The present invention generally relates to medical devices and in particular to variceal banding devices.
It has become well established that there are major public health benefits from regular endoscopic examinations as an aid to the early detection of disease of internal structures such as the alimentary and excretory canals and airways, e.g., the colon, esophagus, lungs, uterus, bladder, bronchi, and other organ systems. A conventional imaging endoscope used for such procedures comprises a flexible elongated tube with a fiber optic light guide that directs illuminating light from an external light source to the distal tip where it illuminates the region (i.e., tissue, varices) to be examined. Frequently, additional optical components are incorporated to adjust the spread of the light exiting the fiber bundle and the distal tip. An objective lens and fiber optic imaging light guide communicating with a camera at the proximal end of the scope, or an imaging camera chip at the distal tip, produce an image that is displayed to the operator. In addition, most endoscopes include one or more working channels through which medical devices such as biopsy forceps, snares, fulgration probes, and other tools may be passed.
Conventional endoscopes are expensive hand assembled medical devices costing in the range of $25,000 for an endoscope and much more for the associated operator console. Because of this expense, these conventional endoscopes are built to withstand repeated disinfections and use upon many patients. Conventional endoscopes are generally built of sturdy materials, which decreases the flexibility of the scope and thus can decrease patient comfort. Furthermore, conventional endoscopes are complex and fragile instruments that frequently need expensive repair as a result of damage during use or during a disinfection procedure.
Low cost, disposable medical devices designated for a single use have become popular for instruments that are difficult to sterilize or clean properly. Single-use, disposable devices are packaged in sterile wrappers to avoid the risk of pathogenic cross-contamination of diseases such as HIV, hepatitis, and other pathogens. Hospitals generally welcome the convenience of single-use disposable products because they no longer have to be concerned with product age, overuse, breakage, malfunction and sterilization. One medical device that has not previously been inexpensive enough to be considered truly disposable is the endoscope, such as a colonoscope, bronchoscope, gastroscope, duodenoscope, etc. Such a single-use or disposable endoscope has now been developed and is described in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, now patented as U.S. Pat. No. 7,413,543, and in a U.S. Continuation-in-Part patent application Ser. No. 10/956,007, filed Sep. 30, 2004, now patented as U.S. Pat. No. 7,578,786, that are assigned to Scimed Life Systems, Inc., now Boston Scientific Scimed, Inc., and are hereby incorporated by reference.
Vascular and lymphatic malformations, otherwise known as varices, pose an extremely challenging treatment dilemma for physicians and for their patients. If varices burst, they can be obliterated by injecting a drug that turns the varices into sclerotic tissue, known as sclerotherapy. The use of sclerotherapy to treat and prevent active hemorrhage has been demonstrated to be one effective intervention; however, there are potential complications associated with the use of various sclerosing agents, such as post-injection fever, swelling, and varying degrees of discomfort. In view of the potential complications associated with sclerotherapy, the development of endoscopic band ligation is now considered a primary intervention for managing active bleeding. The principle behind the development of endoscopic variceal banding is similar to band ligation of hemorrhoids and involves placing elastic bands around the varices. The object of such ligation is to position an elastic band over the targeted region, stretch a band over the region, and release it so that it contracts, thereby applying inward pressure on the section of tissue caught within the band. The effect of the pressure applied by the band is to stop circulation through the targeted tissue, thereby causing the tissue to die. The body eventually sloughs off the banded tissue, or the tissue may be removed later by an endoscope.
Conventional variceal banding systems typically consist of an outer housing cylinder that is snapped-on, frictionally coupled, or otherwise removably attached to the distal end of a conventional endoscope. An inner banding cylinder is then mounted within the outer housing cylinder, with a single band and an associated trip wire threaded through the biopsy channel of the endoscope. While the method of variceal banding has become increasingly popular among physicians, the conventional banding system has several drawbacks. For example, because the banding systems generally contain a single ligation band, the procedure often involves withdrawing and reloading the device with one or more additional ligation bands. In addition, the conventional systems require the user to manually control the trip wire, thereby resulting in a lack of consistent band deployment. Further, the conventional banding systems have poor visualization capabilities due in part to the limitations of conventional video imaging systems and to the visual obstruction from the banding cylinder. Finally, the conventional banding system is removably attached to a conventional endoscope and, therefore, assembly of the endoscope with the banding device must be done prior to each clinical use followed by disassembly and sterilization of the components after each use.
To address these and other concerns, in one embodiment the present invention is an imaging endoscope comprising a shaft having a proximal end, a distal end, and a variceal banding apparatus fixedly attached to the distal end. The variceal banding apparatus includes a substantially cylindrical hood adapted to receive a plurality of ligation bands. A trigger cable capable of individually deploying each ligation band extends from proximal end of the shaft to the hood. In some embodiments, the endoscope is a single-use endoscope. In another embodiment, the present invention is a system that includes an imaging endoscope having an integrated variceal banding apparatus, a control unit having an actuator capable of tensioning a trigger cable connected to the variceal banding apparatus, and a user input device. In operation of the system, the control unit receives commands from the user input device and digitally actuates the actuator, thereby deploying a ligation band. In another embodiment, the endoscope includes a manual handle with a trigger for actuating the trigger cable, thereby deploying a ligation band. In some embodiments, the system further comprises means for tracking the number of ligation bands remaining on the variceal banding apparatus.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
As used herein, the term “varix” (plural “varices”) refers to an abnormally dilated or swollen vein, artery, or lymph vessel, including esophageal varices and paraesophageal varices. Also included are polyps and hemorrhoids, such as anorectal hemorrhoids or any other tissue that requires removal.
As used herein, the term “ligation” refers to the use of an elastic ring to encircle a varix such that pressure is applied to the varix, thereby cutting off blood flow into the varix.
