor, plastic optics, and LED illumination as further described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and in a U.S. Continuation-in-Part patent application Ser. No. 10/956,007, as discussed above.



FIG. 4B shows another embodiment of the distal end of the endoscope 20 with a forceps assembly 70 having end-effector elements levered about a clevis pin 75 in the form of a pair of cup-shaped cutting jaws 72A and 72B which may additionally include cutting teeth (not shown).


Returning again to FIG. 1, as mentioned above, the proximal end 38 of the endoscope shaft 34 is disposed in the handle 24. The handle 24 is also coupled to the control unit 28 with a flexible shaft through which a conduit 80 passes. In an embodiment of the system 10, the conduit 80 functionally interconnects the handle 24 to the control unit 28. The conduit 80 carries image information back to the imaging electronics housed in the control unit 28 from the imaging sensor in the distal end 36 of the endoscope 20. The shaft between the control unit 28 and the handle 24 further carries power for the illumination LEDs, as well as carrying irrigation/insufflation fluids through the shaft 34 to the distal end 36 of the endoscope 20. In one embodiment of the system 10, vacuum pressure is provided through the shaft to a manifold (not shown) in the handle 24 that, in turn, selectively applies vacuum pressure to the working channel 42 and/or to a port connected to the sample collection apparatus 200 in order to suction biopsy samples into the biopsy sample collection apparatus 200 from the biopsy sample lumen 52, as further described below.



FIG. 5A shows a partial cut away of a simplified view of one embodiment of an endoscope shaft 300 connected to a handle 302. The endoscope shaft 300 includes the working channel 42 and the biopsy forceps 50 disposed in the tool lumen 45. The biopsy forceps 50 has a hollow shaft 56, wherein the hollow shaft 56 defines a passage between the jaws of the end-effector elements on the bite assembly 60. A removable sample vial cassette 204 includes multiple sample chambers 202a, 202b, and 202c which receive a corresponding set of sample vials (not shown). The proximal end of the biopsy sample lumen 52 is connected to an inlet port 218 in the sample chamber 202a. A vacuum outlet port 206 leads from the sample chamber 202a to a vacuum line 208 that is, in turn, connected to a vacuum source 212 that is selectively applied by a user and may be contained within the control unit 28. The sample vial cassette 204 may hold from 4 or fewer sample vials up to 10 or more sample vials.


In operation of the endoscope 300 shown in FIG. 5A, the removable cassette 204 is positioned so that the sample vial in the sample chamber 202a is aligned with the proximal end of the biopsy lumen 52. The bite assembly 60 is actuated by a trigger 140 (shown in FIG. 1 and FIG. 6B) on the handle 302 to obtain a biopsy sample, as described in more detail below. A vacuum is selectively applied via the vacuum line 208, thereby pulling the biopsy sample through the biopsy sample lumen 52 in the hollow shaft 56 into the sample vial (not shown) positioned in the sample chamber 202a. Fluid may also be supplied to the sample chamber to allow sample preservation and ease of sample manipulation. The sample vial may then be sealed to maintain the integrity of the sample, and the cassette 204 is moved to a new position corresponding to an empty sample vial in another sample chamber (202b, 202c, etc.) Once the sample vials in the cassette 204 are filled, the cassette is removed from the handle 302 and replaced with another cassette filled with empty vials.



FIG. 5B shows another embodiment of an endoscope shaft 310 connected to a handle 312. The endoscope shaft 310 comprises the working channel 42 and the biopsy forceps 50 disposed within the tool lumen 45. In accordance with this embodiment, the biopsy forceps 50 may be a separate instrument from the endoscope 310 and may be inserted into the tool lumen 45 via the breakout box, described above. The biopsy forceps shaft 56 is retractable into a distal portion of the tool lumen 45. A separate sample biopsy lumen 314 is in fluid communication with the distal portion of the tool lumen 45, such that vacuum may be selectively applied to the sample biopsy lumen 314 via the vacuum line 208. The proximal end of the sample biopsy lumen 314 is in fluid communication with the sample chamber 202b in the sample cassette 204. In operation of the endoscope 310, the removable cassette 204 is positioned so that a sample vial in the sample chamber 202b is aligned with the proximal end of the sample biopsy lumen 314. The bite assembly 60 on the biopsy forceps 50 is actuated by the trigger 140 on the handle 24 to obtain a biopsy sample. The bite assembly 60 holding the biopsy sample is then retracted into the distal portion of the lumen 45 through the use of the ring 130 on the handle 312. Vacuum is selectively applied via the vacuum line 208, thereby pulling the biopsy sample through the sample biopsy lumen 314 into the sample vial positioned in the sample chamber 202b. The sample vial may then be sealed, and the cassette 204 is moved to a new position corresponding to an empty sample vial in the adjacent sample chamber 202c, as described above.



FIG. 6A shows more detail of an embodiment of the handle 24 connected to the proximal end of the endoscope 20. As mentioned above, the forceps shaft 56 is movably disposed within the tool lumen 45. In the embodiment of the handle 24 shown in FIG. 6A, the biopsy sample lumen 52 is disposed within the forceps shaft 56. A pair of control cables 132A, 132B are attached at or adjacent to the proximal end of the forceps shaft 56 of the biopsy forceps 50. The control cables 132A, 132B are actuated by the ring 130 that is slidably engaged in a track 134 on the handle 24. To orient the biopsy forceps 50 in a desired position, an operator pulls the cables 132A and 132B to retract the forceps shaft 56 by moving the ring 130 to a proximal position in the track 134. Conversely, the forceps shaft 56 may be advanced beyond the distal end cap 110 of the endoscope 20 by moving the ring 130 to a distal location in the track 134.