To address the problems associated with conventional variceal banding systems and others, the present invention is an imaging endoscope having an elongated shaft with a proximal and distal end with a variceal banding apparatus fixedly attached at the distal end. The present system provides many advantages over conventional variceal banding systems, some of which will be discussed in more detail below. For example, several advantages of the present system include, but are not limited to, ease of use, superior visualization, increased control over ligation band deployment, improved band retention, and an accurate count on the number of bands deployed in a procedure.
The various embodiments of the endoscope described herein may be used with both re-useable and low cost, disposable endoscopes, such as an endoscope that is sufficiently inexpensive to manufacture such that it can be a single-use device as described in U.S. patent application Ser. Nos. 10/811,781, filed Mar. 29, 2004, and 10/956,007, filed Sep. 30, 2004, now patented as U.S. Pat. Nos. 7,413,543 and 7,578,786, respectively, that are assigned to Scimed Life Systems, Inc., and hereby incorporated by reference.
While the invention is described in terms of a variceal banding system and apparatus, it will be understood by one of skill in the art that the endoscope having the integrated variceal banding apparatus is a multifunctional device that may also be used for a variety of different diagnostic and interventional procedures, including colonoscopy, upper endoscopy, bronchoscopy, thoracoscopy, laparoscopy, and video endoscopy, etc., in addition to variceal ligation. Additionally, the variceal banding system may use such banding techniques on other tissue, and thus, is not limited to treatment of varices.
In the embodiment of the system 100 shown in
The endoscope system 100 also includes a user input device 500 having a number of switches that is in communication via a wireless or wired connection to the control unit 30 via a user input device interface 34. In operation of the system 100, a user triggers one or more switches on the user input device 500 to deploy ligation bands from the variceal banding apparatus 20, as well as other commands such as position commands, vacuum, irrigation and the like. The control commands from the user input device 500 are supplied to a processor (not shown) in the control unit 30. The processor in turn sends commands to one or more actuators, such as servo controllers (not shown) in the control unit 30 that control the endoscope steering system and variceal banding apparatus 20, as will be described in further detail below. The control unit 30 also includes a display 50 for displaying a graphical user interface 52 that shows the status of the number of bands remaining on the banding apparatus, as well as images from the imaging system at the distal end 12 and other information related to the endoscope system 100.
With continued reference to
With continued reference to
In the system 100, the operation of the trigger cable 220 is accomplished digitally by an actuator in the control unit 30 which is controlled via operator commands entered through the user input device 500. Alternatively, the operation of the trigger cable 220 is accomplished by actuating the trigger 552 on the handle 550, which in turn actuates the trigger cable 220 to deploy a ligation band.
In one embodiment, the hood 200 is preferably made of a transparent, rigid material such that it does not deform, to allow optimal imaging from the imaging system. Suitable materials include, for example, polycarbonate and the like. The hood 200 may have a substantially cylindrical shape or may be formed into any other shape that is adapted to conform to the surface of a tissue containing a varix, such as, for example, a tapered shape. The endoscope shaft 11 and the hood 200 may be formed into a variety of diameters suitable for use in a particular clinical application. In some embodiments, the outer diameter of the hood 200 is in the range of from about 6.0 mm to about 13.0 mm.
The ligation bands 210 may be made of any suitable biocompatible elastic material that will form a band capable of easily stretching over the largest tissue to be ligated and also securely grip the tissue to be removed. The elastic material preferably has the properties of stretching over a wide diameter while retaining elasticity for a long period of time, such as, for example, rubber materials and elastomeric materials. The number of ligation bands 210 disposed on the outer surface of the hood 200 is chosen based on several factors including the therapeutic application, the outer diameter and dimensions of the hood 200, and the thickness of the ligation bands. In one exemplary embodiment, the hood 200 is adapted to receive at least eight ligation bands. In another embodiment, the hood 200 is adapted to receive at least five ligation bands. In yet another embodiment, the hood 200 is adapted to receive at least two ligation bands. Other numbers of bands are also contemplated to be within the scope of the present invention. In some embodiments, the ligation bands 210 may also include a coating or composition containing a therapeutic agent such as a hemostatic agent or an anti-inflammatory agent.
In some embodiments, the system 100 includes means for mapping position coordinates of the varix that has been ligated. In some embodiments, means for mapping the ligated varix includes identification indicia on the ligation bands 210, such as, for example, one or more predetermined colors, one or more codes, an embedded tag such as an RFID tag, or other means for determining location and/or order of deployment within a patient. The position coordinates of the ligated varices may also be obtained using imaging methods such as x-ray or ultrasound technologies that are well known to those of skill in the art. In some embodiments, the endoscope 10 further comprises a position sensor receiver element (not shown) that is tracked by a tracking system using electromagnetic radiation transmitted by two or more external antenna. For example, an electromagnetic sensor element and antenna as described in U.S. Pat. No. 6,593,884 may be used, which is hereby incorporated by reference.
The trigger cable 220 is associated with each ligation band 210 such that each ligation band 210 is individually released upon the actuation of the trigger cable 220 with a predetermined force. For example, in one embodiment, as shown in
As shown in
In an alternative embodiment, as shown in
With reference now to
As mentioned above, the distal end 12 of the single-use endoscope 10 includes an imaging assembly 400 housed within the imaging port 26.
With continued reference to
Returning to
The GUI software application 740 is connected to the user input device 500 via a user input interface 742. The user input device 500 may contain GUI navigational controls to allow a user to determine the status of one or more system 100 operating parameters, such as, for example, the number of bands on the hood 200. In some embodiments of the system 100, the GUI software 740 provides the operator with the status of number of ligation bands 210 remaining on the hood 200 and displays the number of bands remaining on the display 50, as shown in
The sensors 720 may include, for example, pressure transmitters, and temperature sensors, and are used for real-time electronic feedback of hardware operating parameters, such as pressure and temperature. In one embodiment, the system 100 includes a band sensor device located on the hood 200, such as, for example, a pressure sensor that sends a signal to the control unit 30 corresponding to the presence or absence of a band 210 on the hood 200. In another embodiment, the application software 730 in the control unit 30 includes software provisions that interface with the user input interface 742 and the user input device 500 such that the number of ligation band 210 deployments initiated by the switch on the user input device 500 are recorded, tallied, and displayed on the graphical user interface 52.
As further shown in
As mentioned above, in some embodiments, the variceal banding endoscope 10 is a single-use endoscope. The single-use endoscope 10 and ligation bands 210 may be packaged as a kit for variceal band ligation. In some embodiments, the single-use variceal endoscope 10 is packaged in a sterile wrapper at the time of manufacture. The ligation bands 210 may be preloaded on the hood 200 prior to packaging or may be packaged in a separate sterile wrapper. In such embodiments, the single-use endoscope 10 may further contain a memory having stored information such as the initial number of bands 210 and/or software provisions that interface with the control unit 30 regarding the method for determining the number of ligation bands contained on the variceal banding apparatus. Stored information, such as a program or data, may be programmed into a memory chip at time of manufacture that is embedded into the endoscope 10 and transferred to a processor in the system 100 upon connection of the proximal end of the endoscope to the control unit 30.
In operation, prior to clinical use, a plurality of ligation bands 210 are positioned on the hood 200 of the variceal banding endoscope 10. The trigger cable 220 is arranged around the bands 210 as described above. The proximal end 14 of the endoscope 10 is connected to the control unit 30. In some embodiments of the system 100 the number of ligation bands 210 on the hood 200 is entered into a user interface, such as the user input device 500, or via a input device on the handle 550 by the operator. In other embodiments, the connection of the endoscope 10 to the control unit 30 triggers an information transfer to the control unit 300, including the number of ligation bands loaded on the hood 200. Once the ligation bands 210 are loaded and the number of bands on the hood 200 is recorded in the system 100, the variceal banding procedure may be initiated.
In accordance with one embodiment of the system 100, the activation of the trigger on the user input device 500 (or the trigger 552 on the handle 550) is recognized by the control unit 30 and the user interface 52 is automatically reset to show that four ligation bands 210B, 210C, 210D, 210E now remain on the hood 200. Alternatively, in another embodiment, the presence of each ligation band may be determined by a pressure sensor on the hood 200. The procedure may be repeated until all of the ligation bands 210 have been deployed.
Once the procedure has been completed, the proximal end of the endoscope 10 is removed from the control unit 30 and the single-use endoscope 10 is discarded. In accordance with the use of the variceal ligation system 100 of the invention, the ligated varix 600 shrinks over time and eventually sloughs off, leaving a scar in the place of the varix. As described above, in some embodiments the system 100 tracks the coordinates of each ligated varix, allowing an operator to later view the treated regions to verify that healing has occurred.
While the preferred embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention.
This application is a continuation of application Ser. No. 11/129,225, filed May 13, 2005, now U.S. Pat. No. 8,097,003 which is relied upon and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3266059 | Stelle | Aug 1966 | A |
3470876 | Barchilon | Oct 1969 | A |
3572325 | Bazell et al. | Mar 1971 | A |
3581738 | Moore | Jun 1971 | A |
4108211 | Tanaka | Aug 1978 | A |
4286585 | Ogawa | Sep 1981 | A |
4294162 | Fowler et al. | Oct 1981 | A |
4315309 | Coli | Feb 1982 | A |
4351323 | Ouchi et al. | Sep 1982 | A |
4425113 | Bilstad | Jan 1984 | A |
4432349 | Oshiro | Feb 1984 | A |
4471766 | Terayama | Sep 1984 | A |
4473841 | Murakoshi et al. | Sep 1984 | A |
4488039 | Sato et al. | Dec 1984 | A |
4491865 | Danna et al. | Jan 1985 | A |
4495134 | Ouchi et al. | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4513235 | Acklam et al. | Apr 1985 | A |
4515444 | Prescott et al. | May 1985 | A |
4516063 | Kaye et al. | May 1985 | A |
4519391 | Murakoshi | May 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4573450 | Arakawa | Mar 1986 | A |
4580210 | Nordstrom | Apr 1986 | A |
4586923 | Gould et al. | May 1986 | A |
4615330 | Nagasaki et al. | Oct 1986 | A |
4616630 | Arakawa | Oct 1986 | A |
4617915 | Arakawa | Oct 1986 | A |
4621618 | Omagari et al. | Nov 1986 | A |