As mentioned above in reference to FIG. 4A, each control cable 55A and 55B is coupled at its distal end to the corresponding end-effector element 62A and 62B (see FIG. 4A) and extends proximally through the endoscope shaft 34 to terminate at the handle 24 where it is actuated by a user input device, such as the trigger 140. In operation, proximal movement of the trigger 140 effectuates a tension force on the control cables 55A and 55B so as to create a pivotable cooperative cutting motion of the end-effector elements 62A and 62B, such that the elements 62A and 62B engage each other. Conversely, movement of the trigger 140 distally effectuates a compression of the control cables 55A and 55B so as to open the end-effector elements 62A and 62B. In some embodiments of the system 10, the trigger 140 provides manual control over the end-effector elements 62A and 62B in the forceps assembly 60. In other embodiments of the system 10, the trigger 140, or other input device that causes the activation of the biopsy forceps, provides an input signal that is actuated (e.g., fired) with a preprogrammed force. The preprogrammed force may be provided by a spring (not shown), pneumatic device, hydraulic, electromotive or other driver mechanism included in the handle 24. While the actuators have been described in terms of rings and triggers, it will be understood by one of skill in the art that other types of controls are possible, such as rotating controls, motor driven, hydraulic, pneumatic controls and the like are also possible.


As further shown in FIG. 6A, the sample chamber 202 is included within the handle 24. The sample chamber 202 includes the inlet port 218 that is in selective fluid communication with the sample retrieval lumen 52, an opening 214 sized to receive a sample vial 220, and a vacuum port 206 attached to a vacuum line 212. The sample vial 220 has a first end 222 with an opening adapted to capture a biopsy sample, and a second end 221 adapted to allow the application of a vacuum pressure through the sample vial, while still retaining the captured biopsy sample, such as, for example, a screen, filter, or other suitable equivalent. As shown in FIG. 6C, in one embodiment, the sample vial 220 has a segmented structure, wherein a series of dividers, such as screens 224A, 224B, 224C and 224D are inserted into position as biopsy samples are collected into each respective segment. The dividers may be inserted by the user, or alternatively, an actuator may be provided in the handle that moves the dividers into position in the sample vial between each sample capture.


In operation, the end-effector elements 62A, 62B are actuated by a user with the trigger 140 to obtain a biopsy sample. The user then slides the ring 130 to a proximal position to position the proximal end of the biopsy sample lumen 52 adjacent to the inlet port 218 on the sample chamber 202 as shown in FIG. 6B. The sample vial 220 is disposed into the opening 214 of the sample chamber 202, (as shown in FIG. 6B) and a vacuum is selectively applied through the vacuum port 208 to capture the biopsy sample from the biopsy sample lumen 52.


In some embodiments, the biopsy sample is retrieved by flushing the sample through the biopsy sample lumen 52 with air and/or water or other liquid supplied from the distal end of the endoscope shaft 34. In such embodiments, an additional lumen that carries the air/water is included in the endoscope shaft 34 and the air/water is supplied from the handle 24, or the control unit 28, or another external source. In some embodiments, the interior walls of the biopsy sample lumen 52 is coated with a hydrophilic lubricious coating to facilitate biopsy sample retrieval.



FIG. 7 shows an embodiment of the sample collection apparatus in the form of a sample vial cassette 404 that is removably secured to the handle 24. The sample vial cassette 404 comprises one or more sample chambers, shown as 402A, 402B, 402C, 402D, and 402E. Each sample chamber 402A, 402B, etc., has an inlet port 418 for connection to the biopsy sample lumen 52, a vacuum port (not shown) in selective fluid communication with the vacuum line 412, and an opening 410A, 410B, 410C, 410D, and 410E adapted to receive a sample vial 220. As shown in FIG. 7, the sample vial 220 is inserted into the opening 410E.


The sample vial cassette 404 is removably secured to the handle 24 with an attachment element 416 and is moved either manually or automatically into position so each sample vial 220 is placed into the sample chamber in line with the biopsy sample lumen 42 and vacuum source to capture a biopsy sample. Once the sample vials are filled, a new cassette 404 may be utilized, or alternatively, the sample vials may be removed and replaced with new vials. Therefore, through the use of the system 10, multiple tissue biopsies samples may be obtained during a single clinical procedure without removing the endoscope 20 and forceps apparatus 50 from the patient.


The sample vial 220 may include an identifier 230 that is preferably a unique identifier, such as a bar code, RFID tag, etc., for biopsy sample tracking. The sample identifier 230 is preferably permanently associated with the sample vial by adhesive label, etching, etc., for tracking through the pathology analysis. The cassette 404 may also include a label 440 including an identifier code that identifies a particular patient, date on which the samples were obtained or other information useful in the processing of tissue samples.


The cassette 404 may be formed into a variety of shapes, such as a rectangular shape, circular shape, and the like. An exemplary embodiment of a sample vial cassette 450 in a circular shape is shown in FIGS. 8A and 8B. As shown in FIG. 8B, the sample vial cassette 450 includes a housing 452 in a substantially cylindrical shape having a plurality of sample vials 460A, 460B, etc., disposed around the periphery of the housing 452. The cassette 450 may include from 4 or fewer sample vials to 10 or more. In use, the cassette 450 is rotated to position a new sample vial within the handle in order to receive a biopsy sample.



FIG. 9 is a block diagram of one exemplary embodiment of the control unit 28 for use in the system 10. The control unit 28 is connected to a source of electrical power, as well as to a plurality of utilities 310, including, for example, an irrigation source, an aeration source, and a source of vacuum. The control unit 28 further includes a processor (not shown), a suite of application software 320, and one or more sensors 380. The application software 320 includes a graphical user interface (GUI) software application 322, a system control software application 324, a network software application 326, and a biopsy sample data management application 330. The control unit 28 further includes an imaging electronics board 350, system electronics 360, and may additionally include a biopsy coordinate mapping system 370. The GUI software application 322 is connected to the user input device 500 via a user input interface 340.