4625714 | Toyota | Dec 1986 | A |
4631582 | Nagasaki et al. | Dec 1986 | A |
4633303 | Nagasaki et al. | Dec 1986 | A |
4633304 | Nagasaki | Dec 1986 | A |
4643170 | Miyazaki et al. | Feb 1987 | A |
4646723 | Arakawa | Mar 1987 | A |
4649904 | Krauter et al. | Mar 1987 | A |
4651202 | Arakawa | Mar 1987 | A |
4652093 | Stephen et al. | Mar 1987 | A |
4652916 | Suzaki et al. | Mar 1987 | A |
4654701 | Yabe | Mar 1987 | A |
RE32421 | Hattori | May 1987 | E |
4662725 | Nisioka | May 1987 | A |
4663657 | Nagasaki et al. | May 1987 | A |
4667655 | Ogiu et al. | May 1987 | A |
4674844 | Nishioka et al. | Jun 1987 | A |
4686963 | Cohen et al. | Aug 1987 | A |
4697210 | Toyota et al. | Sep 1987 | A |
4700693 | Lia et al. | Oct 1987 | A |
4714075 | Krauter et al. | Dec 1987 | A |
4716457 | Matsuo | Dec 1987 | A |
4719508 | Sasaki et al. | Jan 1988 | A |
4727417 | Kanno et al. | Feb 1988 | A |
4727418 | Kato et al. | Feb 1988 | A |
4745470 | Yabe et al. | May 1988 | A |
4745471 | Takamura et al. | May 1988 | A |
4746974 | Matsuo | May 1988 | A |
4748970 | Nakajima | Jun 1988 | A |
4755029 | Okabe | Jul 1988 | A |
4762119 | Allred et al. | Aug 1988 | A |
4765312 | Sasa et al. | Aug 1988 | A |
4766489 | Kato | Aug 1988 | A |
4787369 | Allred et al. | Nov 1988 | A |
4790294 | Allred et al. | Dec 1988 | A |
4794913 | Shimonaka et al. | Jan 1989 | A |
4796607 | Allred et al. | Jan 1989 | A |
4800869 | Nakajima | Jan 1989 | A |
4805596 | Hatori | Feb 1989 | A |
4806011 | Bettinger | Feb 1989 | A |
4819065 | Eino | Apr 1989 | A |
4819077 | Kikuchi et al. | Apr 1989 | A |
4821116 | Nagasaki et al. | Apr 1989 | A |
4824225 | Nishioka | Apr 1989 | A |
4831437 | Nishioka et al. | May 1989 | A |
4836187 | Iwakoshi et al. | Jun 1989 | A |
4844052 | Iwakoshi et al. | Jul 1989 | A |
4845553 | Konomura et al. | Jul 1989 | A |
4845555 | Yabe et al. | Jul 1989 | A |
4847694 | Nishihara | Jul 1989 | A |
4853772 | Kikuchi | Aug 1989 | A |
4860731 | Matsuura | Aug 1989 | A |
4867546 | Nishioka et al. | Sep 1989 | A |
4868647 | Uehara et al. | Sep 1989 | A |
4869237 | Eino et al. | Sep 1989 | A |
4873965 | Danieli | Oct 1989 | A |
4875468 | Krauter et al. | Oct 1989 | A |
4877314 | Kanamori | Oct 1989 | A |
4882623 | Uchikubo | Nov 1989 | A |
4884134 | Tsuji et al. | Nov 1989 | A |
4885634 | Yabe | Dec 1989 | A |
4890159 | Ogiu | Dec 1989 | A |
4894715 | Uchikubo et al. | Jan 1990 | A |
4895431 | Tsujiuchi et al. | Jan 1990 | A |
4899731 | Takayama et al. | Feb 1990 | A |
4899732 | Cohen | Feb 1990 | A |
4899787 | Ouchi et al. | Feb 1990 | A |
4905666 | Fukuda | Mar 1990 | A |
4918521 | Yabe et al. | Apr 1990 | A |
4919112 | Siegmund | Apr 1990 | A |
4919114 | Miyazaki | Apr 1990 | A |
4920980 | Jackowski | May 1990 | A |
4928172 | Uehara et al. | May 1990 | A |
4931867 | Kikuchi | Jun 1990 | A |
4941454 | Wood et al. | Jul 1990 | A |
4941456 | Wood et al. | Jul 1990 | A |
4951134 | Nakasima et al. | Aug 1990 | A |
4951135 | Sasagawa et al. | Aug 1990 | A |
4952040 | Igarashi | Aug 1990 | A |
4960127 | Noce et al. | Oct 1990 | A |
4961110 | Nakamura | Oct 1990 | A |
4967269 | Sasagawa et al. | Oct 1990 | A |
4971034 | Doi et al. | Nov 1990 | A |
4973311 | Iwakoshi et al. | Nov 1990 | A |
4979497 | Matsuura et al. | Dec 1990 | A |
4982725 | Hibino et al. | Jan 1991 | A |
4984878 | Miyano | Jan 1991 | A |
4986642 | Yokota et al. | Jan 1991 | A |
4987884 | Nishioka et al. | Jan 1991 | A |
4989075 | Ito | Jan 1991 | A |
4989581 | Tamburrino et al. | Feb 1991 | A |
4996974 | Ciarlei | Mar 1991 | A |
4996975 | Nakamura | Mar 1991 | A |
5001556 | Nakamura et al. | Mar 1991 | A |
5005558 | Aomori | Apr 1991 | A |
5005957 | Kanamori et al. | Apr 1991 | A |
5007408 | Ieoka | Apr 1991 | A |
5018509 | Suzuki et al. | May 1991 | A |
5022382 | Ohshoki et al. | Jun 1991 | A |
5029016 | Hiyama et al. | Jul 1991 | A |
5034888 | Uehara et al. | Jul 1991 | A |
5040069 | Matsumoto et al. | Aug 1991 | A |
RE33689 | Nishioka et al. | Sep 1991 | E |
5045935 | Kikuchi | Sep 1991 | A |
5049989 | Tsuji | Sep 1991 | A |
5050584 | Matsuura | Sep 1991 | A |
5050974 | Takasugi et al. | Sep 1991 | A |
5056503 | Nagasaki | Oct 1991 | A |
5061994 | Takahashi | Oct 1991 | A |
5068719 | Tsuji | Nov 1991 | A |
5081524 | Tsuruoka et al. | Jan 1992 | A |
5087989 | Igarashi | Feb 1992 | A |
5110645 | Matsumoto et al. | May 1992 | A |
5111281 | Sekiguchi | May 1992 | A |
5111306 | Kanno et al. | May 1992 | A |
5111804 | Funakoshi | May 1992 | A |
5113254 | Kanno et al. | May 1992 | A |
5119238 | Igarashi | Jun 1992 | A |
5131393 | Ishiguro et al. | Jul 1992 | A |
5137013 | Chiba et al. | Aug 1992 | A |
5140265 | Sakiyama et al. | Aug 1992 | A |
5159446 | Hibino et al. | Oct 1992 | A |
5170775 | Tagami | Dec 1992 | A |
5172225 | Takahashi et al. | Dec 1992 | A |
5174293 | Hagiwara | Dec 1992 | A |
5176629 | Kullas et al. | Jan 1993 | A |
5191878 | Iida et al. | Mar 1993 | A |
5198931 | Igarashi | Mar 1993 | A |
5201908 | Jones | Apr 1993 | A |
5208702 | Shiraiwa | May 1993 | A |
5209220 | Hiyama et al. | May 1993 | A |
5225958 | Nakamura | Jul 1993 | A |
5228356 | Chuang | Jul 1993 | A |
5243416 | Nakazawa | Sep 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5257628 | Ishiguro et al. | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
RE34504 | Uehara et al. | Jan 1994 | E |
5291010 | Tsuji | Mar 1994 | A |
5299559 | Bruce et al. | Apr 1994 | A |
5311858 | Adair | May 1994 | A |
5325845 | Adair et al. | Jul 1994 | A |
5331551 | Tsuruoka et al. | Jul 1994 | A |
5342299 | Snoke et al. | Aug 1994 | A |
5347989 | Monroe et al. | Sep 1994 | A |
5374953 | Sasaki et al. | Dec 1994 | A |
5379757 | Hiyama et al. | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5390662 | Okada | Feb 1995 | A |
5400769 | Tanii et al. | Mar 1995 | A |
5402768 | Adair | Apr 1995 | A |
5402769 | Tsuji | Apr 1995 | A |
5409485 | Suda | Apr 1995 | A |
5412478 | Ishihara et al. | May 1995 | A |
5418649 | Igarashi | May 1995 | A |
5420644 | Watanabe | May 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5434615 | Matumoto | Jul 1995 | A |
5436640 | Reeves | Jul 1995 | A |
5436767 | Suzuki et al. | Jul 1995 | A |
5440341 | Suzuki et al. | Aug 1995 | A |
5464007 | Krauter et al. | Nov 1995 | A |
5469840 | Tanii et al. | Nov 1995 | A |
5473235 | Lance et al. | Dec 1995 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5484407 | Osypka | Jan 1996 | A |
5485316 | Mori et al. | Jan 1996 | A |
5496260 | Krauter et al. | Mar 1996 | A |
5515449 | Tsuruoka et al. | May 1996 | A |
5518501 | Oneda et al. | May 1996 | A |
5543831 | Tsuji et al. | Aug 1996 | A |
5569158 | Suzuki et al. | Oct 1996 | A |
5569159 | Anderson et al. | Oct 1996 | A |
5586262 | Komatsu et al. | Dec 1996 | A |
5589854 | Tsai | Dec 1996 | A |
5591202 | Slater et al. | Jan 1997 | A |
5608451 | Konno et al. | Mar 1997 | A |
5619380 | Ogasawara et al. | Apr 1997 | A |
5622528 | Hamano et al. | Apr 1997 | A |
5624453 | Ahmed | Apr 1997 | A |
5631695 | Nakamura et al. | May 1997 | A |
5633203 | Adair | May 1997 | A |
5643203 | Beiser et al. | Jul 1997 | A |
5645075 | Palmer et al. | Jul 1997 | A |
5647840 | D'Amelio et al. | Jul 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5667477 | Segawa | Sep 1997 | A |
5674182 | Suzuki et al. | Oct 1997 | A |
5674197 | van Muiden et al. | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5685823 | Ito et al. | Nov 1997 | A |
5685825 | Takase et al. | Nov 1997 | A |
5691853 | Miyano | Nov 1997 | A |
5695450 | Yabe et al. | Dec 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5702349 | Morizumi | Dec 1997 | A |
5703724 | Miyano | Dec 1997 | A |
5704371 | Shepard | Jan 1998 | A |
5704896 | Fukunishi et al. | Jan 1998 | A |
5708482 | Takahashi et al. | Jan 1998 | A |
5721566 | Rosenberg et al. | Feb 1998 | A |
5724068 | Sanchez et al. | Mar 1998 | A |
5728045 | Komi | Mar 1998 | A |
5739811 | Rosenberg et al. | Apr 1998 | A |
5740801 | Branson | Apr 1998 | A |
5746696 | Kondo | May 1998 | A |
5764809 | Nomami et al. | Jun 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5781172 | Engel et al. | Jul 1998 | A |
5788714 | Ouchi | Aug 1998 | A |
5789047 | Sasaki et al. | Aug 1998 | A |
5793539 | Konno et al. | Aug 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5810715 | Moriyama | Sep 1998 | A |
5812983 | Kumagai | Sep 1998 | A |
5819736 | Avny et al. | Oct 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5821466 | Clark et al. | Oct 1998 | A |
5821920 | Rosenberg et al. | Oct 1998 | A |
5823948 | Ross, Jr. et al. | Oct 1998 | A |
5827186 | Chen et al. | Oct 1998 | A |
5827190 | Palcic et al. | Oct 1998 | A |
5828197 | Martin et al. | Oct 1998 | A |
5828363 | Yaniger et al. | Oct 1998 | A |
5830124 | Suzuki et al. | Nov 1998 | A |