The coordinate mapping system 370 includes means for mapping the coordinates in the body from which a biopsy tissue sample was obtained. In some embodiments, the mapping system 370 includes a coded sensor element, such as an embedded tag, for example, an RFID tag that is deployed into the tissue adjacent to the biopsy site. The position coordinates of the biopsy site may also be obtained using imaging methods such as x-ray or ultrasound technologies that are well known to those of skill in the art. In some embodiments, one or more elements of the biopsy forceps 50 include echogenic markings to improve detection with an ultrasound device. In use, the user may read the position coordinates of the biopsy site just prior to, during, or just after the biopsy is obtained and manually enter the coordinates into the control unit with the input device 500. In other embodiments, the endoscope 20 further includes a position sensor receiver element (not shown) that is tracked by a tracking system using electromagnetic radiation transmitted by two or more external antenna. For example, an electromagnetic sensor element and antenna as described in U.S. Pat. No. 6,593,884 may be used, which is hereby incorporated by reference. In such embodiments, the position coordinates may be automatically recorded in a memory within the control unit 28 and associated in a relational database with the biopsy sample vial identifier 230 via the execution of the biopsy sample management software 330.


In the diagnosis and treatment of conditions, such as malignant tumors, inflammatory conditions, and infectious processes, it is advantageous to observe a lesion over time to determine if the lesion has changed in morphology, thereby requiring an additional biopsy. Accordingly, in some embodiments, the present invention provides GUI navigational controls to allow a user to determine the status of one or more operating parameters of the system 10, such as, for example, the image and location coordinates of the biopsy tissue before a sample is obtained and after the sample has been collected.


System control software applications 324 is the central control program of application software 320 that receives input from the sensors 380 and the handle 24 provides system software control for all features and functions necessary to operate the biopsy sample system 10. In some embodiments, the system control software 324 includes preprogrammed firing modes for actuating the biopsy forceps apparatus 50. Sensors 380 may include, for example, pressure transmitters, temperature sensors, and location sensors, and are used for real-time electronic feedback of hardware operating parameters and position parameters. In some embodiments, the system 10 also may include an optical sensor for capturing an object identifier on a sample vial and/or the sample vial cassette. As each biopsy sample is collected, information related to the sample is entered via a user input device and/or captured automatically and recorded in the control unit 28, including the sample vial identifier 230, the cassette identifier 240, the location coordinates corresponding to the sample, instructions for analysis, images, and the like, using the biopsy sample data management applications 330 in the control unit 28. As shown in FIG. 1, the information related to the sample, such as location coordinates, may be displayed on a graphical user interface 92 on the digital monitor 90 along with a real-time image of the tissue at the biopsy site. The information may be downloaded to a database in a memory device, printed, and may be sent via a network interface to a remote location such as pathology lab.


While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention.