5830128 | Tanaka | Nov 1998 | A |
5836869 | Kudo et al. | Nov 1998 | A |
5837023 | Koike et al. | Nov 1998 | A |
5840014 | Miyano et al. | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5843000 | Nishioka et al. | Dec 1998 | A |
5846183 | Chilcoat | Dec 1998 | A |
5855560 | Idaomi et al. | Jan 1999 | A |
5857585 | Tolkoff et al. | Jan 1999 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5865724 | Palmer et al. | Feb 1999 | A |
5868664 | Speier et al. | Feb 1999 | A |
5868666 | Okada et al. | Feb 1999 | A |
5873816 | Kagawa et al. | Feb 1999 | A |
5873866 | Kondo et al. | Feb 1999 | A |
5876326 | Takamura et al. | Mar 1999 | A |
5876331 | Wu et al. | Mar 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5876427 | Chen et al. | Mar 1999 | A |
5877819 | Branson | Mar 1999 | A |
5879284 | Tsujita | Mar 1999 | A |
5880714 | Rosenberg et al. | Mar 1999 | A |
5882293 | Ouchi | Mar 1999 | A |
5882339 | Beiser et al. | Mar 1999 | A |
5889670 | Schuler et al. | Mar 1999 | A |
5889672 | Schuler et al. | Mar 1999 | A |
5892630 | Broome | Apr 1999 | A |
5895350 | Hori | Apr 1999 | A |
5897507 | Kortenbach et al. | Apr 1999 | A |
5897525 | Dey et al. | Apr 1999 | A |
5907487 | Rosenberg et al. | May 1999 | A |
5923018 | Kameda et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5929607 | Rosenberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5929900 | Yamanaka | Jul 1999 | A |
5929901 | Adair et al. | Jul 1999 | A |
5931833 | Silverstein | Aug 1999 | A |
5933809 | Hunt et al. | Aug 1999 | A |
5935085 | Welsh et al. | Aug 1999 | A |
5936778 | Miyano et al. | Aug 1999 | A |
5941817 | Crawford | Aug 1999 | A |
5950168 | Simborg et al. | Sep 1999 | A |
5951462 | Yamanaka | Sep 1999 | A |
5956416 | Tsuruoka et al. | Sep 1999 | A |
5956689 | Everhart | Sep 1999 | A |
5956690 | Haggerson et al. | Sep 1999 | A |
5959613 | Rosenberg et al. | Sep 1999 | A |
5968056 | Chu et al. | Oct 1999 | A |
5976070 | Ono et al. | Nov 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5980454 | Broome | Nov 1999 | A |
5980468 | Zimmon | Nov 1999 | A |
5986693 | Adair et al. | Nov 1999 | A |
5991729 | Barry et al. | Nov 1999 | A |
5991730 | Lubin et al. | Nov 1999 | A |
5999168 | Rosenberg et al. | Dec 1999 | A |
6002425 | Yamanaka et al. | Dec 1999 | A |
6007531 | Snoke et al. | Dec 1999 | A |
6014630 | Jeacock et al. | Jan 2000 | A |
6015088 | Parker et al. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6020875 | Moore et al. | Feb 2000 | A |
6020876 | Rosenberg et al. | Feb 2000 | A |
6026363 | Shepard | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6032120 | Rock et al. | Feb 2000 | A |
6039728 | Berlien et al. | Mar 2000 | A |
6043839 | Adair et al. | Mar 2000 | A |
6050718 | Schena et al. | Apr 2000 | A |
6057828 | Schena et al. | May 2000 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6061004 | Rosenberg | May 2000 | A |
6066145 | Wurster | May 2000 | A |
6067077 | Martin et al. | May 2000 | A |
6071248 | Zimmon | Jun 2000 | A |
6075555 | Street | Jun 2000 | A |
6078308 | Rosenberg et al. | Jun 2000 | A |
6078353 | Yamanaka et al. | Jun 2000 | A |
6078876 | Rosenberg et al. | Jun 2000 | A |
6080104 | Ozawa et al. | Jun 2000 | A |
6081809 | Kumagai | Jun 2000 | A |
6083152 | Strong | Jul 2000 | A |
6083170 | Ben-Haim | Jul 2000 | A |
6095971 | Takahashi | Aug 2000 | A |
6099465 | Inoue | Aug 2000 | A |
6100874 | Schena et al. | Aug 2000 | A |
6104382 | Martin et al. | Aug 2000 | A |
6120435 | Eino | Sep 2000 | A |
6125337 | Rosenberg et al. | Sep 2000 | A |
6128006 | Rosenberg et al. | Oct 2000 | A |
6132369 | Takahashi | Oct 2000 | A |
6134056 | Nakamuka | Oct 2000 | A |
6134506 | Rosenberg et al. | Oct 2000 | A |
6135946 | Konen et al. | Oct 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6141037 | Upton et al. | Oct 2000 | A |
6142956 | Kortenbach et al. | Nov 2000 | A |
6146355 | Biggs | Nov 2000 | A |
6149607 | Simpson et al. | Nov 2000 | A |
6152877 | Masters | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6154248 | Ozawa et al. | Nov 2000 | A |
6155988 | Peters | Dec 2000 | A |
6181481 | Yamamoto et al. | Jan 2001 | B1 |
6184922 | Saito et al. | Feb 2001 | B1 |
6193714 | McGaffigan et al. | Feb 2001 | B1 |
6195592 | Schuler et al. | Feb 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6206824 | Ohara et al. | Mar 2001 | B1 |
6211904 | Adair | Apr 2001 | B1 |