Claims
  • 1. A multiple biopsy system comprising: an endoscope comprising: an elongated shaft;an imaging system at or adjacent a distal end of the elongated shaft;a biopsy forceps disposed within the elongated shaft and having a proximal end, a shaft, and a distal end, wherein the biopsy forceps includes a bite assembly that is movable to obtain a biopsy sample;a handle permanently fixed and stationary relative to the elongated shaft, the handle including one or more controls for operating the endoscope and including an actuator integrated therein for moving the bite assembly of the biopsy forceps;a biopsy lumen configured to receive the biopsy sample obtained with the biopsy forceps; anda sample vial cassette removably secured to the handle, the sample vial cassette having a plurality of sample chambers into which a sample vial is removably disposed, wherein the sample vial cassette is movable with respect to an opening in the handle so as to move a sample vial within the sample vial cassette to a position within the handle so as to be aligned with a proximal end of the biopsy lumen;wherein the biopsy lumen is coupleable to means for retrieving the biopsy sample through the biopsy lumen and into the sample vial of the sample vial cassette aligned with the proximal end of the biopsy lumen.
  • 2. The system of claim 1, wherein multiple biopsy samples are individually received in a corresponding number of sample vials without removing the biopsy forceps from the elongated shaft.
  • 3. The system of claim 1, wherein the means for retrieving the biopsy sample is a vacuum source applied to the proximal end of the biopsy lumen.
  • 4. The system of claim 1, wherein the means for retrieving the biopsy sample is a liquid applied at a distal end of the biopsy lumen to flush the biopsy sample through the biopsy lumen.
  • 5. The system of claim 1, wherein the means for retrieving the biopsy sample is a gas applied at a distal end of the biopsy lumen to blow the biopsy sample through the biopsy lumen.
  • 6. The system of claim 1, wherein the shaft of the biopsy forceps includes a hollow lumen that forms the biopsy lumen.
  • 7. The system of claim 1, wherein the bite assembly is actuated with a programmable firing mechanism.
  • 8. The system of claim 1, wherein the bite assembly includes echogenic markings.
  • 9. The system of claim 1, wherein the elongated shaft includes a tool lumen separate from the biopsy lumen, in which the biopsy forceps is placed.
  • 10. The system of claim 1, wherein each sample chamber of the plurality of sample chambers includes a port for forming a connection with the biopsy lumen and a vacuum port configured to permit a vacuum to be selectively applied to the sample chamber.
  • 11. The system of claim 1, wherein the system further comprises a position tracking system for recording a set of reference coordinates that indicate the position where the biopsy sample was obtained.
  • 12. A kit for obtaining multiple biopsy samples, the kit comprising: i) a single-use endoscope comprising: an elongated shaft;a handle permanently fixed and stationary relative to the elongated shaft, the handle including one or more controls for operating the endoscope and including an actuator integrated therein for controlling a biopsy forceps to obtain a biopsy sample, the biopsy forceps being disposed within the elongated shaft;a biopsy lumen configured to receive the biopsy sample obtained with the biopsy forceps; anda sample chamber integrated within the handle that is in fluid communication with the biopsy lumen in order to receive the biopsy sample from the biopsy lumen; andii) at least one sample vial capable of being removably disposed in the sample chamber for capturing one or more biopsy samples received from the biopsy lumen, the at least one sample vial having a series of removable dividers for separating the one or more biopsy samples.
  • 13. An endoscope comprising: an elongated shafta handle permanently fixed and stationary relative to the elongated shaft, the handle including an opening to receive a sample vial and one or more controls for operating the endoscope and for actuating a biopsy forceps to obtain biopsy samples;a biopsy lumen having a proximal end that terminates at the opening in the handle and is configured to receive a biopsy samples obtained with the biopsy forceps; anda cassette comprising a plurality of removable sample vials, wherein the cassette is secured to the handle and movable thereon to position a sample vial in the opening to receive a biopsy sample from the biopsy lumen.
  • 14. The endoscope of claim 13, wherein the biopsy sample is received through the biopsy lumen by a vacuum source applied to the proximal end of the biopsy lumen.
  • 15. The endoscope of claim 13, wherein the biopsy sample is received through the biopsy lumen by a liquid applied at a distal end of the biopsy lumen to flush the biopsy sample through the biopsy lumen.
  • 16. The endoscope of claim 13, wherein the biopsy sample is received through the biopsy lumen by a gas applied at a distal end of the biopsy lumen to blow the biopsy sample through the biopsy lumen.
  • 17. The endoscope of claim 13, wherein the biopsy forceps includes a shaft having a hollow lumen that forms the biopsy lumen.
  • 18. The endoscope of claim 13, wherein the biopsy forceps are actuated with a programmable firing mechanism.
  • 19. The endoscope of claim 13, wherein the elongated shaft includes a tool lumen separate from the biopsy lumen, in which the biopsy forceps is placed.
  • 20. The endoscope of claim 13, wherein the cassette includes a port for forming a connection with the biopsy lumen and a vacuum port configured to permit a vacuum to be selectively applied to the biopsy lumen to retrieve the biopsy sample.
  • 21. A single use endoscope system comprising: an endoscope configured for multiple biopsy sample collection, the endoscope comprising: an elongated shaft;a handle permanently fixed and stationary relative to the elongated shaft, the handle including one or more controls for operating the endoscope and an actuator integrated therein for moving a bite assembly on a biopsy forceps to obtain a biopsy sample,the biopsy forceps including a shaft having a biopsy lumen configured to receive the biopsy sample obtained with the biopsy forceps;a sample vial cassette removably coupled to the handle, the sample vial cassette having a plurality of sample vials that are selectively positioned by movement of the cassette into an opening within the handle to be in fluid communication with the biopsy lumen in order to receive the biopsy sample from the biopsy lumen; andmeans for retrieving the biopsy sample through the biopsy lumen and into a sample vial that is removably inserted into a sample chamber of the sample vial cassette.
  • 22. A multiple biopsy endoscope comprising: an elongated shafta biopsy forceps disposed within the elongated shaft having a bite assembly that is movable to obtain a biopsy sample;a biopsy lumen in the shaft of the endoscope that receives the biopsy sample obtained with the biopsy forceps;a handle permanently fixed and stationary relative to the elongated shaft, the handle including one or more controls for operating the endoscope and including an actuator integrated therein for moving the bite assembly of the biopsy forceps; anda sample cassette including an array of sample vials removably received therein, wherein the sample cassette is secured to and moveable on the handle to selectively position each removable sample vial of the array in an opening in the handle in fluid communication with the biopsy lumen to receive the biopsy sample.
  • 23. The kit of claim 12, wherein the series of removable dividers are positioned axially along a length of the at least one sample vial.
  • 24. The kit of claim 12, further including an imaging system at or adjacent a distal end of the elongated shaft.
  • 25. The endoscope of claim 13, further including an imaging system at or adjacent a distal end of the elongated shaft.
  • 26. The system of claim 21, further including an imaging system at or adjacent a distal end of the elongated shaft.
  • 27. The endoscope of claim 22, further including an imaging system at or adjacent a distal end of the elongated shaft.
US Referenced Citations (570)
Number Name Date Kind
3266059 Stelle Aug 1966 A
3470876 Barchilon Oct 1969 A
3572325 Bazell et al. Mar 1971 A
3581738 Moore Jun 1971 A
4108211 Tanaka Aug 1978 A
4286585 Ogawa Sep 1981 A
4294162 Fowler et al. Oct 1981 A
4315309 Coli Feb 1982 A
4351323 Ouchi et al. Sep 1982 A
4425113 Bilstad Jan 1984 A
4432349 Oshiro Feb 1984 A
4471766 Terayama Sep 1984 A
4473841 Murakoshi et al. Sep 1984 A
4488039 Sato et al. Dec 1984 A
4491865 Danna et al. Jan 1985 A
4495134 Ouchi et al. Jan 1985 A
4499895 Takayama Feb 1985 A
4513235 Acklam et al. Apr 1985 A
4515444 Prescott et al. May 1985 A
4516063 Kaye et al. May 1985 A
4519391 Murakoshi May 1985 A
4559928 Takayama Dec 1985 A
4573450 Arakawa Mar 1986 A
4580210 Nordstrom Apr 1986 A
4586923 Gould et al. May 1986 A
4615330 Nagasaki et al. Oct 1986 A
4616630 Arakawa Oct 1986 A
4617915 Arakawa Oct 1986 A
4621618 Omagari et al. Nov 1986 A
4625714 Toyota Dec 1986 A
4631582 Nagasaki et al. Dec 1986 A
4633303 Nagasaki et al. Dec 1986 A
4633304 Nagasaki Dec 1986 A
4643170 Miyazaki et al. Feb 1987 A
4646723 Arakawa Mar 1987 A
4649904 Krauter et al. Mar 1987 A
4651202 Arakawa Mar 1987 A
4652093 Stephen et al. Mar 1987 A
4652916 Suzaki et al. Mar 1987 A
4654701 Yabe Mar 1987 A
RE32421 Hattori May 1987 E
4662725 Nisioka May 1987 A
4663657 Nagasaki et al. May 1987 A
4667655 Ogiu et al. May 1987 A
4674844 Nishioka et al. Jun 1987 A
4686963 Cohen et al. Aug 1987 A
4697210 Toyota et al. Sep 1987 A
4700693 Lia et al. Oct 1987 A
4714075 Krauter et al. Dec 1987 A
4716457 Matsuo Dec 1987 A
4719508 Sasaki et al. Jan 1988 A
4727417 Kanno et al. Feb 1988 A
4727418 Kato et al. Feb 1988 A
4745470 Yabe et al. May 1988 A
4745471 Takamura et al. May 1988 A
4746974 Matsuo May 1988 A
4748970 Nakajima Jun 1988 A
4755029 Okobe Jul 1988 A
4762119 Allred et al. Aug 1988 A
4765312 Sasa et al. Aug 1988 A
4766489 Kato Aug 1988 A
4787369 Allred et al. Nov 1988 A
4790294 Allred et al. Dec 1988 A
4794913 Shimonaka et al. Jan 1989 A
4796607 Allred et al. Jan 1989 A
4800869 Nakajima Jan 1989 A
4805596 Hatori Feb 1989 A
4806011 Bettinger Feb 1989 A
4819065 Eino Apr 1989 A
4819077 Kikuchi et al. Apr 1989 A
4821116 Nagasaki et al. Apr 1989 A
4824225 Nishioka Apr 1989 A
4831437 Nishioka et al. May 1989 A
4836187 Iwakoshi et al. Jun 1989 A
4844052 Iwakoshi et al. Jul 1989 A
4845553 Konomura et al. Jul 1989 A
4845555 Yabe et al. Jul 1989 A
4847694 Nishihara Jul 1989 A
4853772 Kikuchi Aug 1989 A
4860731 Matsuura Aug 1989 A