6216104 | Moshfeghi et al. | Apr 2001 | B1 |
6219091 | Yamanaka et al. | Apr 2001 | B1 |
6221070 | Tu et al. | Apr 2001 | B1 |
6241668 | Herzog | Jun 2001 | B1 |
6260994 | Matsumoto et al. | Jul 2001 | B1 |
6272470 | Teshima | Aug 2001 | B1 |
6275255 | Adair et al. | Aug 2001 | B1 |
6283960 | Ashley | Sep 2001 | B1 |
6295082 | Dowdy et al. | Sep 2001 | B1 |
6299625 | Bacher | Oct 2001 | B1 |
6309347 | Takahashi et al. | Oct 2001 | B1 |
6310642 | Adair et al. | Oct 2001 | B1 |
6319196 | Minami | Nov 2001 | B1 |
6319197 | Tsuji et al. | Nov 2001 | B1 |
6334844 | Akiba | Jan 2002 | B1 |
6346075 | Arai et al. | Feb 2002 | B1 |
6366799 | Acker et al. | Apr 2002 | B1 |
6381029 | Tipirneni | Apr 2002 | B1 |
6398724 | May et al. | Jun 2002 | B1 |
6413207 | Minami | Jul 2002 | B1 |
6421078 | Akai et al. | Jul 2002 | B1 |
6425535 | Akiba | Jul 2002 | B1 |
6425858 | Minami | Jul 2002 | B1 |
6436032 | Eto et al. | Aug 2002 | B1 |
6441845 | Matsumoto | Aug 2002 | B1 |
6447444 | Avni et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6453190 | Acker et al. | Sep 2002 | B1 |
6454162 | Teller | Sep 2002 | B1 |
6459447 | Okada et al. | Oct 2002 | B1 |
6468204 | Sendai et al. | Oct 2002 | B2 |
6475141 | Abe | Nov 2002 | B2 |
6478730 | Bala et al. | Nov 2002 | B1 |
6489987 | Higuchi et al. | Dec 2002 | B1 |
6496827 | Kozam et al. | Dec 2002 | B2 |
6498948 | Ozawa et al. | Dec 2002 | B1 |
6503193 | Iwasaki et al. | Jan 2003 | B1 |
6520908 | Ikeda et al. | Feb 2003 | B1 |
6524234 | Ouchi | Feb 2003 | B2 |
6526979 | Nikolchev et al. | Mar 2003 | B1 |
6530882 | Farkas et al. | Mar 2003 | B1 |
6533722 | Nakashima | Mar 2003 | B2 |
6540669 | Abe et al. | Apr 2003 | B2 |
6544194 | Kortenbach et al. | Apr 2003 | B1 |
6545703 | Takahashi et al. | Apr 2003 | B1 |
6551239 | Renner et al. | Apr 2003 | B2 |
6558317 | Takahashi et al. | May 2003 | B2 |
6561971 | Akiba | May 2003 | B1 |
6565507 | Kamata et al. | May 2003 | B2 |
6574629 | Cooke, Jr. et al. | Jun 2003 | B1 |
6589162 | Nakashima et al. | Jul 2003 | B2 |
6594971 | Addy et al. | Jul 2003 | B1 |
6595913 | Takahashi | Jul 2003 | B2 |
6597390 | Higuchi | Jul 2003 | B1 |
6599239 | Hayakawa et al. | Jul 2003 | B2 |
6602186 | Sugimoto et al. | Aug 2003 | B1 |
6605035 | Ando et al. | Aug 2003 | B2 |
6609135 | Omori et al. | Aug 2003 | B1 |
6611846 | Stoodley | Aug 2003 | B1 |
6614969 | Eichelberger et al. | Sep 2003 | B2 |
6616601 | Hayakawa | Sep 2003 | B2 |
6623424 | Hayakawa et al. | Sep 2003 | B2 |
6638214 | Akiba | Oct 2003 | B2 |
6638215 | Kobayashi | Oct 2003 | B2 |
6641528 | Torii | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6656110 | Irion et al. | Dec 2003 | B1 |
6656112 | Miyanaga | Dec 2003 | B2 |
6659940 | Adler | Dec 2003 | B2 |
6663561 | Sugimoto et al. | Dec 2003 | B2 |
6669629 | Matsui | Dec 2003 | B2 |
6673012 | Fujii et al. | Jan 2004 | B2 |
6676672 | Chu et al. | Jan 2004 | B2 |
6677984 | Kobayashi et al. | Jan 2004 | B2 |
6678397 | Ohmori et al. | Jan 2004 | B1 |
6682479 | Takahashi et al. | Jan 2004 | B1 |
6685631 | Minami | Feb 2004 | B2 |
6685713 | Ahmed | Feb 2004 | B1 |
6686949 | Kobayashi et al. | Feb 2004 | B2 |
6690409 | Takahashi | Feb 2004 | B1 |
6690963 | Ben-Haim et al. | Feb 2004 | B2 |
6692431 | Kazakevich | Feb 2004 | B2 |
6697101 | Takahashi et al. | Feb 2004 | B1 |
6699181 | Wako | Mar 2004 | B2 |
6702737 | Hinto et al. | Mar 2004 | B2 |
6711426 | Benaron et al. | Mar 2004 | B2 |
6715068 | Abe | Mar 2004 | B1 |
6716162 | Hakamata | Apr 2004 | B2 |
6728599 | Wang et al. | Apr 2004 | B2 |
6730018 | Takase | May 2004 | B2 |
6736773 | Wendlandt et al. | May 2004 | B2 |
6743240 | Smith et al. | Jun 2004 | B2 |
6749559 | Kraas et al. | Jun 2004 | B1 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749561 | Kazakevich | Jun 2004 | B2 |
6753905 | Okada et al. | Jun 2004 | B1 |
6758806 | Kamrava et al. | Jul 2004 | B2 |
6758807 | Minami | Jul 2004 | B2 |
6758842 | Irion et al. | Jul 2004 | B2 |
6778208 | Takeshige et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6785410 | Vining et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6796938 | Sendai | Sep 2004 | B2 |
6796939 | Hirata et al. | Sep 2004 | B1 |
6798533 | Tipirneni | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6800057 | Tsujita et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6824539 | Novak | Nov 2004 | B2 |
6824548 | Smith et al. | Nov 2004 | B2 |