4867546 Nishioka et al. Sep 1989 A
4868647 Uehara et al. Sep 1989 A
4869237 Eino et al. Sep 1989 A
4873965 Danieli Oct 1989 A
4875468 Krauter et al. Oct 1989 A
4877314 Kanamori Oct 1989 A
4882623 Uchikubo Nov 1989 A
4884134 Tsuji et al. Nov 1989 A
4885634 Yabe Dec 1989 A
4890159 Ogiu Dec 1989 A
4894715 Uchikubo et al. Jan 1990 A
4895431 Tsujiuchi et al. Jan 1990 A
4899731 Takayama et al. Feb 1990 A
4899732 Cohen Feb 1990 A
4899787 Ouchi et al. Feb 1990 A
4905666 Fukuda Mar 1990 A
4918521 Yabe et al. Apr 1990 A
4919112 Siegmund Apr 1990 A
4919114 Miyazaki Apr 1990 A
4920980 Jackowski May 1990 A
4928172 Uehara et al. May 1990 A
4931867 Kikuchi Jun 1990 A
4941454 Wood et al. Jul 1990 A
4941456 Wood et al. Jul 1990 A
4951134 Nakasima et al. Aug 1990 A
4951135 Sasagawa et al. Aug 1990 A
4952040 Igarashi Aug 1990 A
4960127 Noce et al. Oct 1990 A
4961110 Nakamura Oct 1990 A
4967269 Sasagawa et al. Oct 1990 A
4971034 Doi et al. Nov 1990 A
4973311 Iwakoshi et al. Nov 1990 A
4979497 Matsuura et al. Dec 1990 A
4982725 Hibino et al. Jan 1991 A
4984878 Miyano Jan 1991 A
4986642 Yokota et al. Jan 1991 A
4987884 Nishioka et al. Jan 1991 A
4989075 Ito Jan 1991 A
4989581 Tamburrino et al. Feb 1991 A
4996974 Ciarlei Mar 1991 A
4996975 Nakamura Mar 1991 A
5001556 Nakamura et al. Mar 1991 A
5005558 Aomori Apr 1991 A
5005957 Kanamori et al. Apr 1991 A
5007408 Ieoka Apr 1991 A
5018509 Suzuki et al. May 1991 A
5022382 Ohshoki et al. Jun 1991 A
5029016 Hiyama et al. Jul 1991 A
5034888 Uehara et al. Jul 1991 A
5040069 Matsumoto et al. Aug 1991 A
RE33689 Nishioka et al. Sep 1991 E
5045935 Kikuchi Sep 1991 A
5049989 Tsuji Sep 1991 A
5050584 Matsuura Sep 1991 A
5050974 Takasugi et al. Sep 1991 A
5056503 Nagasaki Oct 1991 A
5061994 Takahashi Oct 1991 A
5068719 Tsuji Nov 1991 A
5081524 Tsuruoka et al. Jan 1992 A
5087989 Igarashi Feb 1992 A
5110645 Matsumoto et al. May 1992 A
5111281 Sekiguchi May 1992 A
5111306 Kanno et al. May 1992 A
5111804 Funakoshi May 1992 A
5113254 Kanno et al. May 1992 A
5119238 Igarashi Jun 1992 A
5131393 Ishiguro et al. Jul 1992 A
5137013 Chiba et al. Aug 1992 A
5140265 Sakiyama et al. Aug 1992 A
5159446 Hibino et al. Oct 1992 A
5170775 Tagami Dec 1992 A
5172225 Takahashi et al. Dec 1992 A
5174293 Hagiwara Dec 1992 A
5176629 Kullas et al. Jan 1993 A
5191878 Iida et al. Mar 1993 A
5198931 Igarashi Mar 1993 A
5201908 Jones Apr 1993 A
5208702 Shiraiwa May 1993 A
5209220 Hiyama et al. May 1993 A
5225958 Nakamura Jul 1993 A
5228356 Chuang Jul 1993 A
5243416 Nakazawa Sep 1993 A
5243967 Hibino Sep 1993 A
5257628 Ishiguro et al. Nov 1993 A
5271381 Ailinger et al. Dec 1993 A
RE34504 Uehara et al. Jan 1994 E
5291010 Tsuji Mar 1994 A
5299559 Bruce et al. Apr 1994 A
5311858 Adair May 1994 A
5325845 Adair et al. Jul 1994 A
5331551 Tsuruoka et al. Jul 1994 A
5342299 Snoke et al. Aug 1994 A
5347989 Monroe et al. Sep 1994 A
5374953 Sasaki et al. Dec 1994 A
5379757 Hiyama et al. Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5390662 Okada Feb 1995 A
5400769 Tanii et al. Mar 1995 A
5402768 Adair Apr 1995 A
5402769 Tsuji Apr 1995 A
5409485 Suda Apr 1995 A
5412478 Ishihara et al. May 1995 A
5418649 Igarashi May 1995 A
5420644 Watanabe May 1995 A
5431645 Smith et al. Jul 1995 A
5434615 Matsumoto Jul 1995 A
5436640 Reeves Jul 1995 A
5436767 Suzuki et al. Jul 1995 A
5440341 Suzuki et al. Aug 1995 A
5464007 Krauter et al. Nov 1995 A
5469840 Tanii et al. Nov 1995 A
5473235 Lance et al. Dec 1995 A
5482029 Sekiguchi et al. Jan 1996 A
5484407 Osypka Jan 1996 A
5485316 Mori et al. Jan 1996 A
5496260 Krauter et al. Mar 1996 A
5507296 Bales et al. Apr 1996 A
5515449 Tsuruoka et al. May 1996 A
5518501 Oneda et al. May 1996 A
5524634 Turkel et al. Jun 1996 A
5538008 Crowe Jul 1996 A
5543831 Tsuji et al. Aug 1996 A
5569158 Suzuki et al. Oct 1996 A
5569159 Anderson et al. Oct 1996 A
5586262 Komatsu et al. Dec 1996 A
5589854 Tsai Dec 1996 A
5591202 Slater et al. Jan 1997 A
5608451 Konno et al. Mar 1997 A
5619380 Agasawa et al. Apr 1997 A
5622528 Hamano et al. Apr 1997 A
5631695 Nakamura et al. May 1997 A
5633203 Adair May 1997 A
5643203 Beiser et al. Jul 1997 A
5645075 Palmer et al. Jul 1997 A
5647840 D'Amelio et al. Jul 1997 A
5658238 Suzuki et al. Aug 1997 A
5666965 Bales et al. Sep 1997 A
5667477 Segawa Sep 1997 A
5674182 Suzuki et al. Oct 1997 A
5674197 van Muiden et al. Oct 1997 A
5685823 Ito et al. Nov 1997 A
5685825 Takase et al. Nov 1997 A
5691853 Miyano Nov 1997 A
5695450 Yabe et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5702349 Morizumi Dec 1997 A
5703724 Miyano Dec 1997 A
5704371 Shepard Jan 1998 A
5704896 Fukunishi et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5708482 Takahashi et al. Jan 1998 A
5721566 Rosenberg et al. Feb 1998 A
5724068 Sanchez et al. Mar 1998 A
5728045 Komi Mar 1998 A
5739811 Rosenberg et al. Apr 1998 A
5740801 Branson Apr 1998 A
5746696 Kondo May 1998 A
5764809 Nomami et al. Jun 1998 A
5767839 Rosenberg Jun 1998 A
5781172 Engel et al. Jul 1998 A
5788714 Ouchi Aug 1998 A
5789047 Sasaki et al. Aug 1998 A
5793539 Konno et al. Aug 1998 A
5805140 Rosenberg et al. Sep 1998 A
5810715 Moriyama Sep 1998 A
5812983 Kumagai Sep 1998 A
5819736 Avny et al. Oct 1998 A
5820591 Thompson et al. Oct 1998 A
5821466 Clark et al. Oct 1998 A
5821920 Rosenberg et al. Oct 1998 A
5823948 Ross, Jr. et al. Oct 1998 A
5827186 Chen et al. Oct 1998 A
5827190 Palcic et al. Oct 1998 A
5828197 Martin et al. Oct 1998 A
5828363 Yaniger et al. Oct 1998 A
5830124 Suzuki et al. Nov 1998 A
5830128 Tanaka Nov 1998 A
5836869 Kudo et al. Nov 1998 A
5837023 Koike et al. Nov 1998 A
5840014 Miyano et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843000 Nishioka et al. Dec 1998 A
5846183 Chilcoat Dec 1998 A
5848978 Cecchi Dec 1998 A
5855560 Idaomi et al. Jan 1999 A
5857963 Pelchy et al. Jan 1999 A
5865724 Palmer et al. Feb 1999 A
5868664 Speier et al. Feb 1999 A
5868666 Okada et al. Feb 1999 A
5871453 Banik et al. Feb 1999 A
5873816 Kagawa et al. Feb 1999 A
5873866 Kondo et al. Feb 1999 A
5876326 Takamura et al. Mar 1999 A
5876331 Wu et al. Mar 1999 A
5876373 Giba et al. Mar 1999 A
5876427 Chen et al. Mar 1999 A
5877819 Branson Mar 1999 A
5879284 Tsujita Mar 1999 A
5880714 Rosenberg et al. Mar 1999 A
5882293 Ouchi Mar 1999 A
5882339 Beiser et al. Mar 1999 A
5889670 Schuler et al. Mar 1999 A
5889672 Schuler et al. Mar 1999 A
5892630 Broome Apr 1999 A
5895350 Hori Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5897525 Dey et al. Apr 1999 A
5907487 Rosenberg et al. May 1999 A
5916175 Bauer Jun 1999 A
5923018 Kameda et al. Jul 1999 A
5928136 Barry Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5929900 Yamanaka Jul 1999 A
5929901 Adair et al. Jul 1999 A
5931833 Silverstein Aug 1999 A
5933809 Hunt et al. Aug 1999 A
5935085 Welsh et al. Aug 1999 A
5936778 Miyano et al. Aug 1999 A
5941817 Crawford Aug 1999 A
5950168 Simborg et al. Sep 1999 A
5951462 Yamanaka Sep 1999 A
5951489 Bauer Sep 1999 A
5956416 Tsuruoka et al. Sep 1999 A
5956689 Everhart Sep 1999 A
5956690 Haggerson et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5976070 Ono et al. Nov 1999 A
5976074 Moriyama Nov 1999 A
5980454 Broome Nov 1999 A
5980468 Zimmon Nov 1999 A
5986693 Adair et al. Nov 1999 A
5991729 Barry et al. Nov 1999 A
5991730 Lubin et al. Nov 1999 A
5999168 Rosenberg et al. Dec 1999 A
6002425 Yamanaka et al. Dec 1999 A
6007531 Snoke et al. Dec 1999 A
6014630 Jeacock et al. Jan 2000 A
6015088 Parker et al. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6020875 Moore et al. Feb 2000 A
6020876 Rosenberg et al. Feb 2000 A
6026363 Shepard Feb 2000 A
6030360 Biggs Feb 2000 A
6032120 Rock et al. Feb 2000 A
6039728 Berlien et al. Mar 2000 A
6043839 Adair et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6057828 Rosenberg et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6061004 Rosenberg May 2000 A
6067077 Martin et al. May 2000 A
6071248 Zimmon Jun 2000 A
6075555 Street Jun 2000 A
6078308 Rosenberg et al. Jun 2000 A
6078353 Yamanaka et al. Jun 2000 A
6078876 Rosenberg et al. Jun 2000 A
6080104 Ozawa et al. Jun 2000 A
6081809 Kumagai Jun 2000 A
6083152 Strong Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6095971 Takahashi Aug 2000 A
6099465 Inoue Aug 2000 A
6100874 Schena et al. Aug 2000 A
6104382 Martin et al. Aug 2000 A
6120435 Eino Sep 2000 A
6125337 Rosenberg et al. Sep 2000 A
6128006 Rosenberg et al. Oct 2000 A
6132369 Takahashi Oct 2000 A
6134056 Nakamuka Oct 2000 A
6134506 Rosenberg et al. Oct 2000 A
6135946 Konen et al. Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6142956 Kortenbach et al. Nov 2000 A
6146355 Biggs Nov 2000 A
6149607 Simpson et al. Nov 2000 A
6152877 Masters Nov 2000 A
6154198 Rosenberg Nov 2000 A
6154248 Ozawa et al. Nov 2000 A
6155988 Peters Dec 2000 A
6174292 Kortenbach Jan 2001 B1
6181481 Yamamoto et al. Jan 2001 B1
6184922 Saito et al. Feb 2001 B1
6193714 McGaffigan et al. Feb 2001 B1
6195592 Schuler et al. Feb 2001 B1
6203493 Ben-Haim Mar 2001 B1
6206824 Ohara et al. Mar 2001 B1
6211904 Adair Apr 2001 B1
6216104 Moshfeghi et al. Apr 2001 B1
6219091 Yamanaka et al. Apr 2001 B1
6221070 Tu et al. Apr 2001 B1
6241668 Herzog Jun 2001 B1
6260994 Matsumoto et al. Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6272470 Teshima Aug 2001 B1
6275255 Adair et al. Aug 2001 B1
6283960 Ashley Sep 2001 B1
6295082 Dowdy et al. Sep 2001 B1
6299625 Bacher Oct 2001 B1
6309347 Takahashi et al. Oct 2001 B1
6310642 Adair et al. Oct 2001 B1
6319196 Minami Nov 2001 B1
6319197 Tsuji et al. Nov 2001 B1
6322522 Zimmon Nov 2001 B1
6334844 Akiba Jan 2002 B1
6346075 Arai et al. Feb 2002 B1
6366799 Acker et al. Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6398724 May et al. Jun 2002 B1
6413207 Minami Jul 2002 B1
6421078 Akai et al. Jul 2002 B1
6425535 Akiba Jul 2002 B1
6425858 Minami Jul 2002 B1
6436032 Eto et al. Aug 2002 B1
6441845 Matsumoto Aug 2002 B1
6447444 Avni et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6453190 Acker et al. Sep 2002 B1
6454162 Teller Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6459447 Okada et al. Oct 2002 B1
6468204 Sendai et al. Oct 2002 B2
6475141 Abe Nov 2002 B2
6478730 Bala et al. Nov 2002 B1
6489987 Higuchi et al. Dec 2002 B1
6496827 Kozam et al. Dec 2002 B2
6498948 Ozawa et al. Dec 2002 B1
6503193 Iwasaki et al. Jan 2003 B1
6520908 Ikeda et al. Feb 2003 B1
6524234 Ouchi Feb 2003 B2
6530882 Farkas et al. Mar 2003 B1
6533722 Nakashima Mar 2003 B2
6540669 Abe et al. Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6545703 Takahashi et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6558317 Takahashi et al. May 2003 B2
6561971 Akiba May 2003 B1
6564120 Richard et al. May 2003 B1
6565507 Kamata et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6574629 Cooke, Jr. et al. Jun 2003 B1
6589162 Nakashima et al. Jul 2003 B2
6595913 Takahashi Jul 2003 B2
6597390 Higuchi Jul 2003 B1