6829003 | Takami | Dec 2004 | B2 |
6830545 | Bendall | Dec 2004 | B2 |
6832990 | Kortenbach et al. | Dec 2004 | B2 |
6840932 | Lang et al. | Jan 2005 | B2 |
6842196 | Swift et al. | Jan 2005 | B1 |
6846286 | Suzuki et al. | Jan 2005 | B2 |
6847933 | Hastings | Jan 2005 | B1 |
6849043 | Kondo | Feb 2005 | B2 |
6850794 | Shahidi | Feb 2005 | B2 |
6855109 | Obata et al. | Feb 2005 | B2 |
6858004 | Ozawa et al. | Feb 2005 | B1 |
6858014 | Damarati | Feb 2005 | B2 |
6860849 | Matsushita et al. | Mar 2005 | B2 |
6863650 | Irion | Mar 2005 | B1 |
6863661 | Carrillo et al. | Mar 2005 | B2 |
6868195 | Fujita | Mar 2005 | B2 |
6871086 | Nevo et al. | Mar 2005 | B2 |
6873352 | Mochida et al. | Mar 2005 | B2 |
6876380 | Abe et al. | Apr 2005 | B2 |
6879339 | Ozawa | Apr 2005 | B2 |
6881188 | Furuya et al. | Apr 2005 | B2 |
6882785 | Eichelberger et al. | Apr 2005 | B2 |
6887195 | Pilvisto | May 2005 | B1 |
6890294 | Niwa et al. | May 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6895268 | Rahn et al. | May 2005 | B1 |
6898086 | Takami et al. | May 2005 | B2 |
6899673 | Ogura et al. | May 2005 | B2 |
6899674 | Viebach et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6900829 | Ozawa et al. | May 2005 | B1 |
6902527 | Doguchi et al. | Jun 2005 | B1 |
6902529 | Onishi et al. | Jun 2005 | B2 |
6903761 | Abe et al. | Jun 2005 | B1 |
6903883 | Amanai | Jun 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905462 | Homma | Jun 2005 | B1 |
6908427 | Fleener et al. | Jun 2005 | B2 |
6908429 | Heimberger et al. | Jun 2005 | B2 |
6911916 | Wang et al. | Jun 2005 | B1 |
6916286 | Kazakevich | Jul 2005 | B2 |
6923818 | Muramatsu et al. | Aug 2005 | B2 |
6928490 | Bucholz et al. | Aug 2005 | B1 |
6930706 | Kobayashi et al. | Aug 2005 | B2 |
6932761 | Maeda et al. | Aug 2005 | B2 |
6934093 | Kisley et al. | Aug 2005 | B2 |
6934575 | Ferre et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6943946 | Fiete | Sep 2005 | B2 |
6943959 | Homma | Sep 2005 | B2 |
6943966 | Konno | Sep 2005 | B2 |
6944031 | Takami et al. | Sep 2005 | B2 |
6949068 | Taniguchi et al. | Sep 2005 | B2 |
6950691 | Uchikubo | Sep 2005 | B2 |
6955671 | Uchikubo | Oct 2005 | B2 |
7189247 | Zirps et al. | Mar 2007 | B1 |
20010039370 | Takahashi et al. | Nov 2001 | A1 |
20010049491 | Shimada | Dec 2001 | A1 |
20020017515 | Obata et al. | Feb 2002 | A1 |
20020028984 | Hayakawa et al. | Mar 2002 | A1 |
20020055669 | Konno | May 2002 | A1 |
20020072757 | Ahmed et al. | Jun 2002 | A1 |
20020080248 | Adair et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020087166 | Brock et al. | Jul 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020128633 | Brock et al. | Sep 2002 | A1 |
20020193664 | Ross et al. | Dec 2002 | A1 |
20030034863 | Ono et al. | Feb 2003 | A1 |
20030069897 | Roy et al. | Apr 2003 | A1 |
20030149338 | Francois et al. | Aug 2003 | A1 |
20030181905 | Long | Sep 2003 | A1 |
20040049097 | Miyake | Mar 2004 | A1 |
20040054258 | Maeda et al. | Mar 2004 | A1 |
20040073083 | Ikeda et al. | Apr 2004 | A1 |
20040073084 | Maeda et al. | Apr 2004 | A1 |
20040073085 | Ikeda et al. | Apr 2004 | A1 |
20040147809 | Kazakevich | Jul 2004 | A1 |
20040167379 | Akiba | Aug 2004 | A1 |
20040249247 | Iddan | Dec 2004 | A1 |
20040257608 | Tipirneni | Dec 2004 | A1 |
20050075538 | Banik | Apr 2005 | A1 |
20050119527 | Banik et al. | Jun 2005 | A1 |
20050197861 | Omori et al. | Sep 2005 | A1 |
20050203341 | Welker et al. | Sep 2005 | A1 |
20050228697 | Funahashi | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
0 689 851 | Jan 1996 | EP |
1 147 744 | Oct 2001 | EP |
1 300 883 | Apr 2003 | EP |
58-78635 | May 1983 | JP |
05-31071 | Feb 1993 | JP |
05-091972 | Apr 1993 | JP |
06-105800 | Apr 1994 | JP |
06-254048 | Sep 1994 | JP |
07-8441 | Jan 1995 | JP |
10-113330 | May 1998 | JP |
10-286221 | Oct 1998 | JP |
11-216113 | Aug 1999 | JP |
3219521 | Aug 2001 | JP |
2002-102152 | Apr 2002 | JP |
2002-177197 | Jun 2002 | JP |
2002-185873 | Jun 2002 | JP |
2002-253481 | Sep 2002 | JP |
3372273 | Nov 2002 | JP |
2003-75113 | Mar 2003 | JP |
3482238 | Oct 2003 | JP |
WO 9313704 | Jul 1993 | WO |
WO 0010456 | Mar 2000 | WO |
WO 2004016310 | Feb 2004 | WO |
WO 2005023082 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20120150196 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11129225 | May 2005 | US |
Child | 13325638 | US |