6599239 Hayakawa et al. Jul 2003 B2
6602186 Sugimoto et al. Aug 2003 B1
6605035 Ando et al. Aug 2003 B2
6609135 Omori et al. Aug 2003 B1
6611846 Stoodley Aug 2003 B1
6614969 Eichelberger et al. Sep 2003 B2
6616601 Hayakawa Sep 2003 B2
6623424 Hayakawa et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638214 Akiba Oct 2003 B2
6638215 Kobayashi Oct 2003 B2
6641528 Torii Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656110 Irion et al. Dec 2003 B1
6656112 Miyanaga Dec 2003 B2
6659940 Adler Dec 2003 B2
6663561 Sugimoto et al. Dec 2003 B2
6669629 Matsui Dec 2003 B2
6669643 Dubinsky Dec 2003 B1
6673012 Fujii et al. Jan 2004 B2
6677984 Kobayashi et al. Jan 2004 B2
6678397 Omori et al. Jan 2004 B1
6682479 Takahashi et al. Jan 2004 B1
6685631 Minami Feb 2004 B2
6686949 Kobayashi et al. Feb 2004 B2
6690409 Takahashi Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6692431 Kazakevich Feb 2004 B2
6697101 Takahashi et al. Feb 2004 B1
6699181 Wako Mar 2004 B2
6702737 Hinto et al. Mar 2004 B2
6711426 Benaron et al. Mar 2004 B2
6715068 Abe Mar 2004 B1
6716162 Hakamata Apr 2004 B2
6728599 Wang et al. Apr 2004 B2
6730018 Takase May 2004 B2
6736773 Wendlandt et al. May 2004 B2
6743240 Smith et al. Jun 2004 B2
6749559 Krass et al. Jun 2004 B1
6749560 Konstorum et al. Jun 2004 B1
6749561 Kazakevich Jun 2004 B2
6753905 Okada et al. Jun 2004 B1
6758806 Kamrava et al. Jul 2004 B2
6758807 Minami Jul 2004 B2
6758842 Irion et al. Jul 2004 B2
6778208 Takeshige et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6785410 Vining et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6796938 Sendai Sep 2004 B2
6796939 Hirata et al. Sep 2004 B1
6798533 Tipirneni Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6800057 Tsujita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6824539 Novak Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6829003 Takami Dec 2004 B2
6830545 Bendall Dec 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6840932 Lang Jan 2005 B2
6842196 Swift et al. Jan 2005 B1
6846286 Suzuki et al. Jan 2005 B2
6847933 Hastings Jan 2005 B1
6849043 Kondo Feb 2005 B2
6850794 Shahidi Feb 2005 B2
6855109 Obata et al. Feb 2005 B2
6858004 Ozawa et al. Feb 2005 B1
6858014 Damarati Feb 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6863650 Irion Mar 2005 B1
6863661 Carrillo et al. Mar 2005 B2
6868195 Fujita Mar 2005 B2
6871086 Nevo et al. Mar 2005 B2
6873352 Mochida et al. Mar 2005 B2
6876380 Abe et al. Apr 2005 B2
6879339 Ozawa Apr 2005 B2
6881188 Furuya et al. Apr 2005 B2
6882785 Eichelberger et al. Apr 2005 B2
6887195 Pilvisto May 2005 B1
6890294 Niwa et al. May 2005 B2
6892090 Verard et al. May 2005 B2
6892112 Wang et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6898086 Takami et al. May 2005 B2
6899673 Ogura et al. May 2005 B2
6899674 Viebach et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6900829 Ozawa et al. May 2005 B1
6902527 Doguchi et al. Jun 2005 B1
6902529 Onishi et al. Jun 2005 B2
6903761 Abe et al. Jun 2005 B1
6903883 Amanai Jun 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905462 Homma Jun 2005 B1
6908427 Fleener et al. Jun 2005 B2
6908429 Heimberger et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6916286 Kazakevich Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6928490 Bucholz et al. Aug 2005 B1
6930706 Kobayahi et al. Aug 2005 B2
6932761 Maeda et al. Aug 2005 B2
6934093 Kislev et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6943946 Fiete Sep 2005 B2
6943959 Homma Sep 2005 B2
6943966 Konno Sep 2005 B2
6944031 Takami Sep 2005 B2
6949068 Taniguchi et al. Sep 2005 B2
6950691 Uchikubo Sep 2005 B2
6955671 Uchikubo Oct 2005 B2
20010039370 Takahashi et al. Nov 2001 A1
20010049491 Shimada Dec 2001 A1
20020017515 Obata et al. Feb 2002 A1
20020028984 Hayakawa et al. Mar 2002 A1
20020055669 Konno May 2002 A1
20020080248 Adair et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087166 Brock et al. Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020193664 Ross et al. Dec 2002 A1
20030032863 Kazakevich Feb 2003 A1
20030069897 Roy et al. Apr 2003 A1
20030073928 Kortenbach et al. Apr 2003 A1
20030149338 Francois et al. Aug 2003 A1
20030181905 Long Sep 2003 A1
20040049097 Miyake Mar 2004 A1
20040054258 Maeda et al. Mar 2004 A1
20040059253 Martone et al. Mar 2004 A1
20040073083 Ikeda et al. Apr 2004 A1
20040073084 Maeda et al. Apr 2004 A1
20040073085 Ikeda et al. Apr 2004 A1
20040147809 Kazakevich Jul 2004 A1
20040167379 Akiba Aug 2004 A1
20040183010 Reilly et al. Sep 2004 A1
20040249247 Iddan Dec 2004 A1
20040257608 Tipirneni Dec 2004 A1
20050197536 Banik et al. Sep 2005 A1
20050197861 Omori et al. Sep 2005 A1
20050203341 Welker et al. Sep 2005 A1
20050228697 Funahashi Oct 2005 A1
Foreign Referenced Citations (25)
Number Date Country
0 689 851 Jan 1996 EP
1 300 883 Apr 2003 EP
58-78635 May 1983 JP
05-31071 Feb 1993 JP
05-091972 Apr 1993 JP
06-105800 Apr 1994 JP
06-254048 Sep 1994 JP
07-8441 Jan 1995 JP
10-113330 May 1998 JP
10-286221 Oct 1998 JP
11-216113 Aug 1999 JP
3219521 Aug 2001 JP
2002-102152 Apr 2002 JP
2002-177197 Jun 2002 JP
2002-185873 Jun 2002 JP
2002-253481 Sep 2002 JP
3372273 Nov 2002 JP
2003-075113 Mar 2003 JP
3482238 Oct 2003 JP
WO 9313704 Jul 1993 WO
WO 9833436 Aug 1998 WO
WO 9907288 Feb 1999 WO
WO 2004016310 Feb 2004 WO
WO 2005023082 Mar 2005 WO
WO 2006038634 Apr 2006 WO
Related Publications (1)
Number Date Country
20060258955 A1 Nov 2006 US